|   | 
Details
   web
Records
Author Bogaerts, A.
Title Glow discharge optical spectroscopy and mass spectrometry Type A1 Journal article
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; PLASMANT
Abstract Atomic Spectroscopy Optical (atomic absorption spectroscopy, AAS; atomic emission spectroscopy, AES; atomic fluorescence spectroscopy, AFS; and optogalvanic spectroscopy) and mass spectrometric (magnetic sector, quadrupole mass analyzer, QMA; quadrupole ion trap, QIT; Fourier transform ion cyclotron resonance, FTICR; and time-of-flight, TOF) instrumentation are well suited for coupling to the glow discharge (GD). The GD is a relatively simple device. A potential gradient (500–1500 V) is applied between an anode and a cathode. In most cases, the sample is also the cathode. A noble gas (mostly Ar) is introduced into the discharge region before power initiation. When a potential is applied, electrons are accelerated toward the anode. As these electrons accelerate, they collide with gas atoms. A fraction of these collisions are of sufficient energy to remove an electron from a support gas atom, forming an ion. These ions are, in turn, accelerated toward the cathode. These ions impinge on the surface of the cathode, sputtering sample atoms from the surface. Sputtered atoms that do not redeposit on the surface diffuse into the excitation/ionization regions of the plasma where they can undergo excitation and/or ionization via a number of collisional processes, and the photons or ions created in this way can be detected with optical emission spectroscopy or mass spectrometry. GD sources offer a number of distinct advantages that make them well suited for specific types of analyses. These sources afford direct analysis of solid samples, thus minimizing the sample preparation required for analysis. The nature of the plasma also provides mutually exclusive atomization and excitation processes that help to minimize the matrix effects that plague so many other elemental techniques. In recent years, there is also increasing interest for using GD sources for liquid and gas analyses. In this article, first, the principles of operation of the GD plasma are reviewed, with an emphasis on how those principles relate to optical spectroscopy and mass spectrometry. Basic applications of the GD techniques are considered next. These include bulk analysis, surface analysis, and the analysis of solution and gaseous samples. The requirements necessary to obtain optical information are addressed following the analytical applications. This article focuses on the instrumentation needed to make optical measurements using the GD as an atomization/excitation source. Finally, mass spectrometric instrumentation and interfaces are addressed as they pertain to the use of a GD plasma as an ion source. GD sources provide analytically useful gas-phase species from solid samples. These sources can be interfaced with a variety of spectroscopic and spectrometric instruments for both quantitative and qualitative analyses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2006-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up)
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @ Serial 4282
Permanent link to this record
 

 
Author Wang, W.; Patil, B.; Heijkers, S.; Hessel, V.; Bogaerts, A.
Title Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling Type A1 Journal Article
Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 10 Issue 10 Pages 2110-2110
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO2 yields and the corresponding energy efficiency for NOx formation for different N2/O2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NOx. The results indicate that vibrational excitation of N2 in the gliding arc contributes significantly to activating the N2 molecules, and leads to an energy efficient way of NOx production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NOx formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale Haber–Bosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which lowtemperature plasma technology might play an important role.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2017-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links (up)
Impact Factor 7.226 Times cited Open Access Not_Open_Access
Notes This research was supported by the European Marie Skłodowska- Curie Individual Fellowship “GlidArc” within Horizon 2020 (Grant No.657304), by the FWO project (grant G.0383.16 N) and by the EU project MAPSYN: Microwave, Acoustic and Plasma assisted SYNthesis, under the grant agreement no. CP-IP 309376 of the European Community’s Seventh Framework Program. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 7.226
Call Number PLASMANT @ plasmant @ Serial 4573
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Jardali, F.; Bogaerts, A.; Lefferts, L.
Title Correction: From the Birkeland–Eyde process towards energy-efficient plasma-based NOXsynthesis: a techno-economic analysis Type A1 Journal Article
Year 2023 Publication Energy & Environmental Science Abbreviated Journal Energy Environ. Sci.
Volume 16 Issue 12 Pages 6170-6173
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Correction for ‘From the Birkeland–Eyde process towards energy-efficient plasma-based NO<sub><italic>X</italic></sub>synthesis: a techno-economic analysis’ by Kevin H. R. Rouwenhorst<italic>et al.</italic>,<italic>Energy Environ. Sci.</italic>, 2021,<bold>14</bold>, 2520–2534, https://doi.org/10.1039/D0EE03763J.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1754-5692 ISBN Additional Links (up)
Impact Factor 32.5 Times cited Open Access
Notes H2020 European Research Council; Horizon 2020, 810182 ; Ministerie van Economische Zaken en Klimaat; Approved Most recent IF: 32.5; 2023 IF: 29.518
Call Number PLASMANT @ plasmant @ Serial 8980
Permanent link to this record
 

