|   | 
Details
   web
Records
Author Gielis, J.; Caratelli, D.; Fougerolle, Y.; Ricci, P.E.; Gerats, T.
Title A biogeometrical model for corolla fusion in Asclepiad flowers Type H1 Book chapter
Year 2017 Publication Abbreviated Journal
Volume 2 Issue Pages 83-105 T2 - Modeling in mathematics : proceedings
Keywords H1 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The molecular genetics of flower development have been studied extensively for more than two decades. Fusion of organs and the tendency to oligomery, important characteristics of flower evolution, so far have remained fairly elusive. We present a geometric model for shape and fusion in the corolla of Asclepiads. Examples demonstrate how fusion of petals creates stable centers, a prerequisite for the formation of complex pollination structures via congenital and postgenital fusion events, with the formation of de novo organs, specific to Asclepiads. The development of the corolla reduces to simple inequalities from the MATHS-BOX. The formation of stable centers and of bell and tubular shapes in flowers are immediate and logical consequences of the shape. Our model shows that any study on flowers, especially in evo-devo perspective should be performed within the wider framework of polymery and oligomery and of fusion and synorganization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000442076400007 Publication Date 2017-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-94-6239-260-1; 978-94-6239-261-8; 2543-0300; 978-94-6239-260-1 Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:144551 Serial 7561
Permanent link to this record
 

 
Author Gielis, J.; Natalini, P.; Ricci, P.E.
Title A note about generalized forms of the Gielis formula Type H1 Book chapter
Year 2017 Publication Abbreviated Journal
Volume 2 Issue Pages 107-116 T2 - Modeling in mathematics : proceedings
Keywords H1 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract We generalize the Gielis Superformula by extending the R. Chacon approach, but avoiding the use of Jacobi elliptic functions. The obtained results are extended to the three-dimensional case. Several new shapes are derived by using the computer algebra system Mathematica(C).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000442076400008 Publication Date 2017-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-94-6239-260-1; 978-94-6239-261-8; 2543-0300; 978-94-6239-260-1 Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:144550 Serial 8318
Permanent link to this record
 

 
Author De Tommasi, E.; Gielis, J.; Rogato, A.
Title Diatom frustule morphogenesis and function : a multidisciplinary survey Type A1 Journal article
Year 2017 Publication Marine Genomics Abbreviated Journal
Volume 35 Issue Pages 1-18
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Diatoms represent the major component of phytoplankton and are responsible for about 2025% of global primary production. Hundreds of millions of years of evolution led to tens of thousands of species differing in dimensions and morphologies. In particular, diatom porous silica cell walls, the frustules, are characterized by an extraordinary, species-specific diversity. It is of great interest, among the marine biologists and geneticists community, to shed light on the origin and evolutionary advantage of this variability of dimensions, geometries and pore distributions. In the present article the main reported data related to frustule morphogenesis and functionalities with contributions from fundamental biology, genetics, mathematics, geometry and physics are reviewed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000412957700001 Publication Date 2017-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1874-7787 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:144546 Serial 7807
Permanent link to this record
 

 
Author Trashin, S.; Rahemi, V.; Ramji, K.; Neven, L.; Gorun, S.M.; De Wael, K.
Title Singlet oxygen-based electrosensing by molecular photosensitizers Type A1 Journal article
Year 2017 Publication Nature communications Abbreviated Journal Nat Commun
Volume 8 Issue Pages 16108
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Enzyme-based electrochemical biosensors are an inspiration for the development of (bio)analytical techniques. However, the instability and reproducibility of the reactivity of enzymes, combined with the need for chemical reagents for sensing remain challenges for the construction of useful devices. Here we present a sensing strategy inspired by the advantages of enzymes and photoelectrochemical sensing, namely the integration of aerobic photocatalysis and electrochemical analysis. The photosensitizer, a bioinspired perfluorinated Zn phthalocyanine, generates singlet-oxygen from air under visible light illumination and oxidizes analytes, yielding electrochemically-detectable products while resisting the oxidizing species it produces. Compared with enzymatic detection methods, the proposed strategy uses air instead of internally added reactive reagents, features intrinsic baseline correction via on/off light switching and shows C-F bonds-type enhanced stability. It also affords selectivity imparted by the catalytic process and nano-level detection, such as 20 nM amoxicillin in μl sample volumes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405466200002 Publication Date 2017-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 26 Open Access
Notes ; Evonik is thanked for providing samples of silicon and titanium oxides. Support from the National Science Foundation (SMG) for a portion of this work is gratefully acknowledged. FWO and UAntwerpen (BOF) are acknowledged for financial support. ; Approved Most recent IF: 12.124
Call Number UA @ admin @ c:irua:144538 Serial 5833
Permanent link to this record
 

 
Author De Backer, A.; Jones, L.; Lobato, I.; Altantzis, T.; Goris, B.; Nellist, P.D.; Bals, S.; Van Aert, S.
Title Three-dimensional atomic models from a single projection using Z-contrast imaging: verification by electron tomography and opportunities Type A1 Journal article
Year 2017 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 9 Issue 9 Pages 8791-8798
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In order to fully exploit structure–property relations of nanomaterials, three-dimensional (3D) characterization at the atomic scale is often required. In recent years, the resolution of electron tomography has reached the atomic scale. However, such tomography typically requires several projection images demanding substantial electron dose. A newly developed alternative circumvents this by counting the number of atoms across a single projection. These atom counts can be used to create an initial atomic model with which an energy minimization can be applied to obtain a relaxed 3D reconstruction of the nanoparticle. Here, we compare, at the atomic scale, this single projection reconstruction approach with tomography and find an excellent agreement. This new approach allows for the characterization of beam-sensitive materials or where the acquisition of a tilt series is impossible. As an example, the utility is illustrated by the 3D atomic scale characterization of a nanodumbbell on an in situ heating holder of limited tilt range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404614700031 Publication Date 2017-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 33 Open Access OpenAccess
Notes The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N, G.0368.15N, and WO.010.16N) and postdoctoral grants to T. Altantzis, A. De Backer, and B. Goris. S. Bals acknowledges financial support from the European Research Council (Starting Grant No. COLOURATOM 335078). Funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiatieve-I3) is acknowledged. The authors would also like to thank Luis Liz-Marzán, Marek Grzelczak, and Ana Sánchez-Iglesias for sample provision. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 7.367
Call Number EMAT @ emat @ c:irua:144436UA @ admin @ c:irua:144436 Serial 4617
Permanent link to this record
 

