|   | 
Details
   web
Records
Author Bleiner, D.; Altorfer, H.
Title A novel gas inlet system for improved aerosol entrainment in laser ablation inductively coupled plasma mass spectrometry Type A1 Journal article
Year 2005 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In order to minimize the dead volume in large cells for laser ablation inductively coupled plasma mass spectrometry, and improve the aerosol entrainment characteristics, the gas inlet nozzle has been set in rotation. This allowed a wider volume to be swept than with the traditional static inlet nozzle approach. Therefore, sensitivity combined with site-to-site repeatability was improved by a factor of two, together with minimization of aerosol loss within the cell and signal dispersion.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000231246900013 Publication Date 2005-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 21 Open Access
Notes Approved Most recent IF: 3.379; 2005 IF: 3.640
Call Number UA @ lucian @ c:irua:99309 Serial 4524
Permanent link to this record
 

 
Author Bleiner, D.; Belloni, F.; Doria, D.; Lorusso, A.; Nassisi, V.
Title Overcoming pulse mixing and signal tailing in laser ablation inductively coupled plasma mass spectrometry depth profiling Type A1 Journal article
Year 2005 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The laser ablation-induced plasma was used as a composition-con trolled source for ion implantation in Si crystals. Then, laser ablation in combination with inductively coupled plasma mass spectrometry was used for the elemental depth profiling of the implanted samples. Monte Carlo simulations permitted us to conclude that a depth resolution of tens of nm would be necessary to define the shape of the implantation profiles, as is obtained using XPS and RBS, whereas a hundred nm depth resolution is sufficient to determine the total implanted dose. The detection power of LA-ICP-MS would routinely allow rapid analytical control on the trace level implanted dose. Nevertheless, this technique is limited in terms of depth profiling resolution due to pulse mixing and signal tailing induced during the aerosol transport. Raw signal processing procedures were developed for the minimization of shapeline dispersion, deconvolution of pulse mixing and more appropriate assessment of the implanted profiles. Shapeline dispersion could be corrected for by determining the signal waning constant and implementing this information for a non-affine alibi transformation of the LA-ICP-MS signal traces. Pulse mixing deconvolution was attained with an algorithm that considered accumulated signal intensity due to pulse-on-pulse stacking, i.e., the latest pulse on top of all antecedent individual pulses' exponential tails proportionally.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000233958900018 Publication Date 2005-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 26 Open Access
Notes Approved Most recent IF: 3.379; 2005 IF: 3.640
Call Number UA @ lucian @ c:irua:99278 Serial 4525
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A.
Title Modeling SiH4/O2/Ar inductively coupled plasmas used for filling of microtrenches in shallow trench isolation (STI) Type A1 Journal article
Year 2012 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 9 Issue 5 Pages 522-539
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Modeling results are presented to gain a better insight in the properties of a SiH4/O2/Ar inductively coupled plasma (ICP) and how it interacts with a silicon substrate (wafer), as applied in the microelectronics industry for the fabrication of electronic devices. The SiH4/O2/Ar ICP is used for the filling of microtrenches with isolating material (SiO2), as applied in shallow trench isolation (STI). In this article, a detailed reaction set that describes the plasma chemistry of SiH4/O2/Ar discharges as well as surface processes, such as sputtering, oxidation, and deposition, is presented. Results are presented on the plasma properties during the plasma enhanced chemical vapor deposition process (PECVD) for different gas ratios, as well as on the shape of the filled trenches and the surface compositions of the deposited layers. For the operating conditions under study it is found that the most important species accounting for deposition are SiH2, SiH3O, SiH3 and SiH2O, while SiH+2, SiH+3, O+2 and Ar+ are the dominant species for sputtering of the surface. By diluting the precursor gas (SiH4) in the mixture, the deposition rate versus sputtering rate can be controlled for a desired trench filling process. From the calculation results it is clear that a high deposition rate will result in undesired void formation during the trench filling, while a small deposition rate will result in undesired trench bottom and mask damage by sputtering. By varying the SiH4/O2 ratio, the chemical composition of the deposited layer will be influenced. However, even at the highest SiH4/O2 ratio investigated (i.e., 3.2:1; low oxygen content), the bulk deposited layer consists mainly of SiO2, suggesting that low-volatile silane species deposit first and subsequently become oxidized instead of being oxidized first in the plasma before deposition. Finally, it was found that the top surface of the deposited layer contained less oxygen due to preferential sputtering of O atoms, making the top layer more Si-rich. However, this effect is negligible at a SiH4/O2 ratio of 2:1 or lower.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000303858100010 Publication Date 2012-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 5 Open Access
Notes Approved Most recent IF: 2.846; 2012 IF: 3.730
Call Number UA @ lucian @ c:irua:99127 Serial 2142
Permanent link to this record
 

