|   | 
Details
   web
Records
Author Oueslati, S.; Brammertz, G.; Buffiere, M.; ElAnzeery, H.; Touayar, O.; Koeble, C.; Bekaert, J.; Meuris, M.; Poortmans, J.
Title Physical and electrical characterization of high-performance Cu2ZnSnSe4 based thin film solar cells Type A1 Journal article
Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 582 Issue 582 Pages 224-228
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report on the electrical, optical and physical properties of Cu2ZnSnSe4 solar cells using an absorber layer fabricated by selenization of sputtered Cu, Zn and Cu10Sn90 multilayers. A maximum active-area conversion efficiency of 10.4% under AM1.5G was measured with a maximum short circuit current density of 39.7 mA/cm(2), an open circuit voltage of 394 mV and a fill factor of 66.4%. We perform electrical and optical characterization using photoluminescence spectroscopy, external quantum efficiency, current-voltage and admittance versus temperature measurements in order to derive information about possible causes for the low open circuit voltage values observed. The main defects derived from these measurements are strong potential fluctuations in the absorber layer as well as a potential barrier of the order of 133 meV at the back side contact. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000352225900048 Publication Date 2014-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 49 Open Access
Notes ; We would like to acknowledge Tom De Geyter, Greetje Godiers, and Guido Huyberechts from Flamac in Gent for sputtering of the metal layers. AGC is acknowledged for providing substrates. This research is partially funded by the Flemish government, Department Economy, Science and Innovation. ; Approved Most recent IF: 1.879; 2015 IF: 1.759
Call Number UA @ lucian @ c:irua:132504 Serial 4225
Permanent link to this record
 

 
Author Shanenko, A.A.; Aguiar, J.A.; Vagov, A.; Croitoru, M.D.; Milošević, M.V.
Title Atomically flat superconducting nanofilms: multiband properties and mean-field theory Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 054001
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Perot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353015700005 Publication Date 2015-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 23 Open Access
Notes This work was supported by the Brazilian agencies CNPq (grants 307552/2012-8 and 141911/2012-3) and FACEPE (APQ-0589-1.05/08). AAS acknowledges fruitful discussions with A Perali and D Neilson during his stay in the University of Camerino and is thankful for partial support of his visit by the University of Camerino under the project FAR 'Control and enhancement of superconductivity by engineering materials at the nanoscale'. MDC acknowledges the support from the Back to Belgium Grant of the federal Science Policy (BELSPO). Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:132501 Serial 3944
Permanent link to this record
 

 
Author Zanin, L.; Tomasi, N.; Rizzardo, C.; Gottardi, S.; Terzano, R.; Alfeld, M.; Janssens, K.; De Nobili, M.; Mimmo, T.; Cesco, S.
Title Iron allocation in leaves of Fe-deficient cucumber plants fed with natural Fe complexes Type A1 Journal article
Year 2015 Publication Physiologia plantarum Abbreviated Journal Physiol Plantarum
Volume 154 Issue 1 Pages 82-94
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Iron (Fe) sources available for plants in the rhizospheric solution are mainly a mixture of complexes between Fe and organic ligands, including phytosiderophores (PS) and water-extractable humic substances (WEHS). In comparison with the other Fe sources, Fe-WEHS are more efficiently used by plants, and experimental evidences show that Fe translocation contributes to this better response. On the other hand, very little is known on the mechanisms involved in Fe allocation in leaves. In this work, physiological and molecular processes involved in Fe distribution in leaves of Fe-deficient Cucumis sativus supplied with Fe-PS or Fe-WEHS up to 5days were studied combining different techniques, such as radiochemical experiments, synchrotron micro X-ray fluorescence, real-time reverse transcription polymerase chain reaction and in situ hybridization. In Fe-WEHS-fed plants, Fe was rapidly (1day) allocated into the leaf veins, and after 5days, Fe was completely transferred into interveinal cells; moreover, the amount of accumulated Fe was much higher than with Fe-PS. This redistribution in Fe-WEHS plants was associated with an upregulation of genes encoding a ferric(III)-chelate reductase (FRO), a Fe2+ transporter (IRT1) and a natural resistance-associated macrophage protein (NRAMP). The localization of FRO and IRT1 transcripts next to the midveins, beside that of NRAMP in the interveinal area, may suggest a rapid and efficient response induced by the presence of Fe-WEHS in the extra-radical solution for the allocation in leaves of high amounts of Fe. In conclusion, Fe is more efficiently used when chelated to WEHS than PS and seems to involve Fe distribution and gene regulation of Fe acquisition mechanisms operating in leaves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353067500007 Publication Date 2014-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9317 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.33 Times cited 14 Open Access
Notes ; Research was supported by grants from Italian MIUR (FIRB-Programma 'Futuro in Ricerca') and Free University of Bolzano (TN5056). Synchrotron experiments at HASYLAB were financially supported by the European Community-Research Infrastructure Action under the FP6 'Structuring the European Research Area' Program I (Integrating Activity on Synchrotron and Free Electron Laser Science; project: contract RII3-CT-2004-506008). We thank Karen Appel for her scientific and technical support in obtaining the experimental data at Beamline L (HASYLAB, DESY, Hamburg, Germany). ; Approved Most recent IF: 3.33; 2015 IF: 3.138
Call Number UA @ admin @ c:irua:132500 Serial 5678
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P.
Title Majorana zero-energy modes and spin current evolution in mesoscopic superconducting loop systems with spin-orbit interaction Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 094516
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Majorana zero modes and persistent spin current in mesoscopic d-wave-superconducting loops with spin-orbit (SO) interaction are investigated by numerically solving the spin-generalized Bogoliubov-de Gennes equations self-consistently. For some appropriate strength of the SO coupling, Majorana zero-energy states and sharp jumps of the spin-polarized currents can be observed when the highest energy levels cross the Fermi energy in the spectrum, leading to spin currents with opposite chirality flowing near the inner and outer edges of the sample. When the threaded magnetic flux turns on, four flux-dependent patterns of the persistent spin current with step-like features show up, accompanied by Majorana edge modes at flux values where the energy gap closes. Moreover, the Majorana zero mode is highly influenced by the direction of the Zeeman field. A finite in-plane field can lead to the gap opening since the inversion symmetry is broken. Remarkably, multiple Majorana zero-energy states occur in the presence of an out-of-plane field h(z), and the number of steps in the spin current evolution can be effectively tuned by the field strength due to the shift of Majorana zero modes. Finally, when the loop sample contains surface indentation defects, zero-energy modes can always show up in the presence of an appropriate h(z). Interestingly, multiple Majorana states may be present in the system with a corner defect even if h(z) = 0.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000362081000002 Publication Date 2015-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes ; This work was supported by National Natural Science Foundation of China under Grants No. 61371020, No. 61271163, and No. 61571277, by the Visiting Scholar Program of Shanghai Municipal Education Commission, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:132467 Serial 4203
Permanent link to this record
 