 
Author Gauquelin, N.; van den Bos, K.H.W.; Béché, A.; Krause, F.F.; Lobato, I.; Lazar, S.; Rosenauer, A.; Van Aert, S.; Verbeeck, J.
Title Determining oxygen relaxations at an interface: A comparative study between transmission electron microscopy techniques Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 181 Issue 181 Pages 178-190
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nowadays, aberration corrected transmission electron microscopy (TEM) is a popular method to characterise nanomaterials at the atomic scale. Here, atomically resolved images of nanomaterials are acquired, where the contrast depends on the illumination, imaging and detector conditions of the microscope. Visualization of light elements is possible when using low angle annular dark field (LAADF) STEM, annular bright field (ABF) STEM, integrated differential phase contrast (iDPC) STEM, negative spherical aberration imaging (NCSI) and imaging STEM (ISTEM). In this work, images of a NdGaO3-La0.67Sr0.33MnO3 (NGO-LSMO) interface are quantitatively evaluated by using statistical parameter estimation theory. For imaging light elements, all techniques are providing reliable results, while the techniques based on interference contrast, NCSI and ISTEM, are less robust in terms of accuracy for extracting heavy column locations. In term of precision, sample drift and scan distortions mainly limits the STEM based techniques as compared to NCSI. Post processing techniques can, however, partially compensate for this. In order to provide an outlook to the future, simulated images of NGO, in which the unavoidable presence of Poisson noise is taken into account, are used to determine the ultimate precision. In this future counting noise limited scenario, NCSI and ISTEM imaging will provide more precise values as compared to the other techniques, which can be related to the mechanisms behind the image recording.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411170800022 Publication Date 2017-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 34 Open Access OpenAccess
Notes The authors acknowledge financial support from Flanders (FWO, Belgium) through project fundings (G.0044.13N, G.0374.13N, G.0368.15N, G.0369.15N), and by a Ph.D. grant to K.H.W.v.d.B. The Qu-Ant-EM microscope used for this study was partly funded by the Hercules fund from the Flemish Government. A.B. and N.G. acknowledge the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no.280432) which partly funded this study. N.G., A.B. and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The research leading to these results has received funding from the Deutsche Forschungsgemeinschaft under Contract No. RO 2057/4-2 and the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2. We thank Prof. G. Koster from the University of Twente for kindly providing us with the LSMO-NGO test sample. Approved Most recent IF: 2.843
Call Number EMAT @ emat @ c:irua:144435UA @ admin @ c:irua:144435 Serial 4620
Permanent link to this record
 

 
Author Mahr, C.; Kundu, P.; Lackmann, A.; Zanaga, D.; Thiel, K.; Schowalter, M.; Schwan, M.; Bals, S.; Wittstock, A.; Rosenauer, A.
Title Quantitative determination of residual silver distribution in nanoporous gold and its influence on structure and catalytic performance Type A1 Journal article
Year 2017 Publication Journal of catalysis Abbreviated Journal J Catal
Volume 352 Issue 352 Pages 52-58
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Large efforts have been made trying to understand the origin of the high catalytic activity of dealloyed nanoporous gold as a green catalyst for the selective promotion of chemical reactions at low temperatures. Residual silver, left in the sample after dealloying of a gold-silver alloy, has been shown to have a strong influence on the activity of the catalyst. But the question of how the silver is distributed within the porous structure has not finally been answered yet. We show by quantitative energy dispersive X-ray tomography measurements that silver forms clusters that are distributed irregularly, both on the surface and inside the ligaments building up the porous structure. Furthermore, we find that the role of the residual silver is ambiguous. Whereas CO oxidation is supported by more residual silver, methanol oxidation to methyl formate is hindered. Structural characterisation reveals larger ligaments and pores for decreasing residual silver concentration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000408299600006 Publication Date 2017-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9517 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 6.844 Times cited 42 Open Access OpenAccess
Notes This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under contracts no. RO2057/12-1 (SP 6) and WI4497/1-1 (SP 2) within the research unit FOR2213 (www.nagocat. de) and the European Research Council (ERC Starting Grant No. 335078-COLOURATOMS). (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 6.844
Call Number EMAT @ emat @c:irua:144434UA @ admin @ c:irua:144434 Serial 4623
Permanent link to this record
 

 
Author Esquivel, D.; Ouwehand, J.; Meledina, M.; Turner, S.; Tendeloo, G.V.; Romero-Salguero, F.J.; Clercq, J.D.; Voort, P.V.D.
Title Thiol-ethylene bridged PMO: A high capacity regenerable mercury adsorbent via intrapore mercury thiolate crystal formation Type A1 Journal article
Year 2017 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater
Volume 339 Issue 339 Pages 368-377
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Highly ordered thiol-ethylene bridged Periodic Mesoporous Organosilicas were synthesized directly from a homemade thiol-functionalized bis-silane precursor. These high surface area materials contain up to 4.3 mmol/g sulfur functions in the walls and can adsorb up to 1183 mg/g mercury ions. Raman spectroscopy reveals the existence of thiol and disulfide moieties. These groups have been evaluated by a combination of Raman spectroscopy, Ellman’s reagent and elemental analysis. The adsorption of mercury ions was evidenced by different techniques, including Raman, XPS and porosimetry, which indicate that thiol groups are highly accessible to mercury. Scanning transmission electron microscopy combined with EDX showed an even homogenous distribution of the sulfur atoms throughout the structure, and have revealed for the first time that a fraction of the adsorbed mercury is forming thiolate nanocrystals in the pores. The adsorbent is highly selective for mercury and can be regenerated and reused multiple times, maintaining its structure and functionalities and showing only a marginal loss of adsorption capacity after several runs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000407188200040 Publication Date 2017-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3894 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 6.065 Times cited 12 Open Access OpenAccess
Notes D.E. thanks the F.W.O. Flanders (Fund Scientific Research) for a postdoctoral grant (3E10813W). J.O. acknowledges also F.W.O. Flanders, research project G006813N, and the research Board of Ghent University, UGent GOA (Concerted Research Actions) (grant 01G00710) for financial support. F. J. R.-S. acknowledges funding of this research by the Spanish Ministry of Economy and Competitiveness (Project MAT2013-44463-R), Andalusian Regional Government (FQM-346 group), and Feder Funds. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the Belgian IAP-PAI network. Approved Most recent IF: 6.065
Call Number EMAT @ emat @ c:irua:144433 Serial 4624
Permanent link to this record
 