 
Author Scarrozza, M.; Pourtois, G.; Houssa, M.; Heyns, M.; Stesmans, A.
Title Oxidation of the GaAs(001) surface : insights from first-principles calculations Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 19 Pages 195307-195307,8
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We performed a detailed investigation of the oxidation of the technologically relevant GaAs(001)-beta 2(2x4) surface via density functional calculations. The purpose is to gain insights on the atomistic mechanisms and local bondings that underlie the degradation of the surface properties once exposed to oxygen. The study comprises the adsorption of single O atoms, through the sampling of several adsorption sites, and the subsequent formation of the O adsorbate at increasing coverage by taking into account multiple-atom adsorption. Based on the evaluation of the energetics and the structural properties of the atomistic models generated, the results here reported delineate a consistent picture of the initial stage of the surface oxidation: (i) at low coverage, in the limit of single O insertions, oxygen is incorporated on the surface forming a twofold-bridging Ga-O-As bond; (ii) at increasing coverage, as multiple O atoms are involved, this is accompanied by the formation of a threefold-coordinated bond (with two Ga and one As atoms); (iii) the latter has important implications regarding the electronic properties of the adsorbate since this O bonding may result in the formation of As dangling bonds. Moreover, a clear trend of increased energy gain for the incorporation of neighboring O atoms compared to single O insertions indicates that the formation of oxide clusters is favored over a regime of uniform oxidation. Our findings provide a detailed description of the O bonding and stress the importance of modeling the adsorption of multiple O atoms for an accurate description of the surface oxidation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303755700006 Publication Date 2012-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:99122 Serial 2538
Permanent link to this record
 

 
Author Neyts, E.C.; Thijsse, B.J.; Mees, M.J.; Bal, K.M.; Pourtois, G.
Title Establishing uniform acceptance in force biased Monte Carlo simulations Type A1 Journal article
Year 2012 Publication Journal of chemical theory and computation Abbreviated Journal J Chem Theory Comput
Volume 8 Issue 6 Pages 1865-1869
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Uniform acceptance force biased Monte Carlo (UFMC) simulations have previously been shown to be a powerful tool to simulate atomic scale processes, enabling one to follow the dynamical path during the simulation. In this contribution, we present a simple proof to demonstrate that this uniform acceptance still complies with the condition of detailed balance, on the condition that the characteristic parameter lambda = 1/2 and that the maximum allowed step size is chosen to be sufficiently small. Furthermore, the relation to Metropolis Monte Carlo (MMC) is also established, and it is shown that UFMC reduces to MMC by choosing the characteristic parameter lambda = 0 [Rao, M. et al. Mol. Phys. 1979, 37, 1773]. Finally, a simple example compares the UFMC and MMC methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000305092400002 Publication Date 2012-05-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1549-9618;1549-9626; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 5.245 Times cited 20 Open Access
Notes Approved Most recent IF: 5.245; 2012 IF: 5.389
Call Number UA @ lucian @ c:irua:99090 Serial 1082
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; van Duin, A.C.T.; Neyts, E.C.
Title Self-limiting oxidation in small-diameter Si nanowires Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue 11 Pages 2141-2147
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Recently, core shell silicon nanowires (Si-NWs) have been envisaged to be used for field-effect transistors and photovoltaic applications. In spite of the constant downsizing of such devices, the formation of ultrasmall diameter core shell Si-NWs currently remains entirely unexplored. We report here on the modeling of the formation of such core shell Si-NWs using a dry thermal oxidation of 2 nm diameter (100) Si nanowires at 300 and 1273 K, by means of reactive molecular dynamics simulations using the ReaxFF potential. Two different oxidation mechanisms are discussed, namely a self-limiting process that occurs at low temperature (300 K), resulting in a Si core I ultrathin SiO2 silica shell nanowire, and a complete oxidation process that takes place at a higher temperature (1273 K), resulting in the formation of an ultrathin SiO2 silica nanowire. The oxidation kinetics of both cases and the resulting structures are analyzed in detail. Our results demonstrate that precise control over the Si-core radius of such NWs and the SiOx (x <= 2.0) oxide shell is possible by controlling the growth temperature used during the oxidation process.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000305092600021 Publication Date 2012-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 45 Open Access
Notes Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number UA @ lucian @ c:irua:99079 Serial 2976
Permanent link to this record
 

 
Author Chen, Y.Y.; Pourtois, G.; Adelmann, C.; Goux, L.; Govoreanu, B.; Degreave, R.; Jurczak, M.; Kittl, J.A.; Groeseneken, G.; Wouters, D.J.
Title Insights into Ni-filament formation in unipolar-switching Ni/HfO2/TiN resistive random access memory device Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 100 Issue 11 Pages 113513-113513,4
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this letter, CMOS-compatible Ni/HfO2/TiN resistive random access memory stacks demonstrated attractive unipolar switching properties, showing >10(3) endurance and long retention at 150 degrees C. The Ni bottom electrode (BE) improved the switching yield over the NiSiPt BE. To better understand the unipolar forming mechanism, ab initio simulation and time of flight-secondary ion mass spectroscopy were utilized. Compared to the NiSiPt BE, Ni BE gives larger Ni diffusion in the HfO2 and lower formation enthalpy of Ni2+ species during electrical forming. Both the electrical and physical results supported a Ni-injection mechanism for the filament formation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695078]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000302204900091 Publication Date 2012-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 29 Open Access
Notes Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:98295 Serial 1674
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; van Duin, A.C.T.; Neyts, E.C.
Title Hyperthermal oxidation of Si(100)2x1 surfaces : effect of growth temperature Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue 15 Pages 8649-8656
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using reactive molecular dynamics simulations based on the ReaxFF potential, we studied the growth mechanism of ultrathin silica (SiO2) layers during hyperthermal oxidation as a function of temperature in the range 100-1300 K. Oxidation of Si(100){2 x 1} surfaces by both atomic and molecular oxygen was investigated for hyperthermal impact energies in the range of 1 to 5 eV. Two different growth mechanisms are found, corresponding to a low temperature oxidation and a high temperature one. The transition temperature between these mechanisms is estimated to be about 700 K. Also, the initial step of the Si oxidation process is analyzed in detail. Where possible, we validated our results with experimental and ab initio data, and good agreement was obtained. This study is important for the fabrication of silica-based devices in the micro- and nanoelectronics industry and, more specifically, for the fabrication of metal oxide semiconductor devices.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000302924900035 Publication Date 2012-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 32 Open Access
Notes Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:98259 Serial 1542
Permanent link to this record
 