 
Author Zhang, F.; Batuk, M.; Hadermann, J.; Manfredi, G.; Mariën, A.; Vanmeensel, K.; Inokoshi, M.; Van Meerbeek, B.; Naert, I.; Vleugels, J.
Title Effect of cation dopant radius on the hydrothermal stability of tetragonal zirconia: Grain boundary segregation and oxygen vacancy annihilation Type A1 Journal article
Year 2016 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 106 Issue 106 Pages 48-58
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The hydrothermal aging stability of 3Y-TZP-xM2O3 (M = La, Nd, Sc) was investigated as a function of 0.02–5 mol% M2O3 dopant content and correlated to the overall phase content, t-ZrO2 lattice parameters, grain size distribution, grain boundary chemistry and ionic conductivity.

The increased aging stability with increasing Sc2O3 content and the optimum content of 0.4–0.6 mol% Nd2O3 or 0.2–0.4 mol% La2O3, resulting in the highest aging resistance, could be directly related to the constituent phases and the lattice parameters of the remaining tetragonal zirconia.

At low M2O3 dopant contents ≤0.4 mol%, the different aging behavior of tetragonal zirconia was attributed to the defect structure of the zirconia grain boundary which was influenced by the dopant cation radius. It was observed that the grain boundary ionic resistivity and the aging resistance followed the same trend: La3+ > Nd3+ > Al3+ > Sc3+, proving that hydrothermal aging is driven by the diffusion of water-derived mobile species through the oxygen vacancies. Accordingly, we elucidated the underlying mechanism by which a larger trivalent cation segregating at the zirconia grain boundary resulted in a higher aging resistance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371650300006 Publication Date 2016-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 37 Open Access
Notes The authors acknowledge the Research Fund of KU Leuven under project 0T/10/052 and the Fund for Scientific Research Flanders (FWO-Vlaanderen) under grant G.0431.10N. F. Zhang thanks the Research Fund of KU Leuven for her post-doctoral fellowship (PDM/15/153). Approved Most recent IF: 5.301
Call Number c:irua:132435 Serial 4076
Permanent link to this record
 

 
Author Kim, E.; Spooren, J.; Broos, K.; Nielsen, P.; Horckmans, L.; Geurts, R.; Vrancken, K.C.; Quaghebeur, M.
Title Valorization of stainless steel slag by selective chromium recovery and subsequent carbonation of the matrix material Type A1 Journal article
Year 2016 Publication Journal of cleaner production Abbreviated Journal
Volume 117 Issue Pages 221-228
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract This study focuses on the recycling of stainless steel (SS) slags containing about 1.2 wt% of chromium (Cr). The selective recovery of Cr from SS slag by a hydrometallurgical method (alkaline pressure leaching) was investigated. Leaching experiments were carried out based on 2(4-1) factorial design of experiment (DOE) with the following parameters: NaOH concentration, temperature, leaching time, and mechanical activation (MA). Results show that temperature and MA are the most influencing factors for an enhanced Cr leaching. The maximum Cr leaching was 46% at 1 M NaOH, 240 degrees C, 6 h, MA 30 min, while the matrix material was dissolved only to a limited extent (Al 2.88%, Si 0.12%, Ca 0.05%). After Cr leaching followed by alkali washing, a carbonation treatment is proposed to stabilize the remaining Cr in the matrix material and make the subsequent recycling of the matrix material as a construction material possible. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371552200025 Publication Date 2016-01-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:132432 Serial 8731
Permanent link to this record
 

 
Author Walter, A.L.; Sahin, H.; Kang, J.; Jeon, K.J.; Bostwick, A.; Horzum, S.; Moreschini, L.; Chang, Y.J.; Peeters, F.M.; Horn, K.; Rotenberg, E.;
Title New family of graphene-based organic semiconductors : an investigation of photon-induced electronic structure manipulation in half-fluorinated graphene Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages 075439
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The application of graphene to electronic and optoelectronic devices is limited by the absence of reliable semiconducting variants of this material. A promising candidate in this respect is graphene oxide, with a band gap on the order of similar to 5 eV, however, this has a finite density of states at the Fermi level. Here, we examine the electronic structure of three variants of half-fluorinated carbon on Sic(0001), i.e., the (6 root 3 x 6 root 3) R30 degrees C/SiC “buffer layer,” graphene on this (6 root 3 x 6 root 3) R30 degrees C/SiC buffer layer, and graphene decoupled from the SiC substrate by hydrogen intercalation. Using angle-resolved photoemission, core level photoemission, and x-ray absorption, we show that the electronic, chemical, and physical structure of all three variants is remarkably similar, exhibiting a large band gap and a vanishing density of states at the Fermi level. These results are explained in terms of first-principles calculations. This material thus appears very suitable for applications, even more so since it is prepared on a processing-friendly substrate. We also investigate two separate UV photon-induced modifications of the electronic structure that transform the insulating samples (6.2-eV band gap) into semiconducting (similar to 2.5-eV band gap) and metallic regions, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371398000007 Publication Date 2016-02-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Work in Erlangen was supported by the DFG through SPP 1459 “Graphene” and SFB 953 “Synthetic Carbon Allotropes” and by the ESF through the EURO-Graphene project GraphicRF. A.L.W. acknowledges support from the Max-Planck-Gesellschaft, the Donostia International Physics Centre, and the Centro de Fisica de Materiales in San Sebastian, Spain, and Brookhaven National Laboratory under US Department of Energy, Office of Science, Office of Basic Energy Sciences, Contract No. DE-SC0012704. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. by a FWO Pegasus-Short Marie Curie Fellowship. Y.J.C. acknowledges support from the National Research Foundation of Korea under Grant No. NRF-2014R1A1A1002868. The authors gratefully acknowledge the work of T. Seyller's group at the Institut fur Physik, Technische Universitat Chemnitz, Germany for providing the samples. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:132352 Serial 4213
Permanent link to this record
 