 
Author Alania, M.; De Backer, A.; Lobato, I.; Krause, F.F.; Van Dyck, D.; Rosenauer, A.; Van Aert, S.
Title How precise can atoms of a nanocluster be located in 3D using a tilt series of scanning transmission electron microscopy images? Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 181 Issue 181 Pages 134-143
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract In this paper, we investigate how precise atoms of a small nanocluster can ultimately be located in three dimensions (3D) from a tilt series of images acquired using annular dark field (ADF) scanning transmission electron microscopy (STEM). Therefore, we derive an expression for the statistical precision with which the 3D atomic position coordinates can be estimated in a quantitative analysis. Evaluating this statistical precision as a function of the microscope settings also allows us to derive the optimal experimental design. In this manner, the optimal angular tilt range, required electron dose, optimal detector angles, and number of projection images can be determined.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411170800016 Publication Date 2016-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 3 Open Access OpenAccess
Notes The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483-ESTEEM2. The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N, G.0368.15N, and WO.010.16N) and a post-doctoral grant to A. De Backer, and from the DFG under contract No. RO-2057/4-2. Approved Most recent IF: 2.843
Call Number EMAT @ emat @ c:irua:144432 Serial 4618
Permanent link to this record
 

 
Author Pullini, D.; Sgroi, M.; Mahmoud, A.; Gauquelin, N.; Maschio, L.; Lorenzo-Ferrari, A.M.; Groenen, R.; Damen, C.; Rijnders, G.; van den Bos, K.H.W.; Van Aert, S.; Verbeeck, J.
Title One step toward a new generation of C-MOS compatible oxide p-n junctions: Structure of the LSMO/ZnO interface elucidated by an experimental and theoretical synergic work Type A1 Journal article
Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 9 Issue 9 Pages 20974-20980
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Heterostructures formed by La0.7Sr0.3MnO3/ZnO (LSMO/ZnO) interfaces exhibit extremely interesting electronic properties making them promising candidates for novel oxide p–n junctions, with multifunctional features. In this work, the structure of the interface is studied through a combined experimental/theoretical approach. Heterostructures were grown epitaxially and homogeneously on 4″ silicon wafers, characterized by advanced electron microscopy imaging and spectroscopy and simulated by ab initio density functional theory calculations. The simulation results suggest that the most stable interface configuration is composed of the (001) face of LSMO, with the LaO planes exposed, in contact with the (112̅0) face of ZnO. The ab initio predictions agree well with experimental high-angle annular dark field scanning transmission electron microscopy images and confirm the validity of the suggested structural model. Electron energy loss spectroscopy confirms the atomic sharpness of the interface. From statistical parameter estimation theory, it has been found that the distances between the interfacial planes are displaced from the respective ones of the bulk material. This can be ascribed to the strain induced by the mismatch between the lattices of the two materials employed
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404090000079 Publication Date 2017-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 4 Open Access OpenAccess
Notes Financial support is acknowledged from the European Commission – DG research and innovation to the collaborative research project named Interfacing oxides (IFOX, Contract No. NMP3-LA-2010-246102). N.G. and J.V. acknowledge the European Union (EU) Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX for support. S.V.A. and K.H.W.B. acknowledge financial support from the Research Foundation Flanders through project fundings (G.0374.13N , G.0368.15N, and G.0369.15N) and a Ph.D. research grant to K.H.W.B. The microscope was partly funded by the Hercules Fund from the Flemish Government. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. CINECA is acknowledged for computational facilities (Iscra project HP10CMO1UP). Approved Most recent IF: 7.504
Call Number EMAT @ emat @ c:irua:144431UA @ admin @ c:irua:144431 Serial 4621
Permanent link to this record
 

 
Author Grieten, E.; Schalm, O.; Tack, P.; Bauters, S.; Storme, P.; Gauquelin, N.; Caen, J.; Patelli, A.; Vincze, L.; Schryvers, D.
Title Reclaiming the image of daguerreotypes: Characterization of the corroded surface before and after atmospheric plasma treatment Type A1 Journal article
Year 2017 Publication Journal of cultural heritage Abbreviated Journal J Cult Herit
Volume Issue Pages
Keywords A1 Journal article; Art; History; Electron microscopy for materials research (EMAT); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract Technological developments such as atmospheric plasma jets for industry can be adapted for the conservation of cultural heritage. This application might offer a potential method for the removal or transformation of the corrosion on historical photographs. We focus on daguerreotypes and present an in-depth study of the induced changes by a multi-analytical approach using optical microscopy, scanning electron microscopy, different types of transmission electron microscopy and X-ray absorption fine structure. The H2-He afterglow removes S from an Ag2S or Cu2S layer which results in a nano-layer of metallic Ag or Cu on top of the deteriorated microstructure. In case the corrosion layer is composed of Cu-Ag-S compounds, our proposed setup can be used to partially remove the corrosion. These alterations of the corrosion results in an improvement in the readability of the photographic image.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000414230700007 Publication Date 2017-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1296-2074 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.838 Times cited 9 Open Access Not_Open_Access
Notes The authors thank Herman Maes for the daguerreotypes used in this study. The authors also acknowledge the opportunity to perform XAFS measurements at the DUBBLE beamline of the ESRF storage ring under the approval of the advisory Committee (beam time nr. 26-01-990) and acknowledge the DUBBLE beamline staff for their support. They are also grateful for the financial support by the EU-FP7 grant PANNA no. 282998 and the STIMPRO project FFB150215 of the University of Antwerp. Pieter Tack is funded by a Ph.D. grant of the Agency for Innovation by Science and Technology (IWT). Approved Most recent IF: 1.838
Call Number EMAT @ emat @c:irua:144430 Serial 4625
Permanent link to this record
 