 
Author Pham, A.-T.; Sorée, B.; Magnus, W.; Jungemann, C.; Meinerzhagen, B.; Pourtois, G.
Title Quantum simulations of electrostatics in Si cylindrical junctionless nanowire nFETs and pFETs with a homogeneous channel including strain and arbitrary crystallographic orientations Type A1 Journal article
Year 2012 Publication Solid state electronics Abbreviated Journal Solid State Electron
Volume 71 Issue Pages 30-36
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Simulation results of electrostatics in Si cylindrical junctionless nanowire transistors with a homogenous channel are presented. Junctionless transistors including strain and arbitrary crystallographic orientations are studied. Size quantization effects are simulated by self-consistent solutions of the Poisson and Schrodinger equations. The 6 x 6 k.p method is employed for the calculation of the valence subband structure in a junctionless nanowire pFET. The influence of stress/strain and crystallographic channel orientation on to the electrostatics in terms of subband structure, charge density, and C-V curve is systematically studied. (C) 2011 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000303033800007 Publication Date 2011-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1101; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.58 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 1.58; 2012 IF: 1.482
Call Number UA @ lucian @ c:irua:98245 Serial 2786
Permanent link to this record
 

 
Author Hardy, A.; Van Elshocht, S.; De Dobbelaere, C.; Hadermann, J.; Pourtois, G.; De Gendt, S.; Afanas'ev, V.V.; Van Bael, M.K.
Title Properties and thermal stability of solution processed ultrathin, high-k bismuth titanate (Bi2Ti2O7) films Type A1 Journal article
Year 2012 Publication Materials research bulletin Abbreviated Journal Mater Res Bull
Volume 47 Issue 3 Pages 511-517
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ultrathin bismuth titanate films (Bi2Ti2O7, 5-25 nm) are deposited onto SiO2/Si substrates by aqueous chemical solution deposition and their evolution during annealing is studied. The films crystallize into a preferentially oriented, pure pyrochlore phase between 500 and 700 degrees C, depending on the film thickness and the total thermal budget. Crystallization causes a strong increase of surface roughness compared to amorphous films. An increase of the interfacial layer thickness is observed after anneal at 600 degrees C, together with intermixing of bismuth with the substrate as shown by TEM-EDX. The band gap was determined to be similar to 3 eV from photoconductivity measurements and high dielectric constants between 30 and 130 were determined from capacitance voltage measurements, depending on the processing conditions. (C) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000301994100001 Publication Date 2012-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-5408; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.446 Times cited Open Access
Notes Approved Most recent IF: 2.446; 2012 IF: 1.913
Call Number UA @ lucian @ c:irua:97797 Serial 2727
Permanent link to this record
 

 
Author Clima, S.; Chen, Y.Y.; Degraeve, R.; Mees, M.; Sankaran, K.; Govoreanu, B.; Jurczak, M.; De Gendt, S.; Pourtois, G.
Title First-principles simulation of oxygen diffusion in HfOx : role in the resistive switching mechanism Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 100 Issue 13 Pages 133102-133102,4
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Transition metal oxide-based resistor random access memory (RRAM) takes advantage of oxygen-related defects in its principle of operation. Since the change in resistivity of the material is controlled by the oxygen deficiency level, it is of major importance to quantify the kinetics of the oxygen diffusion, key factor for oxide stoichiometry. Ab initio accelerated molecular dynamics techniques are employed to investigate the oxygen diffusivity in amorphous hafnia (HfOx, x = 1.97, 1.0, 0.5). The computed kinetics is in agreement with experimental measurements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697690]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000302230800060 Publication Date 2012-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 63 Open Access
Notes Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:97786 Serial 1214
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A.
Title Effect of a mass spectrometer interface on inductively coupled plasma characteristics : a computational study Type A1 Journal article
Year 2012 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 27 Issue 4 Pages 604-610
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An inductively coupled plasma connected to a mass spectrometer interface (sampling cone) is computationally investigated. Typical plasma characteristics, such as gas flow velocity, plasma temperature and electron density, are calculated in two dimensions (cylindrical symmetry) and compared with and without a mass spectrometer sampling interface. The results obtained from our model compare favorably with experimental data reported in the literature. A dramatic increase in the plasma velocity is reported in the region close to the interface. Furthermore, a cooled metal interface lowers the plasma temperature and electron density on the axial channel very close to the sampling cone but the corresponding values in the off axial regions are increased. Therefore, the effect of the interface strongly depends on the measurement position. It is shown that even a small shift from the actual position of the sampler leads to a considerable change of the results.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000301496700005 Publication Date 2012-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 18 Open Access
Notes Approved Most recent IF: 3.379; 2012 IF: 3.155
Call Number UA @ lucian @ c:irua:97386 Serial 791
Permanent link to this record
 

