|   | 
Details
   web
Records
Author Kremer, S.P.B.; Kirschhock, C.E.A.; Aerts, A.; Villani, K.; Martens, J.A.; Lebedev, O.I.; Van Tendeloo, G.
Title Tiling silicalite-1 nanoslabs into 3D mosaics Type A1 Journal article
Year 2003 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 15 Issue 20 Pages 1705-1707
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor (down)
Language Wos 000186425600003 Publication Date 2003-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 82 Open Access
Notes Approved Most recent IF: 19.791; 2003 IF: NA
Call Number UA @ lucian @ c:irua:54810 Serial 3662
Permanent link to this record
 

 
Author Idrissi, H.; Wang, B.; Colla, M.S.; Raskin, J.P.; Schryvers, D.; Pardoen, T.
Title Ultrahigh strain hardening in thin palladium films with nanoscale twins Type A1 Journal article
Year 2011 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 23 Issue 18 Pages 2119-2122
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline Pd thin films containing coherent growth twin boundaries are deformed using on-chip nanomechanical testing. A large work-hardening capacity is measured. The origin of the observed behavior is unraveled using transmission electron microscopy and shows specific dislocations and twin boundaries interactions. The results indicate the potential for large strength and ductility balance enhancement in Pd films, as needed in membranes for H technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor (down)
Language Wos 000291164200013 Publication Date 2011-04-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 57 Open Access
Notes Iap Approved Most recent IF: 19.791; 2011 IF: 13.877
Call Number UA @ lucian @ c:irua:90103 Serial 3794
Permanent link to this record
 

 
Author Yang, S.; Kang, J.; Yue, Q.; Coey, J.M.D.; Jiang, C.
Title Defect-modulated transistors and gas-enhanced photodetectors on ReS2 nanosheets Type A1 Journal article
Year 2016 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume 3 Issue 3 Pages 1500707
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor (down)
Language Wos 000373149400011 Publication Date 2016-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.279 Times cited 22 Open Access
Notes ; This work was supported by the National Natural Science Foundations of China (NSFC) under Grant No.51331001. The authors thank S. Tongay for giving them the ReS<INF>2</INF> crystals. ; Approved Most recent IF: 4.279
Call Number UA @ lucian @ c:irua:133232 Serial 4159
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Warwick, M.E.A.; Toniato, E.; Gombac, V.; Sada, C.; Turner, S.; Van Tendeloo, G.; Fornasiero, P.;
Title Iron-titanium oxide nanocomposites functionalized with gold particles : from design to solar hydrogen production Type A1 Journal article
Year 2016 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume 3 Issue 3 Pages 1600348
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hematite-titania nanocomposites, eventually functionalized with gold nanoparticles (NPs), are designed and developed by a plasma-assisted strategy, consisting in: (i) the plasma enhanced-chemical vapor deposition of -Fe2O3 on fluorine-doped tin oxide substrates; the radio frequency-sputtering of (ii) TiO2, and (iii) Au in controlled amounts. A detailed chemicophysical characterization, carried out through a multitechnique approach, reveals that the target materials are composed by interwoven -Fe2O3 dendritic structures, possessing a high porosity and active area. TiO2 introduction results in the formation of an ultrathin titania layer uniformly covering Fe2O3, whereas Au sputtering yields a homogeneous dispersion of low-sized gold NPs. Due to the intimate and tailored interaction between the single constituents and their optical properties, the resulting composite materials are successfully exploited for solar-driven applications. In particular, promising photocatalytic performances in H-2 production by reforming of water-ethanol solutions under simulated solar illumination are obtained. The related insights, presented and discussed in this work, can yield useful guidelines to boost the performances of nanostructured photocatalysts for energy-related applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (down)
Language Wos 000383783200021 Publication Date 2016-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.279 Times cited 15 Open Access
Notes Approved Most recent IF: 4.279
Call Number UA @ lucian @ c:irua:137154 Serial 4389
Permanent link to this record
 