 
Author Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kolev, S.; Snoeckx, R.; Sun, S.; Trenchev, G.; Van Laer, K.; Wang, W.
Title CO2conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 063001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In recent years there has been growing interest in the use of plasma technology for CO2 conversion. To improve this application, a good insight into the underlying mechanisms is of great importance. This can be obtained from modeling the detailed plasma chemistry in order to understand the chemical reaction pathways leading to CO2 conversion (either in pure form or mixed with another gas). Moreover, in practice, several plasma reactor types are being investigated for CO2 conversion, so in addition it is essential to be able to model these reactor geometries so that their design can be improved, and the most energy efficient CO2 conversion can be achieved. Modeling the detailed plasma chemistry of CO2 conversion in complex reactors is, however, very time-consuming. This problem can be overcome by using a combination of two different types of model: 0D chemical reaction kinetics models are very suitable for describing the detailed plasma chemistry, while the characteristic features of different reactor geometries can be studied by 2D or 3D fluid models. In the first instance the latter can be developed in argon or helium with a simple chemistry to limit the calculation time; however, the ultimate aim is to implement the more complex CO2 chemistry in these models. In the present paper, examples will be given of both the 0D plasma chemistry models and the 2D and 3D fluid models for the most common plasma reactors used for CO2 conversion in order to emphasize the complementarity of both approaches. Furthermore, based on the modeling insights, the paper discusses the possibilities and limitations of plasma-based CO2 conversion in different types of plasma reactors, as well as what is needed to make further progress in this field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000412173700001 Publication Date 2017-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 26 Open Access OpenAccess
Notes We would like to thank T Silva, N Britoun, Th Godfroid and R Snyders (Université de Mons and Materia Nova Research Center), A Ozkan, Th Dufour and F Reniers (Université Libre de Bruxelles) andK Van Wesenbeeck and S Lenaerts (University of Antwerp) for providingexperimental data to validate our models. Furthermore, we acknowledge the financial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’ by the Belgian Federal Office for Science Policy (BELSPO), the Francqui Research Foundation, the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 606889, the European Marie Skłodowska- Curie Individual Fellowship project ‘GlidArc’ within Horizon2020, the Methusalem financing of the University of Antwerp, the Fund for Scientific Research, Flanders (FWO; grant nos. G.0383.16N and 11U5316N) and the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:144429 Serial 4614
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Trashin, S.; Cuykx, M.; Covaci, A.; De Wael, K.; Janssens, K.
Title Photodegradation mechanisms and kinetics of Eosin-Y in oxic and anoxic conditions Type A1 Journal article
Year 2017 Publication Dyes and pigments Abbreviated Journal Dyes Pigments
Volume 145 Issue Pages 376-384
Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre
Abstract Lakes based on Eosin-Y are extensively used by 19th century artists. Unfortunately, the identification of these pigments in paintings is a difficult task because Eosin-Y degrades very fast under the influence of light. The characterization of the (photo)degradation products of Eosin-Y can be very useful for the identification of these pigments in historic works of art and related cultural heritage artifacts. Furthermore, knowledge on how different factors influence the discoloration process (e.g. different types of irradiation sources and presence/absence of oxygen) is a valuable tool for preventive conservation. To this aim we performed a study on the photodegradation of Eosin-Y in solution under different illumination and in both oxic and anoxic conditions. The photodegradation of Eosin-Y was monitored by UV-VIS spectrophotometry, LC-QTOFMS and electrochemistry techniques. Results indicated higher degradation rates, by a factor of 20 or higher, under illumination with wavelengths near to the main absorbance band of the red pigment. Two different degradation pathways are observed under the conditions studied. LC-QTOFMS and electrochemistry suggested that in the presence of oxygen the degradation mechanism is an oxidative process where the breakdown of the structure causes the total discoloration. Meanwhile under anoxic conditions, a debromination process takes place while the chromophore, and consequently the color of the molecule in solution, remains essentially intact.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405972900046 Publication Date 2017-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-7208 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.473 Times cited 18 Open Access
Notes ; ; Approved Most recent IF: 3.473
Call Number UA @ admin @ c:irua:144385 Serial 5770
Permanent link to this record
 

 
Author Vermeulen, M.; Sanyova, J.; Janssens, K.; Nuyts, G.; De Meyer, S.; De Wael, K.
Title The darkening of copper- or lead-based pigments explained by a structural modification of natural orpiment : a spectroscopic and electrochemical study Type A1 Journal article
Year 2017 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 32 Issue 7 Pages 1331-1341
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A combined Raman and electrochemical study of natural orpiment (As2S3), an arsenic sulfide pigment, was used to assess the quick formation of oxidized species such as arsenic oxide (As2O3) upon exposing the pigment to 405 nm or 532 nm monochromatic light while simultaneously recording the Raman spectra of the exposed sample. During this process, a distortion of the main band at 355 cm−1, associated with the stretching of the AsS3/2 pyramids of natural orpiment, was observed as well as an increased intensity of the 359 cm−1 band, corresponding to covalent AsAs bonds in natural orpiment. The distortion was accompanied by an overall decrease of the global Raman signal for natural orpiment, which could be explained by a loss in the crystal structure. The same phenomena were recorded in reference natural orpiment model paint samples stored for a long time together with verdigris (Cu(OH)2·(CH3COO)2·5H2O) and minium (Pb3O4) paints, the latter two appearing darkened on their sides closest to the orpiment sample as well as in several historical samples containing natural orpiment mixed with various blue pigments. By SEM-EDX and XRPD analysis, respectively on loose material and cast thin-sections of model paint samples, the darkening was identified as dark sulfide species such as chalcocite (Cu2S) and galena (PbS), suggesting the release of volatile sulfide or related species by the natural orpiment paint. XANES analyses of paint samples presenting AsAs bond increase indicated the presence of sulfur species most likely identified as organosulfur compounds formed upon the AsAs bond formation and explained the darkening of the Cu- and Pb-based pigments. To the best of our knowledge, this article reports for the first time the light-induced formation of AsAs bonds in natural orpiment used as an artists' pigment and objectively demonstrates the incompatibility between orpiment and (arsenic) sulfide-sensitive pigments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404998500007 Publication Date 2017-05-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 10 Open Access
Notes ; This research is made possible with the support of the Belgian Science Policy Office (BELSPO, Brussels) through the research program Science for a Sustainable Development – SDD, “Long-term role and fate of metal-sulfides in painted works of art – S2ART” (SD/RI/04A). We gratefully acknowledge Julie Arslanoglu (Conservation and Scientific Research Department at the Metropolitan Museum of Art, New York, USA) for providing us the orpiment, verdigris and minium mock-up samples. We gratefully acknowledge the Paul Scherrer Institut, Villigen, Switzerland and the German Electron Synchrotron (DESY) for provision of synchrotron radiation beamtimes at respectively beamlines of the SLS and Petra III. ; Approved Most recent IF: 3.379
Call Number UA @ admin @ c:irua:144384 Serial 5564
Permanent link to this record
 