 
Author Rezaei, M.; Saey, T.; Seuntjens, P.; Joris, I.; Boenne, W.; Van Meirvenne, M.; Cornelis, W.
Title Predicting saturated hydraulic conductivity in a sandy grassland using proximally sensed apparent electrical conductivity Type A1 Journal article
Year 2016 Publication Journal of applied geophysics Abbreviated Journal
Volume 126 Issue Pages 35-41
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Finding a correspondence between soil hydraulic properties, such as saturated hydraulic conductivity (Ks) and apparent electrical conductivity (ECa) as an easily measurable parameter, may be a way forward to estimate the spatial distribution of hydraulic properties at the field scale. In this study, the spatial distributions of Ks, of soil ECa measured by a DUALEM-21S sensor and of soil physical properties were investigated in a sandy grassland. To predict field scale Ks, the statistical relationship between co-located soil Ks, and EMI-ECa was evaluated. Results demonstrated the large spatial variability of all studied properties with Ks being the most variable one (CV = 86.21%) followed by ECa (CV >= 53.77%). A significant negative correlation was found between In-transformed Ks and ECa (r = 0.83; P <= 0.01) at two depths of exploration (0-50 and 0-100 cm). This site specific relation between In Ks and ECa was used to predict saturated hydraulic conductivity over 0-50 cm depth for the whole field. The empirical relation was validated using an independent dataset of measured Ks. The statistical results demonstrate the robustness of this empirical relation with mean estimation error MEE = 0.46 (cm h(-1)), root-mean-square estimation errors RMSEE = 0.74 (cm h(-1)), coefficient of determination r(2) = 0.67 and coefficient of model efficiency Ce = 0.64. The relationship was then used to produce a detailed map of Ks for the whole field. The result will allow model predictions of spatially distributed water content in view of irrigation management. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371361200004 Publication Date 2016-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-9851 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:132349 Serial 8403
Permanent link to this record
 

 
Author Van Eynde, E.; Lenaerts, B.; Tytgat, T.; Blust, R.; Lenaerts, S.
Title Valorization of flue gas by combining photocatalytic gas pretreatment with microalgae production Type A1 Journal article
Year 2016 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol
Volume 50 Issue 5 Pages 2538-2545
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Utilization of flue gas for algae cultivation seems to be a promising route because flue gas from fossil-fuel combustion processes contains the high amounts of carbon (CO2) and nitrogen (NO) that are required for algae growth. NO is a poor nitrogen source for algae cultivation because of its low reactivity and solubility in water and its toxicity for algae at high concentrations. Here, we present a novel strategy to valorize NO from flue gas as feedstock for algae production by combining a photocatalytic gas pretreatment unit with a microalgal photobioreactor. The photocatalytic air pretreatment transforms NO gas into NO2 gas and thereby enhances the absorption of NO in the cultivation broth. The absorbed NOx will form NO2- and NO3- that can be used as a nitrogen source by algae. The effect of photocatalytic air pretreatment on the growth and biomass productivity of the algae Thalassiosira weissflogii in a semicontinuous system aerated with a model flue gas (1% CO2 and 50 ppm of NO) is investigated during a long-term experiment. The integrated system makes it possible to produce algae with NO from flue gas as the sole nitrogen source and reduces the NOx content in the exhaust gas by 84%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371371700048 Publication Date 2016-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 6.198 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 6.198
Call Number UA @ admin @ c:irua:132348 Serial 6003
Permanent link to this record
 

 
Author Roesler, C.; Aijaz, A.; Turner, S.; Filippousi, M.; Shahabi, A.; Xia, W.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A.
Title Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk-Shell Metal@Zn/Co ZIF nanostructures Type A1 Journal article
Year 2016 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 22 Issue 22 Pages 3304-3311
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Metal-organic frameworks (MOFs) feature a great possibility for a broad spectrum of applications. Hollow MOF structures with tunable porosity and multifunctionality at the nanoscale with beneficial properties are desired as hosts for catalytically active species. Herein, we demonstrate the formation of well-defined hollow Zn/Co-based zeolitic imidazolate frameworks (ZIFs) by use of epitaxial growth of Zn-MOF (ZIF-8) on preformed Co-MOF (ZIF-67) nanocrystals that involve in situ self-sacrifice/excavation of the Co-MOF. Moreover, any type of metal nanoparticles can be accommodated in Zn/Co-ZIF shells to generate yolk-shell metal@ZIF structures. Transmission electron microscopy and tomography studies revealed the inclusion of these nanoparticles within hollow Zn/Co-ZIF with dominance of the Zn-MOF as shell. Our findings lead to a generalization of such hollow systems that are working effectively to other types of ZIFs.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000371419200001 Publication Date 2016-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited 43 Open Access
Notes Approved Most recent IF: 5.317
Call Number UA @ lucian @ c:irua:132347 Serial 4192
Permanent link to this record
 

 
Author Bacaksiz, C.; Cahangirov, S.; Rubio, A.; Senger, R.T.; Peeters, F.M.; Sahin, H.
Title Bilayer SnS2 : tunable stacking sequence by charging and loading pressure Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages 125403
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Employing density functional theory-based methods, we investigate monolayer and bilayer structures of hexagonal SnS2, which is a recently synthesized monolayer metal dichalcogenide. Comparison of the 1H and 1T phases of monolayer SnS2 confirms the ground state to be the 1T phase. In its bilayer structure we examine different stacking configurations of the two layers. It is found that the interlayer coupling in bilayer SnS2 is weaker than that of typical transition-metal dichalcogenides so that alternative stacking orders have similar structural parameters and they are separated with low energy barriers. A possible signature of the stacking order in the SnS2 bilayer has been sought in the calculated absorbance and reflectivity spectra. We also study the effects of the external electric field, charging, and loading pressure on the characteristic properties of bilayer SnS2. It is found that (i) the electric field increases the coupling between the layers at its preferred stacking order, so the barrier height increases, (ii) the bang gap value can be tuned by the external E field and under sufficient E field, the bilayer SnS2 can become a semimetal, (iii) the most favorable stacking order can be switched by charging, and (iv) a loading pressure exceeding 3 GPa changes the stacking order. The E-field tunable band gap and easily tunable stacking sequence of SnS2 layers make this 2D crystal structure a good candidate for field effect transistor and nanoscale lubricant applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371405000005 Publication Date 2016-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes ; The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). C.B., H.S., and R.T.S. acknowledge support from TUBITAK Project No. 114F397. H.S. is supported by an FWO Pegasus Marie Curie Fellowship. S.C. and A.R. acknowledge financial support from the Marie Curie grant FP7-PEOPLE-2013-IEF Project No. 628876, the European Research Council (ERC-2010-AdG-267374), and Spanish grant Grupos Consolidados (IT578-13). S.C. acknowledges support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 115F388. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:132345 Serial 4144
Permanent link to this record
 