 
Author Gorbanev, Y.; Fedirchyk, I.; Bogaerts, A.
Title Plasma catalysis in ammonia production and decomposition: Use it, or lose it? Type A1 Journal Article
Year 2024 Publication Current Opinion in Green and Sustainable Chemistry Abbreviated Journal Current Opinion in Green and Sustainable Chemistry
Volume 47 Issue Pages 100916
Keywords A1 Journal Article; Plasma Nitrogen fixation Ammonia Plasma catalysis Production and decomposition; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The combination of plasma with catalysis for the synthesis and decomposition of NH3 is an attractive route to the production of carbon-neutral fertiliser and energy carriers and its conversion into H2. Recent years have seen fast developments in the field of plasma-catalytic NH3 life cycle. This work summarises the most recent advances in plasma-catalytic and related NH3-focussed processes, identifies some of the most important discoveries, and addresses plausible strategies for future developments in plasma-based NH3 technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2452-2236 ISBN Additional Links (up)
Impact Factor 9.3 Times cited Open Access
Notes The work was supported by the Fund for Scientific Research (FWO) Flanders Bioeconomy project (grant G0G2322N) funded by the European Union-NextGe- nerationEU, the HyPACT project funded by the Belgian Energy Transition Fund, and the MSCA4Ukraine project 1233629 funded by the European Union. Approved Most recent IF: 9.3; 2024 IF: NA
Call Number PLASMANT @ plasmant @ Serial 9117
Permanent link to this record
 

 
Author Cai, Y.; Mei, D.; Chen, Y.; Bogaerts, A.; Tu, X.
Title Machine learning-driven optimization of plasma-catalytic dry reforming of methane Type A1 Journal Article
Year 2024 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry
Volume 96 Issue Pages 153-163
Keywords A1 Journal Article; Plasma catalysis Machine learning Process optimization Dry reforming of methane Syngas production; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract This study investigates the dry reformation of methane (DRM) over Ni/Al2O3 catalysts in a dielectric barrier discharge (DBD) non-thermal plasma reactor. A novel hybrid machine learning (ML) model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data. To address the non-linear and complex nature of the plasma-catalytic DRM process, the hybrid ML model integrates three well-established algorithms: regression trees, support vector regression, and artificial neural networks. A genetic algorithm (GA) is then used to optimize the hyperparameters of each algorithm within the hybrid ML model. The ML model achieved excellent agreement with the experimental data, demonstrating its efficacy in accurately predicting and optimizing the DRM process. The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance. We found that the optimal discharge power (20 W), CO2/CH4 molar ratio (1.5), and Ni loading (7.8 wt%) resulted in the maximum energy yield at a total flow rate of 51 mL/min. Furthermore, we investigated the relative significance of each operating parameter on the performance of the plasmacatalytic DRM process. The results show that the total flow rate had the greatest influence on the conversion, with a significance exceeding 35% for each output, while the Ni loading had the least impact on the overall reaction performance. This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets, enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-4956 ISBN Additional Links (up)
Impact Factor 13.1 Times cited Open Access
Notes This project received funding from the European Union’s Hori- zon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 813393. Approved Most recent IF: 13.1; 2024 IF: 2.594
Call Number PLASMANT @ plasmant @ Serial 9124
Permanent link to this record
 