 
Author Li, L.; Liao, Z.; Gauquelin, N.; Minh Duc Nguyen; Hueting, R.J.E.; Gravesteijn, D.J.; Lobato, I.; Houwman, E.P.; Lazar, S.; Verbeeck, J.; Koster, G.; Rijnders, G.
Title Epitaxial stress-free growth of high crystallinity ferroelectric PbZr0.52Ti0.48O3 on GaN/AlGaN/Si(111) substrate Type A1 Journal article
Year 2018 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume 5 Issue 2 Pages 1700921
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Due to its physical properties gallium-nitride (GaN) is gaining a lot of attention as an emerging semiconductor material in the field of high-power and high-frequency electronics applications. Therefore, the improvement in the performance and/or perhaps even extension in functionality of GaN based devices would be highly desirable. The integration of ferroelectric materials such as lead-zirconate-titanate (PbZrxTi1-xO3) with GaN has a strong potential to offer such an improvement. However, the large lattice mismatch between PZT and GaN makes the epitaxial growth of Pb(Zr1-xTix)O-3 on GaN a formidable challenge. This work discusses a novel strain relaxation mechanism observed when MgO is used as a buffer layer, with thicknesses down to a single unit cell, inducing epitaxial growth of high crystallinity Pb(Zr0.52Ti0.48)O-3 (PZT) thin films. The epitaxial PZT films exhibit good ferroelectric properties, showing great promise for future GaN device applications.'));
Address
Corporate Author Thesis
Publisher Place of Publication Editor (down)
Language Wos 000423173800005 Publication Date 2017-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.279 Times cited 15 Open Access Not_Open_Access
Notes ; L.L., Z.L.L., and N.G. contributed equally to this work. L.L. acknowledges financial support from Nano Next NL (Grant no. 7B 04). The authors acknowledge NXP for providing the GaN/AlGaN/Si (111) wafer. N.G. acknowledges funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and J.V. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) project 42/FA070100/6088 “nieuwe eigenschappen in complexe Oxides.” N.G. acknowledges the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no. 280432) which partly funded this study. ; Approved Most recent IF: 4.279
Call Number UA @ lucian @ c:irua:148427UA @ admin @ c:irua:148427 Serial 4872
Permanent link to this record
 

 
Author Wu, S.-M.; Liu, X.-L.; Lian, X.-L.; Tian, G.; Janiak, C.; Zhang, Y.-X.; Lu, Y.; Yu, H.-Z.; Hu, J.; Wei, H.; Zhao, H.; Chang, G.-G.; Van Tendeloo, G.; Wang, L.-Y.; Yang, X.-Y.; Su, B.-L.
Title Homojunction of oxygen and titanium vacancies and its interfacial n-p effect Type A1 Journal article
Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 30 Issue 32 Pages 1802173
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The homojunction of oxygen/metal vacancies and its interfacial n-p effect on the physiochemical properties are rarely reported. Interfacial n-p homojunctions of TiO2 are fabricated by directly decorating interfacial p-type titanium-defected TiO2 around n-type oxygen-defected TiO2 nanocrystals in amorphous-anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D H-1 TQ-SQ MAS NMR are present. Amorphous-anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n-type to p-type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new homojunction of oxygen and titanium vacancies concept, characteristics, and mechanism are proposed at an atomic-/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor (down)
Language Wos 000440813300022 Publication Date 2018-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 39 Open Access Not_Open_Access
Notes ; This work was supported by National Key R&D Program of China (2017YFC1103800), National SFC (U1662134, U1663225, 51472190, 51611530672, 21711530705, 51503166, 21706199), ISTCP (2015DFE52870), PCSIRT (IRT_15R52), HPNSF (2016CFA033, 2017CFB487), and SKLPPC (PPC2016007). ; Approved Most recent IF: 19.791
Call Number UA @ lucian @ c:irua:153106 Serial 5105
Permanent link to this record
 