 
Author Heyne, M.H.; Chiappe, D.; Meersschaut, J.; Nuytten, T.; Conard, T.; Bender, H.; Huyghebaert, C.; Radu, I.P.; Caymax, M.; de Marneffe, J.F.; Neyts, E.C.; De Gendt, S.;
Title Multilayer MoS2 growth by metal and metal oxide sulfurization Type A1 Journal article
Year 2016 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 4 Issue 4 Pages 1295-1304
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We investigated the deposition of MoS2 multilayers on large area substrates. The pre-deposition of metal or metal oxide with subsequent sulfurization is a promising technique to achieve layered films. We distinguish a different reaction behavior in metal oxide and metallic films and investigate the effect of the temperature, the H2S/H-2 gas mixture composition, and the role of the underlying substrate on the material quality. The results of the experiments suggest a MoS2 growth mechanism consisting of two subsequent process steps. At first, the reaction of the sulfur precursor with the metal or metal oxide occurs, requiring higher temperatures in the case of metallic film compared to metal oxide. At this stage, the basal planes assemble towards the diffusion direction of the reaction educts and products. After the sulfurization reaction, the material recrystallizes and the basal planes rearrange parallel to the substrate to minimize the surface energy. Therefore, substrates with low roughness show basal plane assembly parallel to the substrate. These results indicate that the substrate character has a significant impact on the assembly of low dimensional MoS2 films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370723300020 Publication Date 2016-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited Open Access
Notes Approved Most recent IF: 5.256
Call Number UA @ lucian @ c:irua:132327 Serial 4211
Permanent link to this record
 

 
Author Neubert, S.; Mitoraj, D.; Shevlin, S.A.; Pulisova, P.; Heimann, M.; Du, Y.; Goh, G.K.L.; Pacia, M.; Kruczała, K.; Turner, S.; Macyk, W.; Guo, Z.X.; Hocking, R.K.; Beranek, R.;
Title Highly efficient rutile TiO2 photocatalysts with single Cu(II) and Fe(III) surface catalytic sites Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 4 Issue 4 Pages 3127-3138
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Highly active photocatalysts were obtained by impregnation of nanocrystalline rutile TiO2 powders with small amounts of Cu(II) and Fe(III) ions, resulting in the enhancement of initial rates of photocatalytic degradation of 4-chlorophenol in water by factors of 7 and 4, compared to pristine rutile, respectively. Detailed structural analysis by EPR and X-ray absorption spectroscopy (EXAFS) revealed that Cu(II) and Fe(III) are present as single species on the rutile surface. The mechanism of the photoactivity enhancement was elucidated by a combination of DFT calculations and detailed experimental mechanistic studies including photoluminescence measurements, photocatalytic experiments using scavengers, OH radical detection, and photopotential transient measurements. The results demonstrate that the single Cu(II) and Fe(III) ions act as effective cocatalytic sites, enhancing the charge separation, catalyzing “dark” redox reactions at the interface, thus improving the normally very low quantum yields of UV light-activated TiO2 photocatalysts. The exact mechanism of the photoactivity enhancement differs depending on the nature of the cocatalyst. Cu(II)-decorated samples exhibit fast transfer of photogenerated electrons to Cu(II/I) sites, followed by enhanced catalysis of dioxygen reduction, resulting in improved charge separation and higher photocatalytic degradation rates. At Fe(III)-modified rutile the rate of dioxygen reduction is not improved and the photocatalytic enhancement is attributed to higher production of highly oxidizing hydroxyl radicals produced by alternative oxygen reduction pathways opened by the presence of catalytic Fe(III/II) sites. Importantly, it was demonstrated that excessive heat treatment (at 450 degrees C) of photocatalysts leads to loss of activity due to migration of Cu(II) and Fe(III) ions from TiO2 surface to the bulk, accompanied by formation of oxygen vacancies. The demonstrated variety of mechanisms of photoactivity enhancement at single site catalyst-modified photocatalysts holds promise for developing further tailored photocatalysts for various applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000371077300040 Publication Date 2015-12-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 44 Open Access
Notes Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:132322 Serial 4191
Permanent link to this record
 

 
Author Agarwal, T.; Sorée, B.; Radu, I.; Raghavan, P.; Fiori, G.; Iannaccone, G.; Thean, A.; Heyns, M.; Dehaene, W.
Title Comparison of short-channel effects in monolayer MoS2 based junctionless and inversion-mode field-effect transistors Type A1 Journal article
Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 108 Issue 108 Pages 023506
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Conventional junctionless (JL) multi/gate (MuG) field-effect transistors (FETs) require extremely scaled channels to deliver high on-state current with low short-channel effect related leakage. In this letter, using ultra-thin 2D materials (e.g., monolayer MoS2), we present comparison of short-channel effects in JL, and inversion-mode (IM) FETs. We show that JL FETs exhibit better sub-threshold slope (S.S.) and drain-induced-barrier-lowering (DIBL) in comparison to IM FETs due to reduced peak electric field at the junctions. But, threshold voltage (VT) roll-off with channel length downscaling is found to be significantly higher in JL FETs than IM FETs, due to higher source/drain controlled charges (dE/dx) in the channel. Further, we show that although VT roll-off in JL FETs improves by increasing the gate control, i.e., by scaling the oxide, or channel thickness, the sensitivity of threshold voltage on structural parameters is found out to be high. (C) 2016 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000370258400056 Publication Date 2016-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 13 Open Access
Notes ; ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:132318 Serial 4152
Permanent link to this record
 