 
Author Neyts, E.C.
Title PECVD growth of carbon nanotubes : from experiment to simulation Type A1 Journal article
Year 2012 Publication Journal of vacuum science and technology: B: micro-electronics processing and phenomena Abbreviated Journal
Volume 30 Issue 3 Pages 030803-030803,17
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nanostructured carbon materials show a tremendous variety in atomic structure, morphology, properties, and applications. As all properties are ultimately determined by the structure of the material, a thorough understanding of the growth mechanisms that give rise to the particular structure is critical. On many occasions, it has been shown that plasma enhanced growth can be strongly beneficial. This review will describe the authors current understanding of plasma enhanced growth of carbon nanotubes, the prototypical example of nanostructured carbon materials, as obtained from experiments, simulations, and modeling. Specific emphasis is put on where experiments and computational approaches correspond, and where they differ. Also, the current status on simulating PECVD growth of some other carbon nanomaterials is reviewed, including amorphous carbon, graphene, and metallofullerenes. Finally, computational challenges with respect to the simulation of PECVD growth are identified.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000305042000010 Publication Date 2012-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-2746; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 42 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:97166 Serial 2570
Permanent link to this record
 

 
Author Neyts, E.C.; van Duin, A.C.T.; Bogaerts, A.
Title Insights in the plasma-assisted growth of carbon nanotubes through atomic scale simulations : effect of electric field Type A1 Journal article
Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 134 Issue 2 Pages 1256-1260
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Carbon nanotubes (CNTs) are nowadays routinely grown in a thermal CVD setup. State-of-the-art plasma-enhanced CVD (PECVD) growth, however, offers advantages over thermal CVD. A lower growth temperature and the growth of aligned freestanding single-walled CNTs (SWNTs) makes the technique very attractive. The atomic scale growth mechanisms of PECVD CNT growth, however, remain currently entirely unexplored. In this contribution, we employed molecular dynamics simulations to focus on the effect of applying an electric field on the SWNT growth process, as one of the effects coming into play in PECVD. Using sufficiently strong fields results in (a) alignment of the growing SWNTs, (b) a better ordering of the carbon network, and (c) a higher growth rate relative to thermal growth rate. We suggest that these effects are due to the small charge transfer occurring in the Ni/C system. These simulations constitute the first study of PECVD growth of SWNTs on the atomic level.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000301084300086 Publication Date 2011-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 56 Open Access
Notes Approved Most recent IF: 13.858; 2012 IF: 10.677
Call Number UA @ lucian @ c:irua:97163 Serial 1673
Permanent link to this record
 

 
Author Mees, M.J.; Pourtois, G.; Neyts, E.C.; Thijsse, B.J.; Stesmans, A.
Title Uniform-acceptance force-bias Monte Carlo method with time scale to study solid-state diffusion Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 13 Pages 134301-134301,9
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Monte Carlo (MC) methods have a long-standing history as partners of molecular dynamics (MD) to simulate the evolution of materials at the atomic scale. Among these techniques, the uniform-acceptance force-bias Monte Carlo (UFMC) method [ G. Dereli Mol. Simul. 8 351 (1992)] has recently attracted attention [ M. Timonova et al. Phys. Rev. B 81 144107 (2010)] thanks to its apparent capacity of being able to simulate physical processes in a reduced number of iterations compared to classical MD methods. The origin of this efficiency remains, however, unclear. In this work we derive a UFMC method starting from basic thermodynamic principles, which leads to an intuitive and unambiguous formalism. The approach includes a statistically relevant time step per Monte Carlo iteration, showing a significant speed-up compared to MD simulations. This time-stamped force-bias Monte Carlo (tfMC) formalism is tested on both simple one-dimensional and three-dimensional systems. Both test-cases give excellent results in agreement with analytical solutions and literature reports. The inclusion of a time scale, the simplicity of the method, and the enhancement of the time step compared to classical MD methods make this method very appealing for studying the dynamics of many-particle systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000302290500001 Publication Date 2012-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 31 Open Access
Notes Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97160 Serial 3809
Permanent link to this record
 