 
Author Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S.
Title Study of positive and negative plasma catalytic oxidation of ethylene Type A1 Journal article
Year 2017 Publication Environmental technology Abbreviated Journal Environ Technol
Volume 38 Issue 12 Pages 1554-1561
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The effect of introducing a photocatalytically active coating inside a plasma unit is investigated. This technique combines the advantages of high product selectivity from catalysis and the fast start-up from plasma technology. In this study, a preselected TiO2 coating is applied on the collector electrode of a DC corona discharge unit as non-thermal plasma reactor, in order to study the oxidation of ethylene. For both positive and negative polarities an enhanced mineralization is observed while the formation of by-products drastically decreases. The plasma catalytic unit gave the best results when using negative polarity at a voltage of 15kV. This shows the potential of plasma catalysis as indoor air purification technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000402018900010 Publication Date 2016-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-3330 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.751 Times cited 1 Open Access
Notes ; The authors wish to thank the University of Antwerp for supporting and funding this research. ; Approved Most recent IF: 1.751
Call Number UA @ admin @ c:irua:144351 Serial 5993
Permanent link to this record
 

 
Author Li, L.L.; Moldovan, D.; Xu, W.; Peeters, F.M.
Title Electric-and magnetic-field dependence of the electronic and optical properties of phosphorene quantum dots Type A1 Journal article
Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 28 Issue 8 Pages 085702
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Recently, black phosphorus quantum dots were fabricated experimentally. Motivated by these experiments, we theoretically investigate the electronic and optical properties of rectangular phosphorene quantum dots (RPQDs) in the presence of an in-plane electric field and a perpendicular magnetic field. The energy spectra and wave functions of RPQDs are obtained numerically using the tight-binding approach. We find edge states within the band gap of the RPQD which are well separated from the bulk states. In an undoped RPQD and for in-plane polarized light, due to the presence of well-defined edge states, we find three types of optical transitions which are between the bulk states, between the edge and bulk states, and between the edge states. The electric and magnetic fields influence the bulk-to-bulk, edge-to-bulk, and edge-to- edge transitions differently due to the different responses of bulk and edge states to these fields.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000403100700001 Publication Date 2017-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 32 Open Access
Notes ; This work was financially supported by the China Scholarship Council (CSC), the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grant Nos. 11304316 and 11574319), and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.44
Call Number UA @ lucian @ c:irua:144325 Serial 4648
Permanent link to this record
 

 
Author Houben, K.; Couet, S.; Trekels, M.; Menendez, E.; Peissker, T.; Seo, J.W.; Hu, M.Y.; Zhao, J.Y.; Alp, E.E.; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Bessas, D.; Brown, S.A.; Vantomme, A.; Temst, K.; Van Bael, M.J.
Title Lattice dynamics in Sn nanoislands and cluster-assembled films Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 15 Pages 155413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract To unravel the effects of phonon confinement, the influence of size and morphology on the atomic vibrations is investigated in Sn nanoislands and cluster-assembled films. Nuclear resonant inelastic x-ray scattering is used to probe the phonon densities of states of the Sn nanostructures which show significant broadening of the features compared to bulk phonon behavior. Supported by ab initio calculations, the broadening is attributed to phonon scattering and can be described within the damped harmonic oscillator model. Contrary to the expectations based on previous research, the appearance of high-energy modes above the cutoff energy is not observed. From the thermodynamic properties extracted from the phonon densities of states, it was found that grain boundary Sn atoms are bound by weaker forces than bulk Sn atoms.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000401762400008 Publication Date 2017-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; This work was supported by the Research Foundation-Flanders (FWO) and the Concerted Research Action (GOA/14/007). The authors acknowledge Hercules stichting (Projects No. AKUL/13/19 and No. AKUL/13/25). K.H. and S.C. thank the FWO for financial support. T.P. acknowledges the IWT for financial support. S.R., M.V.M., and B.P. acknowledge TOPBOF funding of the University of Antwerp Research Fund. J.W.S. acknowledges Hercules Stichting (Project No. AKUL/13/19). The authors want to thank R. Lieten for help with the XRD measurements and T. Picot for fruitful discussions. The authors gratefully acknowledge R. Ruffer and A. I. Chumakov for fruitful discussions and the European Synchrotron Radiation Facility for the measurement of the SnO<INF>2</INF> powder at the Nuclear Resonance beamline (ID-18). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:144305 Serial 4667
Permanent link to this record
 

 
Author Kim, E.; Roosen, J.; Horckmans, L.; Spooren, J.; Broos, K.; Binnemans, K.; Vrancken, K.C.M.; Quaghebeur, M.
Title Process development for hydrometallurgical recovery of valuable metals from sulfide-rich residue generated in a secondary lead smelter Type A1 Journal article
Year 2017 Publication Hydrometallurgy Abbreviated Journal
Volume 169 Issue Pages 589-598
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Two routes were investigated to selectively recover lead and minor metals (Cu, Ni, Zn) from a sulfide-rich lead smelter residue, matte. The first route comprises a two-step leaching process that combines Fe(III)-HNO3 leaching with roasting, followed by water leaching. In the first step, the efficiency of Pb leaching was 90% at the optimum condition (L/S ratio 8, 0.5 mol.L-1 HNO3, 0.15 mol.L-1 Fe(III), 25 degrees C). In the second step, roasting at 600 degrees C followed by water leaching at 50 degrees C selectively leached Ni, Cu, and Zn while fully converting iron sulfides to oxides. One-step oxidative pressure leaching in HNO3 was investigated as an alternative to simultaneously leach Pb, Cu, Ni and Zn. At the optimal conditions (130 degrees C, 60 min, 0.3 mol.L-1 HNO3, 0.07 mol.L-1 Fe(III), L/S ratio 20), Pb, Cu, Zn and Ni leaching were 92, 60, 70 and 66%, respectively, while Fe leaching remained low (2%). The leachates obtained from both leaching routes were treated by ion-exchange adsorption with diethylenetriaminepentaacetic acid (DTPA) functionalized chitosan-silica hybrid materials to investigate the selective recovery of Cu, Zn and Ni. The adsorption order appeared to be in the same order as the corresponding stability constants for complexes between the respective metal ions and free DTPA: Ca(II) < Zn(II) < Pb (II) approximate to Ni(II) < Cu(II). This allows not only to selectively recover Cu, Zn and Ni from the leachates, but also to mutually separate them by using the functionalized resin as a stationary phase in column chromatography. To avoid adsorbent contamination, Fe(III) and Pb(II) may be removed from the leachates in a pre-treatment step. Based on these results, the investigated methods can be combined as process steps of two possible routes for the selective recovery of valuable metals from the studied secondary lead smelting residue. The two-step leaching process seems to be superior since a more concentrated solution of Cu, Ni, and Zn is produced in the 2nd leaching step with low capital cost.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401878200070 Publication Date 2017-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-386x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:144300 Serial 8414
Permanent link to this record
 