 
Author Ren, Z.; Wu, M.; Chen, X.; Li, W.; Li, M.; Wang, F.; Tian, H.; Chen, J.; Xie, Y.; Mai, J.; Li, X.; Lu, X.; Lu, Y.; Zhang, H.; Van Tendeloo, G.; Zhang, Z.; Han, G.
Title Electrostatic force-driven oxide heteroepitaxy for interface control Type A1 Journal article
Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 30 Issue 38 Pages 1707017
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Oxide heterostructure interfaces create a platform to induce intriguing electric and magnetic functionalities for possible future devices. A general approach to control growth and interface structure of oxide heterostructures will offer a great opportunity for understanding and manipulating the functionalities. Here, it is reported that an electrostatic force, originating from a polar ferroelectric surface, can be used to drive oxide heteroepitaxy, giving rise to an atomically sharp and coherent interface by using a low-temperature solution method. These heterostructures adopt a fascinating selective growth, and show a saturation thickness and the reconstructed interface with concentrated charges accumulation. The ferroelectric polarization screening, developing from a solid-liquid interface to the heterostructure interface, is decisive for the specific growth. At the interface, a charge transfer and accumulation take place for electrical compensation. The facile approach presented here can be extremely useful for controlling oxide heteroepitaxy and producing intriguing interface functionality via electrostatic engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor (down)
Language Wos 000444671900002 Publication Date 2018-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 4 Open Access Not_Open_Access
Notes ; Z.H.R., M.J.W., and X.C. contributed equally to this work. This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51232006, 51472218, 11474249, 61574123, 11374009, and 11234011), the National 973 Program of China (Grant No. 2015CB654901), National Young 1000 Talents Program of China, the Fundamental Research Funds for the Central Universities (Grant No. 2017FZA4008), and the 111 Project under Grant No. B16042. J.M. and X.L. gratefully thank the beam time and technical supports provided by 23A SWAXS beamline at NSRRC, Hsinchu. ; Approved Most recent IF: 19.791
Call Number UA @ lucian @ c:irua:153628 Serial 5098
Permanent link to this record
 

 
Author Kim, Y.; Che, F.; Jo, J.W.; Choi, J.; de Arquer, F.P.G.; Voznyy, O.; Sun, B.; Kim, J.; Choi, M.-J.; Quintero-Bermudez, R.; Fan, F.; Tan, C.S.; Bladt, E.; Walters, G.; Proppe, A.H.; Zou, C.; Yuan, H.; Bals, S.; Hofkens, J.; Roeffaers, M.B.J.; Hoogland, S.; Sargent, E.H.
Title A Facet-Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics Type A1 Journal article
Year 2019 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 31 Issue 31 Pages 1805580
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Colloidal nanocrystals combine size- and facet-dependent properties with solution processing. They offer thus a compelling suite of materials for technological applications. Their size- and facet-tunable features are studied in synthesis; however, to exploit their features in optoelectronic devices, it will be essential to translate control over size and facets from the colloid all the way to the film. Larger-diameter colloidal quantum dots (CQDs) offer the attractive possibility of harvesting infrared (IR) solar energy beyond absorption of silicon photovoltaics. These CQDs exhibit facets (nonpolar (100)) undisplayed in small-diameter CQDs; and the materials chemistry of smaller nanocrystals fails consequently to translate to materials for the short-wavelength IR regime. A new colloidal management strategy targeting the passivation of both (100) and (111) facets is demonstrated using distinct choices of cations and anions. The approach leads to narrow-bandgap CQDs with impressive colloidal stability and photoluminescence quantum yield. Photophysical studies confirm a reduction both in Stokes shift (approximate to 47 meV) and Urbach tail (approximate to 29 meV). This approach provides a approximate to 50% increase in the power conversion efficiency of IR photovoltaics compared to controls, and a approximate to 70% external quantum efficiency at their excitonic peak.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (down)
Language Wos 000465600000001 Publication Date 2019-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 74 Open Access OpenAccess
Notes ; Y.K., F.C., J.W.J., and J.C. contributed equally. This work was supported by King Abdullah University of Science and Technology (KAUST, Office of Sponsored Research (OSR), Award No. OSR-2017-CPF-3325) and Ontario Research Fund-Research Excellence program (ORF7-Ministry of Research and Innovation, Ontario Research Fund-Research Excellence Round 7). E.B. gratefully acknowledges financial support by the Research Foundation-Flanders (FWO Vlaanderen). Y.K. received financial support from the DGIST R&D Programs of the Ministry of Science, ICT & Future Planning of Korea (18-ET-01). M.B.J.R. and J.H. acknowledge financial support from the Research Foundation-Flanders (FWO, grants nr ZW15_09-GOH6316 and G.098319N) and the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04). H.Y. acknowledges the Research Foundation-Flanders (FWO) for a postdoctoral fellowship. The authors thank L. Levina, R. Wolowiec, D. Kopilovic, and E. Palmiano for their technical help over the course of this research. ; Approved Most recent IF: 19.791
Call Number UA @ admin @ c:irua:160392 Serial 5239
Permanent link to this record
 