 
Author Zhao, S.-X.; Gao, F.; Wang, Y.-N.; Bogaerts, A.
Title The effect of F2 attachment by low-energy electrons on the electron behaviour in an Ar/CF4 inductively coupled plasma Type A1 Journal article
Year 2012 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 21 Issue 2 Pages 025008-025008,13
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The electron behaviour in an Ar/CF4 inductively coupled plasma is investigated by a Langmuir probe and a hybrid model. The simulated and measured results include electron density, temperature and electron energy distribution function for different values of Ar/CF4 ratio, coil power and gas pressure. The hybrid plasma equipment model simulations show qualitative agreement with experiment. The effect of F2 electron attachment on the electron behaviour is explored by comparing two sets of data based on different F atom boundary conditions. It is demonstrated that electron attachment at F2 molecules is responsible for the depletion of low-energy electrons, causing a density decrease as well as a temperature increase when CF4 is added to an Ar plasma.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000302779400022 Publication Date 2012-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 23 Open Access
Notes Approved Most recent IF: 3.302; 2012 IF: 2.515
Call Number UA @ lucian @ c:irua:96549 Serial 841
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.; Stesmans, A.
Title Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2 Type A1 Journal article
Year 2012 Publication Nano Research Abbreviated Journal Nano Res
Volume 5 Issue 1 Pages 43-48
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The electronic properties of two-dimensional honeycomb structures of molybdenum disulfide (MoS(2)) subjected to biaxial strain have been investigated using first-principles calculations based on density functional theory. On applying compressive or tensile bi-axial strain on bi-layer and mono-layer MoS(2), the electronic properties are predicted to change from semiconducting to metallic. These changes present very interesting possibilities for engineering the electronic properties of two-dimensional structures of MoS(2).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000299085200006 Publication Date 2011-11-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1998-0124;1998-0000; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 7.354 Times cited 407 Open Access
Notes Approved Most recent IF: 7.354; 2012 IF: 7.392
Call Number UA @ lucian @ c:irua:96262 Serial 3169
Permanent link to this record
 

 
Author Delabie, A.; Sioncke, S.; Rip, J.; Van Elshocht, S.; Pourtois, G.; Mueller, M.; Beckhoff, B.; Pierloot, K.
Title Reaction mechanisms for atomic layer deposition of aluminum oxide on semiconductor substrates Type A1 Journal article
Year 2012 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
Volume 30 Issue 1 Pages 01a127-01a127,10
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, we have studied the TMA/H(2)O (TMA Al(CH(3))(3)) atomic layer deposition (ALD) of Al(2)O(3) on hydroxyl (OH) and thiol (SH) terminated semiconductor substrates. Total reflection x-ray fluorescence reveals a complex growth-per-cycle evolution during the early ALD reaction cycles. OH and SH terminated surfaces demonstrate growth inhibition from the second reaction cycle on. Theoretical calculations, based on density functional theory, are performed on cluster models to investigate the first TMA/H(2)O reaction cycle. Based on the theoretical results, we discuss possible mechanisms for the growth inhibition from the second reaction cycle on. In addition, our calculations show that AlCH(3) groups are hydrolyzed by a H(2)O molecule adsorbed on a neighboring Al atom, independent of the type of backbonds (Si-O, Ge-O, or Ge-S) of AlCH(3). The coordination of Al remains four-fold after the first TMA/H(2)O reaction cycle. (C) 2012 American Vacuum Society. [DOI: 10.1116/1.3664090]
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000298992800027 Publication Date 2011-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-2101; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.374 Times cited 41 Open Access
Notes Approved Most recent IF: 1.374; 2012 IF: 1.432
Call Number UA @ lucian @ c:irua:96253 Serial 2818
Permanent link to this record
 

 
Author Martin, J.M.L.; Francois; Gijbels, R.
Title The anharmonic-force field of thioformaldehyde, h2cs, by ab-initio methods Type A1 Journal article
Year 1994 Publication Journal of molecular spectroscopy Abbreviated Journal J Mol Spectrosc
Volume 168 Issue 2 Pages 363-373
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The quartic force field of thioformaldehyde has been calculated ab initio using large basis sets and augmented coupled cluster methods. Calculated fundamentals are in excellent agreement with experiment, as is the most important Coriolis coupling constant. Computed values for the anharmonicity, rovibrational coupling, and centrifugal distortion constants of the four isotopomers (H2CS)-S-32, (H2CS)-S-34, (HDCS)-S-32, and (D2CS)-S-32 have been reported. Predictions have been made for all vibrational transitions from the ground state to excited states with at most two quanta for these isotopomers, both using second-order perturbation theory corrected for Darling-Dennison resonance and using vibrational SCF-CI calculations. For (D2CS)-S-32, perturbation theory performs quite well; for the other isotopomers, performance is poorer for states involving excitation of the out-of-plane bend and, for the (H2CS)-S-32 and (H2CS)-S-34 isotopomers, also for the antisymmetric bend that is in severe Coriolis resonance with it. A possible explanation has been suggested. (C) 1994 Academic Press, Inc.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1994PU60800015 Publication Date 2002-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2852; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.482 Times cited 18 Open Access
Notes Approved PHYSICS, APPLIED 47/145 Q2 #
Call Number UA @ lucian @ c:irua:95414 Serial 3570
Permanent link to this record
 