 
Author Kim, E.; Horckmans, L.; Spooren, J.; Vrancken, K.C.; Quaghebeur, M.; Broos, K.
Title Selective leaching of Pb, Cu, Ni and Zn from secondary lead smelting residues Type A1 Journal article
Year 2017 Publication Hydrometallurgy Abbreviated Journal
Volume 169 Issue Pages 372-381
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Several HNO3-based leaching approaches were tested and optimized to selectively recover Pb and other minor metals (Cu, Ni, Zn) from secondary lead smelter residues (i.e., slag and matte). Firstly, the leaching behaviors of Pb and the matrix element Fe were studied at atmospheric pressure in the temperature range 25-70 degrees C. These elements were present in both materials studied as sulfide and oxide phases. For the sulfur-rich matte residue, the Pb leaching increased from 63% to 69% upon increasing the HNO3 concentration from 0.2 M to 0.5 M. However, by adding Fe(III) as an oxidation agent, Pb leaching from the matte amounted to 90% at 25 degrees C. At a higher temperature, Pb leaching was reduced due to PbSO4 precipitation. In this process, Cu, Zn and Ni leaching was insignificant. For the slag residue, HNO3 could not leach Pb (0.03% Pb leached), while Fe leaching was 19.8% due to a galvanic effect. However, Pb leaching of the slag was 82% in the presence of additional Fe(III). Secondly, to enhance leaching of the other base metals (Cu, Zn and Ni) from the matte, roasting followed by water leaching and (microwave assisted or autoclave) pressurized leaching in 0.5 M HNO3 were applied. During roasting, the FeS phase converted to Fe2O3 above 500 degrees C, and PbS and Pb phases were transformed into insoluble PbSO4 above 400 degrees C. Cu, Ni and Zn leaching was drastically enhanced by a roasting step at 600 degrees C followed by leaching with 0.5 M HNO3 at 50 degrees C, or by pressurized HNO3 leaching above 130 degrees C, whereby Pb leaching almost ceased due to PbSO4 precipitation. During the roasting above 600 degrees C, or microwave assisted extraction (MAE) at 160 degrees C for 15 min, FeS was completely converted to iron oxides that can be used as raw material for pig iron production. Based on the results, the methods investigated can be combined as process steps of two possible routes for the selective recovery of valuable metals and the production of a clean source of Fe oxides from the secondary lead smelting residues studied. (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401878200045 Publication Date 2017-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-386x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:144299 Serial 8503
Permanent link to this record
 

 
Author Kim, E.; Horckmans, L.; Spooren, J.; Broos, K.; Vrancken, K.C.M.; Quaghebeur, M.
Title Recycling of a secondary lead smelting matte by selective citrate leaching of valuable metals and simultaneous recovery of hematite as a secondary resource Type A1 Journal article
Year 2017 Publication Hydrometallurgy Abbreviated Journal
Volume 169 Issue Pages 290-296
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Anew recycling process, according to the zero-waste concept, was investigated for an iron rich waste stream, more specifically a secondary lead smelting matte. The process consists of a selective citrate leaching of Pb, Cu, Ni and Zn in combination with a roasting step, leading to a simultaneous recovery of hematite as a secondary iron resource. The parameters, such as leaching time, leaching temperature, H2O2 concentration and roasting temperature, were experimentally optimized. The maximum Pb leaching efficiency was 93% and the leachability of Cu (33%) and Zn (11%) increased slightly in the presence of 0.5 M H2O2 in 1 M citrate at 25 degrees C and pH 5.5. Importantly, almost no Fe was leached (< 0.6%) from the iron rich matrix material at this condition allowing for a maximal recovery of hematite as a secondary resource after further treatment (i.e. roasting or sulfur removal). The leachability of Pb, Cu, Ni and Zn was strongly affected by the roasting temperature. Maximum leaching efficiency in 1 M citrate (25 degrees C, L/S ratio 10, pH 6.5) was 93% for Pb, 80% for Cu and 60% for Zn at a roasting temperature of 600 degrees C, while for Ni the maximum leaching efficiency of 53% was reached after roasting at 650 degrees C. Furthermore, when oxidative roasting was applied, the leaching residue consists dominantly of hematite (Fe2O3) with minor quantities of PbSO4, which can be used as pig iron ore (Fe > 60 wt%). (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401878200035 Publication Date 2017-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-386x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:144298 Serial 8463
Permanent link to this record
 

 
Author Zografos, O.; Dutta, S.; Manfrini, M.; Vaysset, A.; Sorée, B.; Naeemi, A.; Raghavan, P.; Lauwereins, R.; Radu, I.P.
Title Non-volatile spin wave majority gate at the nanoscale Type A1 Journal article
Year 2017 Publication AIP advances T2 – 61st Annual Conference on Magnetism and Magnetic Materials (MMM), OCT 31-NOV 04, 2016, New Orleans, LA Abbreviated Journal Aip Adv
Volume 7 Issue 5 Pages 056020
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract A spin wave majority fork-like structure with feature size of 40 nm, is presented and investigated, through micromagnetic simulations. The structure consists of three merging out-of-plane magnetization spin wave buses and four magneto-electric cells serving as three inputs and an output. The information of the logic signals is encoded in the phase of the transmitted spin waves and subsequently stored as direction of magnetization of the magneto-electric cells upon detection. The minimum dimensions of the structure that produce an operational majority gate are identified. For all input combinations, the detection scheme employed manages to capture the majority phase result of the spin wave interference and ignore all reflection effects induced by the geometry of the structure. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Address
Corporate Author Thesis
Publisher Amer inst physics Place of Publication Melville Editor
Language Wos 000402797100177 Publication Date 2017-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2158-3226 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.568 Times cited 13 Open Access
Notes ; ; Approved Most recent IF: 1.568
Call Number UA @ lucian @ c:irua:144288 Serial 4673
Permanent link to this record
 