 
Author Xu, W.; Buelens, L.C.; Galvita, V.V.; Bogaerts, A.; Meynen, V.
Title Improving the performance of gliding arc plasma-catalytic dry reforming via a new post-plasma tubular catalyst bed Type A1 Journal Article
Year 2024 Publication Journal of CO2 Utilization Abbreviated Journal Journal of CO2 Utilization
Volume 83 Issue Pages 102820
Keywords A1 Journal Article; Dry reforming Gliding arc plasma Plasma catalytic DRM Ni-based mixed oxide Post-plasma catalysis; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract A combination of a gliding arc plasmatron (GAP) reactor and a newly designed tubular catalyst bed (N-bed) was applied to investigate the post-plasma catalytic (PPC) effect for dry reforming of methane (DRM). As comparison, a traditional plasma catalyst bed (T-bed) was also utilized. The post-plasma catalytic effect of a Ni-based mixed oxide (Ni/MO) catalyst with a thermal catalytic performance of 77% CO2 and 86% CH4 conversion at 700 ℃ was studied. Although applying the T-bed had little effect on plasma based CO2 and CH4 conversion, an increase in selectivity to H2 was obtained with a maximum value of 89% at a distance of 2 cm. However, even when only α-Al2O3 packing material was used in the N-bed configuration, compared to the plasma alone and the T-bed, an increase of the CO2 and CH4 conversion from 53% and 53% to 69% and 69% to 83% was achieved. Addition of the Ni/MO catalyst further enhanced the DRM reaction, resulting in conversions of 79% for CO2 and 91% for

CH4. Hence, although no insulation nor external heating was applied to the N-bed post plasma, it provides a slightly better conversion than the thermal catalytic performance with the same catalyst, while being fully electrically driven. In addition, an enhanced CO selectivity to 96% was obtained and the energy cost was reduced from ~ 6 kJ/L (plasma alone) to 4.3 kJ/L. To our knowledge, it is the first time that a post-plasma catalytic system achieves this excellent catalytic performance for DRM without extra external heating or insulation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links (up)
Impact Factor 7.7 Times cited Open Access
Notes Wencong Xu, Vladimir V. Galvita, Annemie Bogaerts, and Vera Meynen would like to acknowledge the VLAIO Catalisti Moonshot project D2M and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). Lukas C. Buelens acknowledges financial support from the Fund for Scientific Research Flanders (FWO Flanders) through a postdoctoral fellowship grant 12E5623N. Vladimir V. Galvita also acknowledges a personal grant from the Research Fund of Ghent University (BOF; 01N16319). Approved Most recent IF: 7.7; 2024 IF: 4.292
Call Number PLASMANT @ plasmant @ Serial 9131
Permanent link to this record
 

 
Author Maerivoet, S.; Tsonev, I.; Slaets, J.; Reniers, F.; Bogaerts, A.
Title Coupled multi-dimensional modelling of warm plasmas: Application and validation for an atmospheric pressure glow discharge in CO2/CH4/O2 Type A1 Journal Article
Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal
Volume 492 Issue Pages 152006
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract To support experimental research into gas conversion by warm plasmas, models should be developed to explain the experimental observations. These models need to describe all physical and chemical plasma properties in a coupled way. In this paper, we present a modelling approach to solve the complete set of assumed relevant equations, including gas flow, heat balance and species transport, coupled with a rather extensive chemistry set, consisting of 21 species, obtained by reduction of a more detailed chemistry set, consisting of 41 species. We apply this model to study the combined CO2 and CH4 conversion in the presence of O2, in a direct current atmospheric pressure glow discharge. Our model can predict the experimental trends, and can explain why higher O2 fractions result in higher CH4 conversion, namely due to the higher gas temperature, rather than just by additional chemical reactions. Indeed, our model predicts that when more O2 is added, the energy required to reach any set temperature (i.e., the enthalpy) drops, allowing the system to reach higher temperatures with similar amounts of energy. This is in turn related to the higher H2O fraction and lower H2 fraction formed in the plasma, as demonstrated by our model. Altogether, our new self-consistent model can capture the main physics and chemistry occurring in this warm plasma, which is an important step towards predictive modelling for plasma-based gas conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links (up)
Impact Factor 15.1 Times cited Open Access
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID G0I1822N; EOS ID 40007511) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 810182–SCOPE ERC Synergy project, and grant agreement No. 101081162–PREPARE ERC Proof of Concept project). computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. Approved Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @ Serial 9132
Permanent link to this record
 

 
Author Bogaerts, A.; van Straaten, M.; Gijbels, R.
Title Mathematical modelling of an analytical glow discharge Type H3 Book chapter
Year 1995 Publication Abbreviated Journal
Volume Issue Pages 82-90
Keywords H3 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher KD Marketing Services Place of Publication Milton Keynes Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:10257 Serial 1957
Permanent link to this record
 

 
Author Baguer, N.; Bogaerts, A.; Gijbels, R.
Title A self-consistent mathematical model of a hollow cathode glow discharge Type P1 Proceeding
Year 1999 Publication Abbreviated Journal
Volume Issue Pages 157-158
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Polish Academyn of Sciences, Space Research Centre Place of Publication Warsaw Editor
Language Wos 000165992500079 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:103981 Serial 2972
Permanent link to this record
 