 
Author Filez, M.; Redekop, E.A.; Galvita, V.V.; Poelman, H.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Bell, A.T.; Marin, G.B.
Title The role of hydrogen during Pt-Ga nanocatalyst formation Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 3234-3243
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hydrogen plays an essential role during the in situ assembly of tailored catalytic materials, and serves as key ingredient in multifarious chemical reactions promoted by these catalysts. Despite intensive debate for several decades, the existence and nature of hydrogen-involved mechanisms – such as hydrogen-spillover, surface migration – have not been unambiguously proven and elucidated up to date. Here, Pt-Ga alloy formation is used as a probe reaction to study the behavior and atomic transport of H and Ga, starting from Pt nanoparticles on hydrotalcite-derived Mg(Ga)(Al)Ox supports. In situ XANES spectroscopy, time-resolved TAP kinetic experiments, HAADF-STEM imaging and EDX mapping are combined to probe Pt, Ga and H in a series of H2 reduction experiments up to 650 degrees C. Mg(Ga)(Al)Ox by itself dissociates hydrogen, but these dissociated hydrogen species do not induce significant reduction of Ga3+ cations in the support. Only in the presence of Pt, partial reduction of Ga3+ into Gadelta+ is observed, suggesting that different reaction mechanisms dominate for Pt- and Mg(Ga)(Al)Ox-dissociated hydrogen species. This partial reduction of Ga3+ is made possible by Pt-dissociated H species which spillover onto non-reducible Mg(Al)Ox or partially reducible Mg(Ga)(Al)Ox and undergo long-range transport over the support surface. Moderately mobile Gadelta+Ox migrates towards Pt clusters, where Gadelta+ is only fully reduced to Ga0 on condition of immediate stabilization inside Pt-Ga alloyed nanoparticles.
Address Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Ghent, Belgium. hilde.poelman@ugent.be
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000369506000106 Publication Date 2016-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 10 Open Access
Notes This work was supported by the Fund for Scientific Research Flanders (FWO: G.0209.11), the ‘Long Term Structural Methusalem Funding by the Flemish Government’, the IAP 7/05 Interuniversity Attraction Poles Programme – Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) in supplying financing of beam time at the DUBBLE beam line of the ESRF and travel costs and a postdoctoral fellowship for S.T. The authors acknowledge the assistance from D. Banerjee (XAS campaign 26-01-979) at DUBBLE. E. A. Redekop acknowledges the Marie Curie International Incoming Fellowship granted by the European Commission (Grant Agreement No. 301703). The authors also express their gratitude to V. Bliznuk for acquisition of the TEM images. Approved Most recent IF: 4.123
Call Number c:irua:132315 Serial 4000
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Horzum, S.; Torun, E.; Peeters, F.M.; Senger, R.T.
Title Nitrogenated, phosphorated and arsenicated monolayer holey graphenes Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 3144-3150
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by a recent experiment that reported the synthesis of a new 2D material nitrogenated holey graphene (C2N) [Mahmood et al., Nat. Commun., 2015, 6, 6486], the electronic, magnetic, and mechanical properties of nitrogenated (C2N), phosphorated (C2P) and arsenicated (C2As) monolayer holey graphene structures are investigated using first-principles calculations. Our total energy calculations indicate that, similar to the C2N monolayer, the formation of the other two holey structures are also energetically feasible. Calculated cohesive energies for each monolayer show a decreasing trend going from the C2N to C2As structure. Remarkably, all the holey monolayers considered are direct band gap semiconductors. Regarding the mechanical properties (in-plane stiffness and Poisson ratio), we find that C2N has the highest in-plane stiffness and the largest Poisson ratio among the three monolayers. In addition, our calculations reveal that for the C2N, C2P and C2As monolayers, creation of N and P defects changes the semiconducting behavior to a metallic ground state while the inclusion of double H impurities in all holey structures results in magnetic ground states. As an alternative to the experimentally synthesized C2N, C2P and C2As are mechanically stable and flexible semiconductors which are important for potential applications in optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000369506000095 Publication Date 2015-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 36 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). ; Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:132313 Serial 4214
Permanent link to this record
 

 
Author Janssens, K.; Legrand, S.; van der Snickt, G.; Vanmeert, F.
Title Virtual archaeology of altered paintings : multiscale chemical imaging tools Type A1 Journal article
Year 2016 Publication Elements Abbreviated Journal Elements
Volume 12 Issue 1 Pages 39-44
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Understanding how painted works of art were constructed, layer-by-layer, requires a range of macroscopic and microscopic X-ray and infrared-based analytical methods. Deconstructing complex assemblies of paints horizontally across a picture and vertically through it provides insight into the detailed production process of the art work and on the painting techniques and styles of its maker. The unwanted chemical transformations that some paint pigments undergo are also detectable; these changes can alter the paint's optical properties. Understanding the chemistry behind such paint degradation gives conservators vital clues to counter these effects and is an invaluable asset in protecting these cultural artefacts for future generations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370987700007 Publication Date 2016-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1811-5209 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 4.038 Times cited 12 Open Access
Notes ; ; Approved Most recent IF: 4.038
Call Number UA @ admin @ c:irua:132301 Serial 5904
Permanent link to this record
 

 
Author Guidini, A.; Flammia, L.; Milošević, M.V.; Perali, A.
Title BCS-BEC crossover in quantum confined superconductors Type A1 Journal article
Year 2016 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn
Volume 29 Issue 29 Pages 711-715
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ultranarrow superconductors are in the strong quantum confinement regime with formation of multiple coherent condensates associated with the many subbands of the electronic structure. Here, we analyze the multiband BCS-BEC crossover induced by the chemical potential tuned close to a subband bottom, in correspondence of a superconducting shape resonance. The evolution of the condensate fraction and of the pair correlation length in the ground state as functions of the chemical potential demonstrates the tunability of the BCS-BEC crossover for the condensate component of the selected subband. The extension of the crossover regime increases when the pairing strength and/or the characteristic energy of the interaction get larger. Our results indicate the coexistence of large and small Cooper pairs in the crossover regime, leading to the optimal parameter configuration for high transition temperature superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000371089500034 Publication Date 2015-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-1939 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.18 Times cited 12 Open Access
Notes ; We acknowledge A. Bianconi and A.A. Shanenko for useful discussions. A.P. acknowledges financial support from the University of Camerino under the project FAR “Control and enhancement of superconductivity by engineering materials at the nanoscale”. M.V.M. acknowledges support from the Research Foundation – Flanders (FWO) and the Special Research Funds of the University of Antwerp (BOF-UA). A.P. and M.V.M. acknowledge the collaboration within the MultiSuper International Network (http://www.multisuper.org) for exchange of ideas and suggestions. ; Approved Most recent IF: 1.18
Call Number UA @ lucian @ c:irua:132287 Serial 4143
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Vagov, A.; Vasenko, A.S.; Milošević, M.V.; Axt, V.M.; Peeters, F.M.
Title Influence of disorder on superconducting correlations in nanoparticles Type A1 Journal article
Year 2016 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn
Volume 29 Issue 29 Pages 605-609
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate how the interplay of quantum confinement and level broadening caused by disorder affects superconducting correlations in ultra-small metallic grains. We use the electron-phonon interaction-induced electron mass renormalization and the reduced static-path approximation of the BCS formalism to calculate the critical temperature as a function of the grain size. We show how the strong electron-impurity scattering additionally smears the peak structure in the electronic density of states of a metallic grain and imposes additional limits on the critical temperature under strong quantum confinement.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000371089500013 Publication Date 2016-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-1939 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.18 Times cited 7 Open Access
Notes ; This work was supported by the Belgian Science Policy (BELSPO Back to Belgium Grant), the Flemish Science Foundation (FWO-Vl), the Methusalem Foundation of the Flemish Government, TOPBOF-UA, and the bilateral project CNPq-FWO-Vl. ; Approved Most recent IF: 1.18
Call Number UA @ lucian @ c:irua:132286 Serial 4195
Permanent link to this record
 