 
Author Yuan, X.; Yu, W.; Yu, M.Y.; Chen, Z.Y.; Liu, J.R.; Lu, P.X.; Li, R.X.; Qian, L.J.; Lu, B.D.
Title Long-distance channeling and focusing of lasers in plasmas Type A1 Journal article
Year 2002 Publication Physica scripta Abbreviated Journal Phys Scripta
Volume 66 Issue 5 Pages 381-384
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The propagation of a short laser beam in plasma is investigated analytically Relativistic ponderomotive force and space charge effects are included, and an equation describing the evolution of the laser spot size is derived. It is shown that self-consistent electron cavitation can lead to self channelling and thus long-distance self-focusing of the laser. The condition for the latter to occur is given.
Address
Corporate Author Thesis
Publisher Place of Publication Stockholm Editor
Language Wos 000179465400008 Publication Date 2003-07-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949;1402-4896; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.28 Times cited 2 Open Access
Notes Approved Most recent IF: 1.28; 2002 IF: 0.748
Call Number UA @ lucian @ c:irua:95120 Serial 1835
Permanent link to this record
 

 
Author Kalitzova, M.; Vlakhov, E.; Marinov, Y.; Gesheva, K.; Ignatova, V.A.; Lebedev, O.; Muntele, C.; Gijbels, R.
Title Effect of high-frequency electromagnetic field on Te+-implanted (001) Si</tex> Type A1 Journal article
Year 2004 Publication Vacuum: the international journal and abstracting service for vacuum science and technology Abbreviated Journal Vacuum
Volume 76 Issue 2-3 Pages 325-328
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The analysis of high-frequency electromagnetic field (HFEMF) effects on the microstructure and electrical properties of Te+ implanted (0 0 1) Si is reported. Cross-sectional high-resolution transmission electron microscopy (XHRTEM) demonstrates the formation of Te nanoclusters (NCs) embedded in the Si layer amorphized by implantation (a-Si) at fluences greater than or equal to 1 x 10(16) cm(-2). Post-implantation treatment with 0.45 MHz HFEMF leads to enlargement of Te NCs, their diffusion and accumulation at the a-Si surface and formation of laterally connected extended tellurium structures above the percolation threshold, appearing at an ion fluence of 1 x 10(17) cm(-2). AC electrical conductivity measurements show nearly four orders of magnitude decrease of impedance resistivity in this case, which is in good agreement with the results of our structural studies. The results obtained are discussed in terms of the two-phase isotropic spinodal structure. (C) 2004 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000224890100048 Publication Date 2004-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-207X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.53 Times cited 2 Open Access
Notes Approved Most recent IF: 1.53; 2004 IF: 0.902
Call Number UA @ lucian @ c:irua:95105 Serial 814
Permanent link to this record
 

 
Author Chen, Z.; Yu, M.Y.; Luo, H.
Title Molecular dynamics simulation of dust clusters in plasmas Type A1 Journal article
Year 2005 Publication Physica scripta Abbreviated Journal Phys Scripta
Volume 71 Issue 6 Pages 638-643
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Finite and infinite three-dimensional dust systems and their configurational and transport properties are investigated by Molecular Dynamics simulation. The model dust-dust interaction potential includes an attraction part. Spherical dust clusters or balls are found and their structural and transport properties studied. Qualitatively, the cluster structure agrees well with recent experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Stockholm Editor
Language Wos 000230087300010 Publication Date 2006-01-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949;1402-4896; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.28 Times cited 13 Open Access
Notes Approved Most recent IF: 1.28; 2005 IF: 1.240
Call Number UA @ lucian @ c:irua:95096 Serial 2169
Permanent link to this record
 

 
Author Pourtois, G.; Lauwers, A.; Kittl, J.; Pantisano, L.; Sorée, B.; De Gendt, S.; Magnus, W.; Heyns, A.; Maex, K.
Title First-principle calculations on gate/dielectric interfaces : on the origin of work function shifts Type A1 Journal article
Year 2005 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng
Volume 80 Issue Pages 272-279
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The impact of interfacial chemistry occurring at dielectric/gate interface of P-MOS and N-MOS devices is reviewed through a quick literature survey. A specific emphasis is put on the way the bond polarization that occurs between a dielectric and a metal substrate impacts on the gate work function. First-principle simulations are then used to study the work function changes induced by dopant aggregation in nickel monosilicide metal gates. It is shown that the changes are a natural consequence of the variation of the interface polarization.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000231517000062 Publication Date 2005-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.806 Times cited 31 Open Access
Notes Approved Most recent IF: 1.806; 2005 IF: 1.347
Call Number UA @ lucian @ c:irua:95095 Serial 1199
Permanent link to this record
 