 
Author Gan, Y.; Christensen, D.V.; Zhang, Y.; Zhang, H.; Krishnan, D.; Zhong, Z.; Niu, W.; Carrad, D.J.; Norrman, K.; von Soosten, M.; Jespersen, T.S.; Shen, B.; Gauquelin, N.; Verbeeck, J.; Sun, J.; Pryds, N.; Chen, Y.
Title Diluted oxide interfaces with tunable ground states Type A1 Journal article
Year 2019 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 31 Issue 10 Pages 1805970
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The metallic interface between two oxide insulators, such as LaAlO3/SrTiO3 (LAO/STO), provides new opportunities for electronics and spintronics. However, due to the presence of multiple orbital populations, tailoring the interfacial properties such as the ground state and metal-insulator transitions remains challenging. Here, an unforeseen tunability of the phase diagram of LAO/STO is reported by alloying LAO with a ferromagnetic LaMnO3 insulator without forming lattice disorder and at the same time without changing the polarity of the system. By increasing the Mn-doping level, x, of LaAl1-xMnxO3/STO (0 <= x <= 1), the interface undergoes a Lifshitz transition at x = 0.225 across a critical carrier density of n(c) = 2.8 x 10(13) cm(-2), where a peak T-SC approximate to 255 mK of superconducting transition temperature is observed. Moreover, the LaAl1-xMnxO3 turns ferromagnetic at x >= 0.25. Remarkably, at x = 0.3, where the metallic interface is populated by only d(xy) electrons and just before it becomes insulating, a same device with both signatures of superconductivity and clear anomalous Hall effect (7.6 x 10(12) cm(-2) < n(s) <= 1.1 x 10(13) cm(-2)) is achieved reproducibly. This provides a unique and effective way to tailor oxide interfaces for designing on-demand electronic and spintronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (down)
Language Wos 000460329300004 Publication Date 2019-01-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 31 Open Access Not_Open_Access
Notes ; The authors thank the technical help from J. Geyti. J.R.S. acknowledges the support of the National Basic Research of China (2016YFA0300701, 2018YFA0305704), the National Natural Science Foundation of China (11520101002), and the Key Program of the Chinese Academy of Sciences. N.G., D.K., and J.V. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp, Belgium. ; Approved Most recent IF: 19.791
Call Number UA @ admin @ c:irua:158553 Serial 5245
Permanent link to this record
 