 
Author Van Vlierberghe, S.
Title Crosslinking strategies for porous gelatin scaffolds Type A1 Journal article
Year 2016 Publication Journal of materials science Abbreviated Journal
Volume 51 Issue 9 Pages 4349-4357
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The present work reports on the application and the evaluation of a multitude of crosslinking approaches including high-energy irradiation, redox-initiating systems and conventional carbodiimide-coupling chemistry for frozen and/or freeze-dried porous gelatin scaffolds. The latter is particularly relevant for a plethora of biomedical applications such as tissue engineering supports, wound dressings, adhesive and absorbent pads for surgery, etc. Moreover, the results obtained for gelatin can be considered a proof-of-concept to be extrapolated to other polymer systems containing double bonds and/or amines and carboxylic acids to also realize scaffold crosslinking in dry or frozen state. The results showed that high-energy irradiation at -5 A degrees C enabled sufficient segmental mobility to induce chemical crosslinking after performing a cryogenic treatment of methacrylamide-modified gelatin scaffolds. Alternatively, although several redox-initiating systems were unable to chemically crosslink functionalized gelatin, the combination of ammonium persulphate and TEMED resulted in the formation of scaffolds with a reasonable gel fraction. Interestingly, carbodiimide-coupling was found suitable to crosslink freeze-dried gelatin matrices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370342100016 Publication Date 2016-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2461 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:132277 Serial 7742
Permanent link to this record
 

 
Author Venturi, F.; Calizzi, M.; Bals, S.; Perkisas, T.; Pasquini, L.
Title Self-assembly of gas-phase synthesized magnesium nanoparticles on room temperature substrates Type A1 Journal article
Year 2015 Publication Materials research express Abbreviated Journal Mater Res Express
Volume 2 Issue 2 Pages 015007
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract Magnesium nanoparticles (NPs) with initial size in the 10-50 nmrange were synthesized by inert gas condensation under helium flow and deposited on room temperature substrates. The morphology and crystal structure of the NPs ensemble were investigated as a function of the deposition time by complementary electron microscopy techniques, including high resolution imaging and chemical mapping. With increasing amount of material, strong coarsening phenomena were observed at room temperature: small NPs disappeared while large faceted NPs developed, leading to a 5-fold increase of the average NPs size within a few minutes. The extent of coarsening and the final morphology depended also on the nature of the substrate. Furthermore, large single-crystal NPs were seen to arise from the self-organization of primary NPs units, providing a mechanism for crystal growth. The dynamics of the self-assembly process involves the basic steps of NPs sticking, diffusion on substrate, coordinated rotation and attachment/coalescence. Key features are the surface energy anisotropy, reflected by the faceted shape of the NPs, and the low melting point of the material. The observed phenomena have strong implications in relation to the synthesis and stability of nanostructures based on Mg or other elements with similar features.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000369978500007 Publication Date 2014-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1591 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.068 Times cited 14 Open Access Not_Open_Access
Notes ; Financial support by COST Action MP1103 'Nanostructured Materials for Solid-State Hydrogen Storage' is gratefully acknowledged. ; Approved Most recent IF: 1.068; 2015 IF: NA
Call Number UA @ lucian @ c:irua:132275 Serial 4240
Permanent link to this record
 

 
Author Rezaei, M.; Seuntjens, P.; Joris, I.; Boenne, W.; Van Hoey, S.; Campling, P.; Cornelis, W.M.
Title Sensitivity of water stress in a two-layered sandy grassland soil to variations in groundwater depth and soil hydraulic parameters Type A1 Journal article
Year 2016 Publication Hydrology and earth system sciences Abbreviated Journal
Volume 20 Issue 1 Pages 487-503
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Monitoring and modelling tools may improve irrigation strategies in precision agriculture. We used non-invasive soil moisture monitoring, a crop growth and a soil hydrological model to predict soil water content fluctuations and crop yield in a heterogeneous sandy grassland soil under supplementary irrigation. The sensitivity of the soil hydrological model to hydraulic parameters, water stress, crop yield and lower boundary conditions was assessed after integrating models. Free drainage and incremental constant head conditions were implemented in a lower boundary sensitivity analysis. A time-dependent sensitivity analysis of the hydraulic parameters showed that changes in soil water content are mainly affected by the soil saturated hydraulic conductivity K-s and the Mualem-van Genuchten retention curve shape parameters n and alpha. Results further showed that different parameter optimization strategies (two-, three-, four- or six-parameter optimizations) did not affect the calculated water stress and water content as significantly as does the bottom boundary. In this case, a two-parameter scenario, where K-s was optimized for each layer under the condition of a constant groundwater depth at 135-140 cm, performed best. A larger yield reduction, and a larger number and longer duration of stress conditions occurred in the free drainage condition as compared to constant boundary conditions. Numerical results showed that optimal irrigation scheduling using the aforementioned water stress calculations can save up to 12-22 % irrigation water as compared to the current irrigation regime. This resulted in a yield increase of 4.5-6.5 %, simulated by the crop growth model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000369668400028 Publication Date 2016-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1027-5606; 1607-7938 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:132259 Serial 8514
Permanent link to this record
 

 
Author Batuk, D.; Tsirlin, A.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.; Hadermann, J.; Abakumov, A.M.
Title Bi(3n+1)Ti7Fe(3n-3)O(9n+11) Homologous Series: Slicing Perovskite Structure with Planar Interfaces Containing Anatase-like Chains Type A1 Journal article
Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 55 Issue 55 Pages 1245-1257
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The n = 3-6 members of a new perovskite-based homologous series Bi(3n+1)Ti7Fe(3n-3)O(9n+11) are reported. The crystal structure of the n = 3 Bi10Ti7Fe6O38 member is refined using a combination of X-ray and neutron powder diffraction data (a = 11.8511(2) A, b = 3.85076(4) A, c = 33.0722(6) A, S.G. Immm), unveiling the partially ordered distribution of Ti(4+) and Fe(3+) cations and indicating the presence of static random displacements of the Bi and O atoms. All Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures are composed of perovskite blocks separated by translational interfaces parallel to the (001)p perovskite planes. The thickness of the perovskite blocks increases with n, while the atomic arrangement at the interfaces remains the same. The interfaces comprise chains of double edge-sharing (Fe,Ti)O6 octahedra connected to the octahedra of the perovskite blocks by sharing edges and corners. This configuration shifts the adjacent perovskite blocks relative to each other over a vector (1/2)[110]p and creates S-shaped tunnels along the [010] direction. The tunnels accommodate double columns of the Bi(3+) cations, which stabilize the interfaces owing to the stereochemical activity of their lone electron pairs. The Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures can be formally considered either as intergrowths of perovskite modules and polysynthetically twinned modules of the Bi2Ti4O11 structure or as intergrowths of the 2D perovskite and 1D anatase fragments. Transmission electron microscopy (TEM) on Bi10Ti7Fe6O38 reveals that static atomic displacements of Bi and O inside the perovskite blocks are not completely random; they are cooperative, yet only short-range ordered. According to TEM, the interfaces can be laterally shifted with respect to each other over +/-1/3a, introducing an additional degree of disorder. Bi10Ti7Fe6O38 is paramagnetic in the 1.5-1000 K temperature range due to dilution of the magnetic Fe(3+) cations with nonmagnetic Ti(4+). The n = 3, 4 compounds demonstrate a high dielectric constant of 70-165 at room temperature.
Address Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology , Nobelya str. 3, 143026 Moscow, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000369356800031 Publication Date 2016-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 3 Open Access
Notes We are grateful to the Laboratory for Neutron Scattering and Imaging of Paul Scherrer Institut (LNS PSI, Villigen, Switzerland) for granting beam time at the HRPT diffrac- tometer and to Dr. Denis Sheptyakov for the technical support during the experiment. We are also grateful to Valery Verchenko for his help with magnetization measurements. The work has been supported by the Russian Science Foundation (grant 14-13-00680). A.A.T. was partly supported by the Federal Ministry for Education and Science through a Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 4.857
Call Number c:irua:132247 Serial 4073
Permanent link to this record
 