 
Author Herrebout, D.; Bogaerts, A.; Goedheer, W.; Dekempeneer, E.; Gijbels, R.
Title Simulation of plasma processes in plasma assisted CVD reactors Type P1 Proceeding
Year 1999 Publication Abbreviated Journal
Volume Issue Pages 213-214
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000165992500107 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:104309 Serial 3013
Permanent link to this record
 

 
Author Neyts, E.; Mao, M.; Eckert, M.; Bogaerts, A.
Title Modeling aspects of plasma-enhanced chemical vapor deposition of carbon-based materials Type H1 Book chapter
Year 2012 Publication Abbreviated Journal
Volume Issue Pages 245-290
Keywords H1 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher CRC Press Place of Publication Boca Raton, Fla Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4398-6676-4 Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:107843 Serial 2109
Permanent link to this record
 

 
Author Gijbels, R.; van Straaten, M.; Bogaerts, A.
Title Mass spectrometric analysis of inorganic solids: GDMS and other methods Type A1 Journal article
Year 1995 Publication Advances in mass spectrometry Abbreviated Journal
Volume 13 Issue Pages 241-256
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1995BG78P00013 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0568-000x ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 12 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12267 Serial 1952
Permanent link to this record
 

 
Author Bogaerts, A.; Khosravian, N.; Van der Paal, J.; Verlackt, C.C.W.; Yusupov, M.; Kamaraj, B.; Neyts, E.C.
Title Multi-level molecular modelling for plasma medicine Type A1 Journal article
Year 2016 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 49 Issue 5 Pages 054002-54019
Keywords A1 Journal article; Plasma, laser ablation and surface modeling – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links (up) UA library record
Impact Factor 2.588 Times cited Open Access
Notes Approved Most recent IF: 2.588
Call Number UA @ lucian @ c:irua:129798 Serial 4467
Permanent link to this record
 

 
Author Bogaerts, A.; Aghaei, M.
Title What modeling reveals about the properties of an inductively coupled plasma Type A1 Journal article
Year 2016 Publication Spectroscopy Abbreviated Journal Spectroscopy-Us
Volume 31 Issue 1 Pages 52-59
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract To get better performance from inductively coupled plasma (ICP)-based methods, it is informative to study the properties of the ICP under different conditions. Annemie Bogaerts and Maryam Aghaei at the University of Antwerp, Belgium, are using computational modeling to examine how various properties of the ICP, such as gas flow path lines and velocity, temperature changes, and ionization effects, are affected by numerous factors, such as the gas flow rates of injector and auxiliary gas, applied power, and even the very presence of a mass spectrometry (MS) sampler. They have also applied their models to study particle transport through the ICP. Using their developed model, it is now possible to predict optimum conditions for specific analyses. Bogaerts and Aghaei spoke to us about this work.
Address
Corporate Author Thesis
Publisher Place of Publication Springfield, Or. Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0887-6703 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 0.466 Times cited Open Access
Notes Approved Most recent IF: 0.466
Call Number UA @ lucian @ c:irua:131601 Serial 4278
Permanent link to this record
 