 
Author Berthold, T.; Castro, C.R.; Winter, M.; Hoerpel, G.; Kurttepeli, M.; Bals, S.; Antonietti, M.; Fechler, N.
Title Tunable nitrogen-doped carbon nanoparticles from tannic acid and urea and their potential for sustainable soots Type A1 Journal article
Year 2017 Publication ChemNanoMat : chemistry of nanomaterials for energy, biology and more Abbreviated Journal Chemnanomat
Volume 3 Issue 3 Pages 311-318
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nano-sized nitrogen-doped carbon spheres are synthesized from two cheap, readily available and sustainable precursors: tannic acid and urea. In combination with a polymer structuring agent, nitrogen content, sphere size and the surface (up to 400 m(2)g(-1)) can be conveniently tuned by the precursor ratio, temperature and structuring agent content. Because the chosen precursors allow simple oven synthesis and avoid harsh conditions, this carbon nanosphere platform offers a more sustainable alternative to classical soots, for example, as printing pigments or conduction soots. The carbon spheres are demonstrated to be a promising as conductive carbon additive in anode materials for lithium ion batteries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403299200006 Publication Date 2017-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-692x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.937 Times cited 14 Open Access OpenAccess
Notes ; S.B. is grateful for funding by the European Research Council (ERC starting grant # 335078-COLOURATOMS). ; ecas_Sara Approved Most recent IF: 2.937
Call Number UA @ lucian @ c:irua:144287UA @ admin @ c:irua:144287 Serial 4699
Permanent link to this record
 

 
Author Volodin, A.; Van Haesendonck, C.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Stress dependence of the suspended graphene work function : vacuum Kelvin probe force microscopy and density functional theory Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 110 Issue 19 Pages 193101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report on work function measurements on graphene, which is exfoliated over a predefined array of wells in silicon oxide, by Kelvin probe force microscopy operating in a vacuum. The obtained graphene sealed microchambers can support large pressure differences, providing controllable stretching of the nearly impermeable graphene membranes. These measurements allow detecting variations of the work function induced by the mechanical stresses in the suspended graphene where the work function varies linearly with the strain and changes by 62 +/- 2 meV for 1 percent of strain. Our related ab initio calculations result in a work function variation that is a factor of 1.4 larger than the experimental value. The limited discrepancy between the theory and the experiment can be accounted for by a charge transfer from the unstrained to the strained graphene regions. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000402319200036 Publication Date 2017-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 8 Open Access
Notes ; The authors wish to thank A. Klekachev (IMEC Leuven, Belgium) for the fabrication of the samples. This work was supported by the Science Foundation-Flanders (FWO, Belgium). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-Department EWI. The Hercules Foundation also funded the scanning probe microscopy equipment. ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:144279 Serial 4690
Permanent link to this record
 

 
Author Li, L.L.; Moldovan, D.; Vasilopoulos, P.; Peeters, F.M.
Title Aharonov-Bohm oscillations in phosphorene quantum rings Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 20 Pages 205426
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Aharonov-Bohm (AB) effect in square phosphorene quantum rings, with armchair and zigzag edges, is investigated using the tight-binding method. The energy spectra and wave functions of such rings, obtained as a function of the magnetic flux Phi threading the ring, are strongly influenced by the ringwidthW, an in-plane electric field E-p, and a side-gating potential V-g. Compared to a square dot, the ring shows an enhanced confinement due to its inner edges and an interedge coupling along the zigzag direction, both of which strongly affect the energy spectrum and the wave functions. The energy spectrum that is gapped consists of a regular part, of conduction (valence) band states, that shows the usual AB oscillations in the higher-(lower-) energy region, and of edge states, in the gap, that exhibit no AB oscillations. As the width W decreases, the AB oscillations become more distinct and regular and their period is close to Phi(0)/2, where the flux quantum Phi(0) = h/e is the period of an ideal circular ring (W -> 0). Both the electric field E-p and the side-gating potential V-g reduce the amplitude of the AB oscillations. The amplitude can be effectively tuned by E-p or V-g and exhibits an anisotropic behavior for different field directions or side-gating configurations.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000402003700010 Publication Date 2017-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes ; This work was financially supported by the Chinese Academy of Sciences, the Flemish Science Foundation (FWO-V1), and by the Canadian NSERC Grant No. OGP0121756 (P.V.). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:144267 Serial 4638
Permanent link to this record
 

 
Author Voorhaar, L.; Diaz, M.M.; Leroux, F.; Rogers, S.; Abakumov, A.M.; Van Tendeloo, G.; Van Assche, G.; Van Mele, B.; Hoogenboom, R.
Title Supramolecular thermoplastics and thermoplastic elastomer materials with self-healing ability based on oligomeric charged triblock copolymers Type A1 Journal article
Year 2017 Publication NPG Asia materials Abbreviated Journal Npg Asia Mater
Volume 9 Issue Pages e385
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Supramolecular polymeric materials constitute a unique class of materials held together by non-covalent interactions. These dynamic supramolecular interactions can provide unique properties such as a strong decrease in viscosity upon relatively mild heating, as well as self-healing ability. In this study we demonstrate the unique mechanical properties of phase-separated electrostatic supramolecular materials based on mixing of low molar mass, oligomeric, ABA-triblock copolyacrylates with oppositely charged outer blocks. In case of well-chosen mixtures and block lengths, the charged blocks are phase separated from the uncharged matrix in a hexagonally packed nanomorphology as observed by transmission electron microscopy. Thermal and mechanical analysis of the material shows that the charged sections have a T-g closely beyond room temperature, whereas the material shows an elastic response at temperatures far above this T-g ascribed to the electrostatic supramolecular interactions. A broad set of materials having systematic variations in triblock copolymer structures was used to provide insights in the mechanical properties and and self-healing ability in correlation with the nanomorphology of the materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000402065300005 Publication Date 2017-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1884-4049; 1884-4057 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 9.157 Times cited 8 Open Access OpenAccess
Notes ; This research was conducted in the framework of the SIM-SHE/NAPROM project and SIM is gratefully acknowledged for the financial support. ; Approved Most recent IF: 9.157
Call Number UA @ lucian @ c:irua:144263 Serial 4691
Permanent link to this record
 