 
Author Bleiner, D.; Macri, M.; Gasser, P.; Sautter, V.; Maras, A.
Title FIB, TEM and LA-ICPMS investigations on melt inclusions in Martian meteorites – Analytical capabilities and geochemical insights Type A1 Journal article
Year 2006 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal Talanta
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In order to obtain full information coverage on melt inclusions in Martian meteorites (subgroup nakhlites) complementary micro-analytical techniques were used, i.e. focused ion beam, transmission electron microscopy and laser ablation. Using focused ion beam several lamellae for transmission electron microscopy were prepared and secondary electron images of cross-sections could be acquired. Laser ablation-inductively coupled plasma mass spectrometry analyses were performed on selected inclusions to obtain mass-oriented bulk composition of inclusions at depth. The differences in composition between melt inclusions in olivine and augite crystals would suggest a xenocrystic origin for olivine. Furthermore, electron diffraction patterns clearly indicated that the SiO2-rich phase in inclusions from augite in meteorites from Northwest Africa site is re-crystallized, whereas it is still vitreous in the inclusions from Nakhla sampling site. Therefore, different post-entrapment evolutions were active for the two nakhlite meteorite sets, the Nakhla and the NWA817 set. Melt inclusions in Nakhla olivine presented alteration veins, which were presumably produced before their landing on Earth. If this is the case, this would indicate a alteration stage already on Mars with all the consequence in terms of climate history. Melt inclusions in Nakhla augite resulted unaffected by any alteration or modification following the entrapment, and therefore represent the best candidate to indicate the pristine magma composition. (c) 2005 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Pergamon Place of Publication Oxford Editor
Language Wos 000235509900028 Publication Date 2005-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 4.162 Times cited 9 Open Access
Notes Approved Most recent IF: 4.162; 2006 IF: 2.810
Call Number UA @ lucian @ c:irua:95092 Serial 4519
Permanent link to this record
 

 
Author Armelao, L.; Bertagnolli, H.; Bleiner, D.; Groenewolt, M.; Gross, S.; Krishnan, V.; Sada, C.; Schubert, U.; Tondello, E.; Zattin, A.
Title Highly dispersed mixed zirconia and hafnia nanoparticles in a silica matrix: First example of a ZrO2-HfO2-SiO2 ternary oxide system Type A1 Journal article
Year 2007 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract ZrO2 and HfO2 nanoparticles are homogeneously dispersed in SiO2 matrices (supported film and bulk powders) by copolymerization of two oxozirconium and oxohafnium clusters (M4O(2)(OMc)(12), M= Zr, Hf; OMc = OC(O)-C(CH3)=CH2) with (methacryloxypropyl)trimethoxysilane (MAPTMS, (CH2=C(CH3)C(O)O)-(CH2)(3)Si(OCH3)(3)). After calcination (at a temperature >= 800 degrees C), a silica matrix with homogeneously distributed MO2 nanocrystallites is obtained. This route yields a spatially homogeneous dispersion of the metal precursors inside the silica matrix, which is maintained during calcination. The composition of the films and the powders is studied before and after calcination by using Fourier transform infrared (FTIR) analysis, X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The local environment of the metal atoms in one of the calcined samples is investigated by using X-ray Absorption Fine Structure (XAFS) spectroscopy. Through X-ray diffraction (XRD) the crystallization of Hf and Zr oxides is seen at temperatures higher than those expected for the pure oxides, and transmission electron microscopy (TEM) shows the presence of well-distributed and isolated crystalline oxide nanoparticles (540 nm).
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000248062100011 Publication Date 2007-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 34 Open Access
Notes Approved Most recent IF: 12.124; 2007 IF: 7.496
Call Number UA @ lucian @ c:irua:95083 Serial 4521
Permanent link to this record
 

 
Author Chen, Z.; Feng, X.; Xu, Y.; Yu, M.Y.
Title Optical bistability and multistability in four-level systems Type A1 Journal article
Year 2003 Publication Physica scripta Abbreviated Journal Phys Scripta
Volume 68 Issue 3 Pages 199-204
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The optical behavior of a four-level system in a ring cavity driven by two coherent laser fields is studied. One laser field is treated as the incident field and the other the control field, respectively. It is found that there is optical transparency when the difference between the two frequency detunings of the incident and control fields from the corresponding atomic transition frequencies is zero. Optical bistability can be produced and controlled by increasing the magnitude of the frequency difference. The bistable hysteresis becomes larger when the frequency difference is increased. Further increase of the latter can lead to onset of multistability.
Address
Corporate Author Thesis
Publisher Place of Publication Stockholm Editor
Language Wos 000185204400005 Publication Date 2003-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949;1402-4896; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.28 Times cited 8 Open Access
Notes Approved Most recent IF: 1.28; 2003 IF: 0.688
Call Number UA @ lucian @ c:irua:94844 Serial 2471
Permanent link to this record
 

 
Author Xu, Y.; Jia, D.-J.; Chen, Z.; Gao, Y.; Li, F.-S.
Title The mode-deviation effect of trapped spinor bose gas beyond mean field theory Type A1 Journal article
Year 2004 Publication International journal of modern physics: B: condensed matter physics, statistical physics, applied physics Abbreviated Journal Int J Mod Phys B
Volume 18 Issue 9 Pages 1339-1349
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The deviation effect of spinor mode from the single-mode for a spin-1 Bose gas of trapped atoms is studied beyond the mean field theory. Based on the effective Hamiltonian with nondegenerated level of the collective spin states, the splitting level of the system energy due to the deviation effect has been calculated. For the large condensates of (87)Rb and (23)Na with atom number N > 10(5), the splitting fraction of the energy, arising from the magnetization exhibited by the trapped Bose gas, is found to have a typical order of (10(-4) similar to 10(-8)), decreasing as N(-2) for (87)Rb and increasing as -N(-2) for 23 Na, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Singapore Editor
Language Wos 000222342400008 Publication Date 2004-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-9792;1793-6578; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 0.736 Times cited 1 Open Access
Notes Approved Most recent IF: 0.736; 2004 IF: 0.361
Call Number UA @ lucian @ c:irua:94805 Serial 2096
Permanent link to this record
 