 
Author Bogaerts, A.
Title Glow discharge optical spectroscopy and mass spectrometry Type H1 Book chapter
Year 2016 Publication Abbreviated Journal
Volume Issue Pages 1-31
Keywords H1 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Atomic Spectroscopy Optical (atomic absorption spectroscopy, AAS; atomic emission spectroscopy, AES; atomic fluorescence spectroscopy, AFS; and optogalvanic spectroscopy) and mass spectrometric (magnetic sector, quadrupole mass analyzer, QMA; quadrupole ion trap, QIT; Fourier transform ion cyclotron resonance, FTICR; and time-of-flight, TOF) instrumentation are well suited for coupling to the glow discharge (GD). The GD is a relatively simple device. A potential gradient (500–1500 V) is applied between an anode and a cathode. In most cases, the sample is also the cathode. A noble gas (mostly Ar) is introduced into the discharge region before power initiation. When a potential is applied, electrons are accelerated toward the anode. As these electrons accelerate, they collide with gas atoms. A fraction of these collisions are of sufficient energy to remove an electron from a support gas atom, forming an ion. These ions are, in turn, accelerated toward the cathode. These ions impinge on the surface of the cathode, sputtering sample atoms from the surface. Sputtered atoms that do not redeposit on the surface diffuse into the excitation/ionization regions of the plasma where they can undergo excitation and/or ionization via a number of collisional processes, and the photons or ions created in this way can be detected with optical emission spectroscopy or mass spectrometry. GD sources offer a number of distinct advantages that make them well suited for specific types of analyses. These sources afford direct analysis of solid samples, thus minimizing the sample preparation required for analysis. The nature of the plasma also provides mutually exclusive atomization and excitation processes that help to minimize the matrix effects that plague so many other elemental techniques. In recent years, there is also increasing interest for using GD sources for liquid and gas analyses. In this article, first, the principles of operation of the GD plasma are reviewed, with an emphasis on how those principles relate to optical spectroscopy and mass spectrometry. Basic applications of the GD techniques are considered next. These include bulk analysis, surface analysis, and the analysis of solution and gaseous samples. The requirements necessary to obtain optical information are addressed following the analytical applications. This article focuses on the instrumentation needed to make optical measurements using the GD as an atomization/excitation source. Finally, mass spectrometric instrumentation and interfaces are addressed as they pertain to the use of a GD plasma as an ion source. GD sources provide analytically useful gas-phase species from solid samples. These sources can be interfaced with a variety of spectroscopic and spectrometric instruments for both quantitative and qualitative analyses.
Address
Corporate Author Thesis
Publisher John Wiley & Sons Place of Publication Chichester Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-470-02731-8 Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:132064 Serial 4187
Permanent link to this record
 

 
Author Berthelot, A.; Kolev, S.; Bogaerts, A.
Title Different pressure regimes of a surface-wave discharge in argon : a modelling investigation Type P2 Proceeding
Year 2015 Publication Abbreviated Journal
Volume Issue Pages 57-62
Keywords P2 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher UCO Press Place of Publication Cordoba Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-9927-187-3 Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:135094 Serial 4160
Permanent link to this record
 

 
Author Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kozák, T.
Title Computer modeling of a microwave discharge used for CO2 splitting Type P2 Proceeding
Year 2015 Publication Abbreviated Journal
Volume Issue Pages 41-50
Keywords P2 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher UCO Press Place of Publication Cordoba Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-9927-187-3 Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:135096 Serial 4154
Permanent link to this record
 

 
Author Bogaerts, A.; Snoeckx, R.; Berthelot, A.; Heijkers, S.; Wang, W.; Sun, S.; Van Laer, K.; Ramakers, M.; Michielsen, I.; Uytdenhouwen, Y.; Meynen, V.; Cool, P.
Title Plasma based co2 conversion: a combined modeling and experimental study Type P1 Proceeding
Year 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In recent years there is increased interest in plasma-based CO2 conversion. Several plasma setups are being investigated for this purpose, but the most commonly used ones are a dielectric barrier discharge (DBD), a microwave (MW) plasma and a gliding arc (GA) reactor. In this proceedings paper, we will show results from our experiments in a (packed bed) DBD reactor and in a vortex-flow GA reactor, as well as from our model calculations for the detailed plasma chemistry in a DBD, MW and GA, for pure CO2 as well as mixtures of CO2 with N-2, CH4 and H2O.
Address
Corporate Author Thesis
Publisher Masarykova univ Place of Publication Brno Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-80-210-8318-9 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:141553 Serial 4526
Permanent link to this record
 

 
Author Belov, I.; Paulussen, S.; Bogaerts, A.
Title Analysis and comparison of the co2 and co dielectric barrier discharge solid products Type P1 Proceeding
Year 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The CO and CO2 Dielectric Barrier Discharges (DBD) and their solid products were analyzed keeping similar energy input regimes. Gas chromatography analysis revealed the presence of CO2, CO and O-2 mixture in the exhaust of the CO2 DBD, while no O-2 was found when CO was used as a feed gas. It was shown that the C-2 Swan lines observed with optical emission spectroscopy were distinct in the CO plasma while they were not observed in the CO2 emission spectrum. Also the solid products of the plasmas exhibited remarkable differences. Nanoparticles with a diameter between10 and 300 nm, composed of Fe, O and C (Fe: O: C similar to 13: 50: 30) were produced by the CO2 DBD, while microscopic dendrite-like carbon structure (C: O similar to 73: 27) were formed in the CO plasma. The growth rate in the CO2 and CO DBDs was evaluated to be on the level of 0.15 mg/min and 15 mg/min, respectively. The difference of the CO and CO2 discharges and their products might be attributed to the oxygen content in the latter (6.4 mol.% O-2 in the exhaust) and subsequent etching of the carbonaceous film.
Address
Corporate Author Thesis
Publisher Masarykova univ Place of Publication Brno Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-80-210-8318-9 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:141554 Serial 4516
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Mathematical description of a direct current glow discharge in argon Type A1 Journal article
Year 1996 Publication Fresenius' journal of analytical chemistry Abbreviated Journal
Volume 355 Issue Pages 853-857
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos A1996UY97500019 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0937-0633 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 12 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:16240 Serial 1955
Permanent link to this record
 