 
Author Wang, F.; Gao, T.; Zhang, Q.; Hu, Z.-Y.; Jin, B.; Li, L.; Zhou, X.; Li, H.; Van Tendeloo, G.; Zhai, T.
Title Liquid-alloy-assisted growth of 2D ternaryGa2In4S9 toward high-performance UV photodetection Type A1 Journal article
Year 2019 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 31 Issue 2 Pages 1806306
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract 2D ternary systems provide another degree of freedom of tuning physical properties through stoichiometry variation. However, the controllable growth of 2D ternary materials remains a huge challenge that hinders their practical applications. Here, for the first time, by using a gallium/indium liquid alloy as the precursor, the synthesis of high-quality 2D ternary Ga2In4S9 flakes of only a few atomic layers thick (approximate to 2.4 nm for the thinnest samples) through chemical vapor deposition is realized. Their UV-light-sensing applications are explored systematically. Photodetectors based on the Ga2In4S9 flakes display outstanding UV detection ability (R-lambda = 111.9 A W-1, external quantum efficiency = 3.85 x 10(4)%, and D* = 2.25 x 10(11) Jones@360 nm) with a fast response speed (tau(ring) approximate to 40 ms and tau(decay) approximate to 50 ms). In addition, Ga2In4S9-based phototransistors exhibit a responsivity of approximate to 10(4) A W-1@360 nm above the critical back-gate bias of approximate to 0 V. The use of the liquid alloy for synthesizing ultrathin 2D Ga2In4S9 nanostructures may offer great opportunities for designing novel 2D optoelectronic materials to achieve optimal device performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (down)
Language Wos 000455111100013 Publication Date 2018-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 29 Open Access Not_Open_Access
Notes ; F.K.W., T.G, and Q.Z. contributed equally to this work. The authors acknowledge the support from National Nature Science Foundation of China (21825103, 51727809, 51472097, 91622117, and 51872069), National Basic Research Program of China (2015CB932600), and the Fundamental Research Funds for the Central Universities (2017KFKJXX007, 2015ZDTD038, 2017III055, and 2018III039GX). The authors thank the Analytical and Testing Centre of Huazhong University of Science and Technology. ; Approved Most recent IF: 19.791
Call Number UA @ admin @ c:irua:156756 Serial 5254
Permanent link to this record
 

 
Author Vishwakarma, M.; Kumar, M.; Hendrickx, M.; Hadermann, J.; Singh, A.P.; Batra, Y.; Mehta, B.R.
Title Enhancing the hydrogen evolution properties of kesterite absorber by Si-doping in the surface of CZTS thin film Type A1 Journal article
Year 2021 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume Issue Pages 2002124
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this work, the effects of Si-doping in Cu2ZnSnS4 are examined computationally and experimentally. The density functional theory calculations show that an increasing concentration of Si (from x = 0 to x = 1) yields a band gap rise due to shifting of the conduction band minimum towards higher energy states in the Cu2Zn(Sn1-xSix)S-4. CZTSiS thin film prepared by co-sputtering process shows Cu2Zn(Sn1-xSix)S-4 (Si-rich) and Cu2ZnSnS4 (S-rich) kesterite phases on the surface and in the bulk of the sample, respectively. A significant change in surface electronic properties is observed in CZTSiS thin film. Si-doping in CZTS inverts the band bending at grain-boundaries from downward to upward and the Fermi level of CZTSiS shifts upward. Further, the coating of the CdS and ZnO layer improves the photocurrent to approximate to 5.57 mA cm(-2) at -0.41 V-RHE in the CZTSiS/CdS/ZnO sample, which is 2.39 times higher than that of pure CZTS. The flat band potential increases from CZTS approximate to 0.43 V-RHE to CZTSiS/CdS/ZnO approximate to 1.31 V-RHE indicating the faster carrier separation process at the electrode-electrolyte interface in the latter sample. CdS/ZnO layers over CZTSiS significantly reduce the charge transfer resistance at the semiconductor-electrolyte interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (down)
Language Wos 000635804900001 Publication Date 2021-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.279 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.279
Call Number UA @ admin @ c:irua:177688 Serial 6780
Permanent link to this record
 