 
Author Özen, M.; Mertens, M.; Snijkers, F.; Van Tendeloo, G.; Cool, P.
Title Texturing of hydrothermally synthesized BaTiO3 in a strong magnetic field by slip casting Type A1 Journal article
Year 2016 Publication Ceramics international Abbreviated Journal Ceram Int
Volume 42 Issue 42 Pages 5382-5390
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Barium titanate powder was processed by slip casting in a rotating strong magnetic field of 9.4 T. The orientation factor of the sintered compact was analyzed by the X-ray diffraction technique and the microstructure (grain-size) was analyzed by scanning electron microscope. The hydrothermally prepared barium titanate was used as matrix material and the molten-salt synthesized barium titanate, with a larger particle-size, was used as template for the templated grain-growth process. Addition of large template particles was observed to increase the orientation factor of the sintered cast (5 vol% loading). Template particles acted as starting grains for the abnormal grain-growth process and the average grain-size was increased after sintering. Increasing the solid loading (15 vol%) resulted in a similar orientation factor with a decrease of the average grain size by more than half. However, addition of templates to the 15 vol% cast had a negative effect on the orientation factor. The impingement of growing particles was stated as the primary cause of particle misorientation resulting in a low orientation factor after sintering. Different heating conditions were tested and it was determined that a slow heating rate gave the highest orientation factor, the smallest average grain-size and the highest relative density. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Barking Editor
Language Wos 000369460500098 Publication Date 2015-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-8842 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.986 Times cited 11 Open Access
Notes Approved Most recent IF: 2.986
Call Number UA @ lucian @ c:irua:132228 Serial 4260
Permanent link to this record
 

 
Author Vanrenterghem, B.; Papaderakis, A.; Sotiropoulos, S.; Tsiplakides, D.; Balomenou, S.; Bals, S.; Breugelmans, T.
Title The reduction of benzylbromide at Ag-Ni deposits prepared by galvanic replacement Type A1 Journal article
Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta
Volume 196 Issue 196 Pages 756-768
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract A two-step procedure was applied to prepare bimetallic Ag-Ni glassy carbon supported catalysts (Ag-Ni/GC). First Ni layers were prepared by means of electrodeposition in an aqueous deaerated nickel chloride + nickel sulfamate + boric acid solution. Second, the partial replacement of Ni layers by Ag was achieved upon immersion of the latter in solutions containing silver nitrate. Three different pretreatment protocols were used after preparation of the Ag/Ni deposits; as prepared, cathodised in alkali and scanned in acid. After the pretreatment the surface was characterised by means of spectroscopy techniques (scanning electron microscopy and energy dispersive x-ray) and electrochemically in an alkali NaOH solution through cyclic voltammetry (CV). Afterwards the modified electrodes were tested for the reduction of benzylbromide in acetonitrile solutions by using CV and were found to show improved activity compared to bulk Ag electrode. The highest activity towards benzylbromide reduction was observed for pre-cathodised Ag-Ni electrodes. A final stage of the research focuses on the development of a practical Ag/Ni foam catalyst for the reduction of benzylbromide. Due to the high electrochemical active surface area of Ag/Ni foam, a higher conversion of benzyl bromide was obtained in comparison with bulk Ag.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372877400083 Publication Date 2016-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited 21 Open Access OpenAccess
Notes The quanta 250 FEG microscope of the Electron Microscopy for Material Science group at the University of Antwerp was funded by the Hercules foundation of the Flemish government. Sara Bals acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 4.798
Call Number c:irua:132081 Serial 4065
Permanent link to this record
 

 
Author Albrecht, W.; Deng, T.-S.; Goris, B.; van Huis, M.A.; Bals, S.; van Blaaderen, A.
Title Single Particle Deformation and Analysis of Silica-Coated Gold Nanorods before and after Femtosecond Laser Pulse Excitation Type A1 Journal article
Year 2016 Publication Nano letters Abbreviated Journal Nano Lett
Volume 16 Issue 16 Pages 1818-1825
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We performed single particle deformation experiments on silica-coated gold nanorods under femtosecond (fs) illumination. Changes in the particle shape were analyzed by electron microscopy and associated changes in the plasmon resonance by electron energy loss spectroscopy. Silica-coated rods were found to be more stable compared to uncoated rods but could still be deformed via an intermediate bullet-like shape for silica shell thicknesses of 14 nm. Changes in the size ratio of the rods after fs-illumination resulted in blue-shifting of the longitudinal plasmon resonances. Two-dimensional spatial mapping of the plasmon resonances revealed that the flat side of the bullet-like particles showed a less pronounced longitudinal plasmonic electric field enhancement. These findings were confirmed by finite-difference time-domain (FDTD) simulations. Furthermore, at higher laser fluences size reduction of the particles was found as well as for particles that were not completely deformed yet.
Address Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University , Princetonplein 5, 3584 CC Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000371946300045 Publication Date 2016-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 55 Open Access OpenAccess
Notes We thank Dr. Nicolas Gauquelin for his assistance during the EELS measurements and Thomas Atlantzis for the high-resolution images of the gold clusters. We furthermore thank Ernest van der Wee for the simulation of the confocal point spread functions. The authors acknowledge financial support from the European Research Council under the European Unions Seventh Framework Programme (FP-2007-2013)/ERC Advanced Grant Agreement #291667 HierarSACol and the Foundation of Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). The authors furthermore acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors also appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI). This work was supported by the Flemish Fund for Scientific Research (FWO Vlaanderen) through a postdoctoral research grant to B.G.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712
Call Number c:irua:131924 c:irua:131924 Serial 4016
Permanent link to this record
 