 
Author Gijbels, R.; Bogaerts, A.
Title Recent trends in solids mass spectrometry, with special emphasis on glow discharge mass spectrometry Type P3 Proceeding
Year 1996 Publication Abbreviated Journal
Volume Issue Pages 71-86
Keywords P3 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Perfect Prints Place of Publication Thane Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:16244 Serial 2842
Permanent link to this record
 

 
Author Bogaerts, A.
Title Mathematical modeling of a direct current glow discharge in argon Type Doctoral thesis
Year 1996 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Universitaire Instelling Antwerpen Place of Publication Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:16275 Serial 1956
Permanent link to this record
 

 
Author Bogaerts, A.; Wagner, E.; Smith, B.W.; Winefordner, J.D.; Pollmann, D.; Harrison, W.W.; Gijbels, R.
Title Three-dimensional density profiles of sputtered atoms and ions in a direct current glow discharge: experimental study and comparison with calculations Type A1 Journal article
Year 1997 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 52 Issue 2 Pages 205-218
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos A1997WR97300006 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; 0038-6987 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 46 Open Access
Notes Approved Most recent IF: 3.241; 1997 IF: 2.448
Call Number UA @ lucian @ c:irua:19594 Serial 3648
Permanent link to this record
 

 
Author Bogaerts, A.; Guenard, R.D.; Smith, B.W.; Winefordner, J.D.; Harrison, W.W.; Gijbels, R.
Title Three-dimensional density profiles of the argon metastable atoms in a direct current glow discharge: experimental study and comparison with calculations Type A1 Journal article
Year 1997 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 52 Issue 2 Pages 219-229
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos A1997WR97300007 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; 0038-6987 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 36 Open Access
Notes Approved Most recent IF: 3.241; 1997 IF: 2.448
Call Number UA @ lucian @ c:irua:19598 Serial 3649
Permanent link to this record
 

 
Author Gijbels, R.; Bogaerts, A.
Title Modeling of glow discharge ion sources for mass spectrometry: potentials and limitations Type A3 Journal article
Year 1997 Publication Spectroscopy Abbreviated Journal
Volume 9 Issue 2 Pages 8-14
Keywords A3 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:19600 Serial 2123
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Comparison of argon and neon as discharge gases in a direct current glow discharge: a mathematical simulation Type A1 Journal article
Year 1997 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 52 Issue 5 Pages 553-566
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos A1997XG74100002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; 0038-6987 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 13 Open Access
Notes Approved Most recent IF: 3.241; 1997 IF: 2.448
Call Number UA @ lucian @ c:irua:19601 Serial 426
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Calculation of crater profiles on a flat cathode in a direct current glow discharge, and comparison with experiment Type A1 Journal article
Year 1997 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 52 Issue 6 Pages 765-778
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos A1997XH34900009 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; 0038-6987 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 42 Open Access
Notes Approved Most recent IF: 3.241; 1997 IF: 2.448
Call Number UA @ lucian @ c:irua:19603 Serial 265
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Computer simulation of an analytical direct current glow discharge in argon: influence of the cell dimensions on the plasma quantities Type A1 Journal article
Year 1997 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 12 Issue Pages 751-759
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1997XM00600009 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 21 Open Access
Notes Approved Most recent IF: 3.379; 1997 IF: 3.595
Call Number UA @ lucian @ c:irua:19605 Serial 464
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Plasma models Type H3 Book chapter
Year 1997 Publication Abbreviated Journal
Volume Issue Pages 176-191
Keywords H3 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Wiley Place of Publication New York Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:19610 Serial 2638
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Modeling of glow discharges: what can we learn from it? Type A3 Journal article
Year 1997 Publication Analytical chemistry A-pages Abbreviated Journal
Volume 69 Issue Pages 719-727
Keywords A3 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:19611 Serial 2126
Permanent link to this record