 
Author Zebrowski, D.P.; Peeters, F.M.; Szafran, B.
Title Driven spin transitions in fluorinated single- and bilayer-graphene quantum dots Type A1 Journal article
Year 2017 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech
Volume 32 Issue 6 Pages 065016
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Spin transitions driven by a periodically varying electric potential in dilute fluorinated graphene quantum dots are investigated. Flakes of monolayer graphene as well as electrostatic electron traps induced in bilayer graphene are considered. The stationary states obtained within the tight-binding approach are used as the basis for description of the system dynamics. The dilute fluorination of the top layer lifts the valley degeneracy of the confined states and attenuates the orbital magnetic dipole moments due to current circulation within the flake. The spin-orbit coupling introduced by the surface deformation of the top layer induced by the adatoms allows the spin flips to be driven by the AC electric field. For the bilayer quantum dots the spin flip times is substantially shorter than the spin relaxation. Dynamical effects including many-photon and multilevel transitions are also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000402405800007 Publication Date 2017-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-1242 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor 2.305 Times cited Open Access
Notes ; This work was supported by the National Science Centre according to decision DEC-2013/11/B/ST3/03837 and by the Flemish Science Foundation (FWO-VL). ; Approved Most recent IF: 2.305
Call Number UA @ lucian @ c:irua:144238 Serial 4646
Permanent link to this record
 

 
Author de de Meux, A.J.; Bhoolokam, A.; Pourtois, G.; Genoe, J.; Heremans, P.
Title Oxygen vacancies effects in a-IGZO : formation mechanisms, hysteresis, and negative bias stress effects Type A1 Journal article
Year 2017 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume 214 Issue 6 Pages 1600889
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The amorphous oxide semiconductor Indium-Gallium-Zinc-Oxide (a-IGZO) has gained a large technological relevance as a semiconductor for thin-film transistors in active-matrix displays. Yet, major questions remain unanswered regarding the atomic origin of threshold voltage control, doping level, hysteresis, negative bias stress (NBS), and negative bias illumination stress (NBIS). We undertake a systematic study of the effects of oxygen vacancies on the properties of a-IGZO by relating experimental observations to microscopic insights gained from first-principle simulations. It is found that the amorphous nature of the semiconductor allows unusually large atomic relaxations. In some cases, oxygen vacancies are found to behave as perfect shallow donors without the formation of structural defects. Once structural defects are formed, their transition states can vary upon charge and discharge cycles. We associate this phenomenon to a possible presence of hysteresis in the transfer curve of the devices. Under NBS, the creation of oxygen vacancies becomes energetically very stable, hence thermodynamically very likely. This generation process is correlated with the occurrence of the negative bias stress instabilities observed in a-IGZO transistors. While oxygen vacancies can therefore be related to NBS and hysteresis, it appears unlikely from our results that they are direct causes of NBIS, contrary to common belief.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403339900012 Publication Date 2017-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 8 Open Access Not_Open_Access
Notes Approved Most recent IF: 1.775
Call Number UA @ lucian @ c:irua:144219 Serial 4678
Permanent link to this record
 

 
Author Navarrete, A.; Centi, G.; Bogaerts, A.; Mart?n,?ngel; York, A.; Stefanidis, G.D.
Title Harvesting Renewable Energy for Carbon Dioxide Catalysis Type A1 Journal article
Year 2017 Publication Energy technology Abbreviated Journal Energy Technol-Ger
Volume 5 Issue 5 Pages 796-811
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The use of renewable energy (RE) to transform carbon dioxide into commodities (i.e., CO2 valorization) will pave the way towards a more sustainable economy in the coming years. But how can we efficiently use this energy (mostly available as electricity or solar light) to drive the necessary (catalytic) transformations? This paper presents a review of the technological advances in the transformation of carbon dioxide by means of RE. The socioeconomic implications and chemical basis of the transformation of carbon dioxide with RE are discussed. Then a general view of the use of RE to activate the (catalytic) transformations of carbon dioxide with microwaves, plasmas, and light is presented. The fundamental phenomena involved are introduced from a catalytic and reaction device perspective to present the advantages of this energy form as well as the inherent limitations of the present state-of-the-art. It is shown that efficient use of RE requires the redesign of current catalytic concepts. In this context, a new kind of reaction system, an energy-harvesting device, is proposed as a new conceptual approach for this endeavor. Finally, the challenges that lie ahead for the efficient and economical use of RE for carbon dioxide conversion are exposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451619500001 Publication Date 2017-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4288 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.789 Times cited 15 Open Access Not_Open_Access
Notes Fund for Scientific Research Flanders, G.0254.14 N, G.0217.14 N and G.0383.16 N ; Spanish Ministry of Economy and Competitiveness, ENE2014-53459-R ; Approved Most recent IF: 2.789
Call Number PLASMANT @ plasmant @ c:irua:144217 Serial 4615
Permanent link to this record
 

 
Author Snoeckx, R.; Rabinovich, A.; Dobrynin, D.; Bogaerts, A.; Fridman, A.
Title Plasma-based liquefaction of methane: The road from hydrogen production to direct methane liquefaction Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600115
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract For the energy industry, a process that is able to transform methane—being the prime component of natural gas—efficiently into a liquid product would be equivalent to a goose with golden eggs. As such it is no surprise that research efforts in this field already date back to the nineteen hundreds. Plasma technology can be considered to be a novel player in this field, but nevertheless one with great potential. Over the past decades this technology has evolved from sole hydrogen production, over indirect methane liquefaction to eventually direct plasma-assisted methane liquefaction processes. An overview of this evolution and these processes is presented, from which it becomes clear that the near future probably lies with the direct two phase plasma-assisted methane liquefaction and the far future with the direct oxidative methane liquefaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403699900008 Publication Date 2016-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 16 Open Access Not_Open_Access
Notes Advanced Plasma Solutions; Drexel University; Federaal Wetenschapsbeleid; Fonds De La Recherche Scientifique – FNRS, G038316N V403616N ; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:144212 Serial 4622
Permanent link to this record
 

 
Author Nozaki, T.; Bogaerts, A.; Tu, X.; Sanden, R.
Title Special issue: Plasma Conversion Type Editorial
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1790061
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403699900015 Publication Date 2017-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:144211 Serial 4578
Permanent link to this record