 
Author Yang, Z.; Altantzis, T.; Zanaga, D.; Bals, S.; Van Tendeloo, G.; Pileni, M.-P.
Title Supracrystalline Colloidal Eggs: Epitaxial Growth and Freestanding Three-Dimensional Supracrystals in Nanoscaled Colloidosomes Type A1 Journal article
Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 138 Issue 138 Pages 3493-3500
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The concept of template-confined chemical reactions allows the synthesis of complex molecules that would hardly be producible through conventional method. This idea was developed to produce high quality nanocrystals more than 20 years ago. However, template-mediated assembly of colloidal nanocrystals is still at an elementary level, not only because of the limited templates suitable for colloidal assemblies, but also because of the poor control over the assembly of nanocrystals within a confined space. Here, we report the design of a new system called “supracrystalline colloidal eggs” formed by controlled assembly of nanocrystals into complex colloidal supracrystals through superlattice-matched epitaxial overgrowth along the existing colloidosomes. Then, with this concept, we extend the supracrystalline growth to lattice-mismatched binary nanocrystal superlattices, in order to reach anisotropic superlattice growths, yielding freestanding binary nanocrystal supracrystals that could not be produced previously.
Address CEA/IRAMIS , CEA Saclay F-91191 Gif-sur-Yvette, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000372477700034 Publication Date 2016-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 57 Open Access OpenAccess
Notes The research leading to these results has been supported by an Advanced Grant of the European Research Council under Grant 267129. The authors appreciate financial support by the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). The authors thank Dr. P. A. Albouy for the SAXS measurement.; esteem2_ta Approved Most recent IF: 13.858
Call Number c:irua:131923 c:irua:131923 Serial 4018
Permanent link to this record
 

 
Author Opherden, L.; Sieger, M.; Pahlke, P.; Hühne, R.; Schultz, L.; Meledin, A.; Van Tendeloo, G.; Nast, R.; Holzapfel, B.; Bianchetti, M.; MacManus-Driscoll, J.L.; Hänisch, J.
Title Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates Type A1 Journal article
Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 6 Issue 6 Pages 21188
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7−δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370364500001 Publication Date 2016-02-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 39 Open Access
Notes The authors gratefully acknowledge J. Scheiter, U. Besold, and U. Fiedler for technical assistance. This work was financially supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7 / 2007-2013) under Grant Agreement no. 280432. Approved Most recent IF: 4.259
Call Number c:irua:131920 Serial 4026
Permanent link to this record
 

 
Author Ren, X.-N.; Wu, L.; Jin, J.; Liu, J.; Hu, Z.-Y.; Li, Y.; Hasan, T.; Yang, X.-Y.; Van Tendeloo, G.; Su, B.-L.
Title 3D interconnected hierarchically macro-mesoporous TiO2networks optimized by biomolecular self-assembly for high performance lithium ion batteries Type A1 Journal article
Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 6 Issue 6 Pages 26856-26862
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Biomolecular self-assembly is an effective synthesis strategy for materials fabrication with unique structural complexity and properties. For the first time, we intergrate inner-particle mesoporosity in a three-dimensional (3D) interconnected macroporous TiO2 structure via the mediation of biomolecular self-assembly of the lipids and proteins from rape pollen coats and P123 to optimize the structure for high performance lithium storage. Benefitting from the hierarchically 3D interconnected macro-mesoporous structure with high surface area, small nanocrystallites and good electrolyte permeation, such unique porous structure demonstrates superior electrochemical performance, with high initial coulombic efficiency (94.4% at 1C) and a reversible discharge capacity of 161, 145, 127 and 97 mA h g-1 at 2, 5, 10 and 20C for 1000 cycles, with 79.3%, 89.9%, 90.1% and 87.4% capacity retention, respectively. Using SEM, TEM and HRTEM observations on the TiO2 materials before and after cycling, we verify that the inner-particle mesoporosity and the Li2Ti2O4 nanocrystallites formed during the cycling process in interconnected macroporous structure largely enhance the cycle life and rate performance. Our demonstration here offers opportunities towards developing and optimizing hierarchically porous structures for energy storage applications via biomolecular self-assembly.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372253700043 Publication Date 2016-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 16 Open Access
Notes G. Van Tendeloo and Z. Y. Hu acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483).; esteem2_jra4 Approved Most recent IF: 3.108
Call Number c:irua:131915 c:irua:131915 c:irua:131915 Serial 4022
Permanent link to this record
 

 
Author Meledina, M.; Turner, S.; Filippousi, M.; Leus, K.; Lobato, I.; Ramachandran, R.K.; Dendooven, J.; Detavernier, C.; Van Der Voort, P.; Van Tendeloo, G.
Title Direct Imaging of ALD Deposited Pt Nanoclusters inside the Giant Pores of MIL-101 Type A1 Journal article
Year 2016 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume 33 Issue 33 Pages 382-387
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract MIL-101 giant-pore metal-organic framework (MOF) materials have been loaded with Pt nanoparticles using atomic layer deposition. The final structure has been investigated by aberration-corrected annular dark-field scanning transmission electron microscopy under strictly controlled low dose conditions. By combining the acquired experimental data with image simulations, the position of the small clusters within the individual pores of a metal-organic framework has been determined. The embedding of the Pt nanoparticles is confirmed by electron tomography, which shows a distinct ordering of the highly uniform Pt nanoparticles. The results show that atomic layer deposition is particularly well-suited for the deposition of individual nanoparticles inside MOF framework pores and that, upon proper regulation of the incident electron dose, annular dark-field scanning transmission electron microscopy is a powerful tool for the characterization of this type of materials at a local scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000379970000006 Publication Date 2016-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 11 Open Access
Notes S.T. and J.D. gratefully acknowledge the FWO Vlaanderen for a postdoctoral scholarship. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the Belgian IAP-PAI network. K.L. acknowledges the financial support from the Ghent University BOF postdoctoral Grant 01P06813T and UGent GOA Grant 01G00710. C.D. thanks the FWO Vlaanderen, BOF-UGent (GOA 01G01513), and the Hercules Foundation (AUGE/09/014) for financial support. Approved Most recent IF: 4.474
Call Number c:irua:131913 Serial 4028
Permanent link to this record