 
Author Duan, Z.L.; Chen, Z.Y.; Zhang, J.T.; Feng, X.L.; Xu, Z.Z.
Title Scheme for the generation of entangled atomic state in cavity QED Type A1 Journal article
Year 2004 Publication European physical journal : D : atomic, molecular and optical physics Abbreviated Journal Eur Phys J D
Volume 30 Issue 2 Pages 275-278
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We propose a scheme to generate the entangled state of two Lambda-type three-level atoms trapped in a cavity. The atoms are initially prepared in their excited state and the cavity in vacuum state. Each atom has two possibilities to deexcite to one of the ground states. If two different polarized photons are detected subsequently, it is sure that both atoms are in different ground states. But which atom is in which ground state cannot be determined, the atoms are thus prepared in a superposition of two ground states, i.e., an entangled state. In comparison with the proposal of Hong and Lee [Phys. Rev. Lett. 89, 237901 (2002)], the requirement of a single polarized photon source can be avoided in our scheme.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000223019400013 Publication Date 2004-07-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6060;1434-6079; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.288 Times cited 4 Open Access
Notes Approved Most recent IF: 1.288; 2004 IF: 1.692
Call Number UA @ lucian @ c:irua:94796 Serial 2954
Permanent link to this record
 

 
Author Khalilov, U.; Neyts, E.C.; Pourtois, G.; van Duin, A.C.T.
Title Can we control the thickness of ultrathin silica layers by hyperthermal silicon oxidation at room temperature? Type A1 Journal article
Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue 50 Pages 24839-24848
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using reactive molecular dynamics simulations by means of the ReaxFF potential, we studied the growth mechanism of ultrathin silica (SiO2) layers during hyperthermal oxidation at room temperature. Oxidation of Si(100){2 × 1} surfaces by both atomic and molecular oxygen was investigated in the energy range 15 eV. The oxidation mechanism, which differs from thermal oxidation, is discussed. In the case of oxidation by molecular O2, silica is quickly formed and the thickness of the formed layers remains limited compared to oxidation by atomic oxygen. The Si/SiO2 interfaces are analyzed in terms of partial charges and angle distributions. The obtained structures of the ultrathin SiO2 films are amorphous, including some intrinsic defects. This study is important for the fabrication of silica-based devices in the micro- and nanoelectronics industry, and more specifically for the fabrication of metal oxide semiconductor devices.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000297947700050 Publication Date 2011-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 36 Open Access
Notes Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:94303 Serial 273
Permanent link to this record
 

 
Author Lindner, H.; Murtazin, A.; Groh, S.; Niemax, K.; Bogaerts, A.
Title Simulation and experimental studies on plasma temperature, flow velocity, and injector diameter effects for an inductively coupled plasma Type A1 Journal article
Year 2011 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 83 Issue 24 Pages 9260-9266
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An inductively coupled plasma (ICP) is analyzed by means of experiments and numerical simulation. Important plasma properties are analyzed, namely, the effective temperature inside the central channel and the mean flow velocity inside the plasma. Furthermore, the effect of torches with different injector diameters is studied by the model. The temperature inside the central channel is determined from the end-on collected line-to-background ratio in dependence of the injector gas flow rates. Within the limits of 3% deviation, the results of the simulation and the experiments are in good agreement in the range of flow rates relevant for the analysis of relatively large droplets, i.e., 50 μm. The deviation increases for higher gas flow rates but stays below 6% for all flow rates studied. The velocity of the gas inside the coil region was determined by side-on analyte emission measurements with single monodisperse droplet introduction and by the analysis of the injector gas path lines in the simulation. In the downstream region significantly higher velocities were found than in the upstream region in both the simulation and the experiment. The quantitative values show good agreement in the downstream region. In the upstream region, deviations were found in the absolute values which can be attributed to the flow conditions in that region and because the methods used for velocity determination are not fully consistent. Eddy structures are found in the simulated flow lines. These affect strongly the way taken by the path lines of the injector gas and they can explain the very long analytical signals found in the experiments at low flow rates. Simulations were performed for different injector diameters in order to find conditions where good analyte transport and optimum signals can be expected. The results clearly show the existence of a transition flow rate which marks the lower limit for effective analyte transport conditions through the plasma. A rule-of-thumb equation was extracted from the results from which the transition flow rate can be estimated for different injector diameters and different injector gas compositions.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000297946900013 Publication Date 2011-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 34 Open Access
Notes Approved Most recent IF: 6.32; 2011 IF: 5.856
Call Number UA @ lucian @ c:irua:94001 Serial 3009
Permanent link to this record