 
Author Lu, W.; Cui, W.; Zhao, W.; Lin, W.; Liu, C.; Van Tendeloo, G.; Sang, X.; Zhao, W.; Zhang, Q.
Title In situ atomistic insight into magnetic metal diffusion across Bi0.5Sb1.5Te3 quintuple layers Type A1 Journal article
Year 2022 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume Issue Pages 2102161
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Diffusion and occupancy of magnetic atoms in van der Waals (VDW) layered materials have significant impact on applications such as energy storage, thermoelectrics, catalysis, and topological phenomena. However, due to the weak VDW bonding, most research focus on in-plane diffusion within the VDW gap, while out-of-plane diffusion has rarely been reported. Here, to investigate out-of-plane diffusion in VDW-layered Bi2Te3-based alloys, a Ni/Bi0.5Sb1.5Te3 heterointerface is synthesized by depositing magnetic Ni metal on a mechanically exfoliated Bi0.5Sb1.5Te3 (0001) substrate. Diffusion of Ni atoms across the Bi0.5Sb1.5Te3 quintuple layers is directly observed at elevated temperatures using spherical-aberration-corrected scanning transmission electron microscopy (STEM). Density functional theory calculations demonstrate that the diffusion energy barrier of Ni atoms is only 0.31-0.45 eV when they diffuse through Te-3(Bi, Sb)(3) octahedron chains. Atomic-resolution in situ STEM reveals that the distortion of the Te-3(Bi, Sb)(3) octahedron, induced by the Ni occupancy, drives the formation of coherent NiM (M = Bi, Sb, Te) at the heterointerfaces. This work can lead to new strategies to design novel thermoelectric and topological materials by introducing magnetic dopants to VDW-layered materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (down)
Language Wos 000751742300001 Publication Date 2022-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 5.4
Call Number UA @ admin @ c:irua:186421 Serial 6960
Permanent link to this record
 

 
Author Jenkinson, K.; Liz-Marzan, L.M.; Bals, S.
Title Multimode electron tomography sheds light on synthesis, structure, and properties of complex metal-based nanoparticles Type A1 Journal article
Year 2022 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 34 Issue 36 Pages 2110394-19
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electron tomography has become a cornerstone technique for the visualization of nanoparticle morphology in three dimensions. However, to obtain in-depth information about a nanoparticle beyond surface faceting and morphology, different electron microscopy signals must be combined. The most notable examples of these combined signals include annular dark-field scanning transmission electron microscopy (ADF-STEM) with different collection angles and the combination of ADF-STEM with energy-dispersive X-ray or electron energy loss spectroscopies. Here, the experimental and computational development of various multimode tomography techniques in connection to the fundamental materials science challenges that multimode tomography has been instrumental to overcoming are summarized. Although the techniques can be applied to a wide variety of compositions, the study is restricted to metal and metal oxide nanoparticles for the sake of simplicity. Current challenges and future directions of multimode tomography are additionally discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (down)
Language Wos 000831332200001 Publication Date 2022-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.4 Times cited 10 Open Access OpenAccess
Notes The authors thank the financial support of the European Research Council (ERC-AdG-2017 787510, ERC-CoG-2019 815128) and of the European Commission (EUSMI, Grant 731019 and ESTEEM3, Grant 823717). Approved Most recent IF: 29.4
Call Number UA @ admin @ c:irua:189616 Serial 7087
Permanent link to this record
 

 
Author Han, S.; Tang, C.S.; Li, L.; Liu, Y.; Liu, H.; Gou, J.; Wu, J.; Zhou, D.; Yang, P.; Diao, C.; Ji, J.; Bao, J.; Zhang, L.; Zhao, M.; Milošević, M.V.; Guo, Y.; Tian, L.; Breese, M.B.H.; Cao, G.; Cai, C.; Wee, A.T.S.; Yin, X.
Title Orbital-hybridization-driven charge density wave transition in CsV₃Sb₅ kagome superconductor Type A1 Journal article
Year 2022 Publication Advanced materials Abbreviated Journal Adv Mater
Volume Issue Pages 1-9
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Owing to its inherent non-trivial geometry, the unique structural motif of the recently discovered kagome topological superconductor AV(3)Sb(5) (A = K, Rb, Cs) is an ideal host of diverse topologically non-trivial phenomena, including giant anomalous Hall conductivity, topological charge order, charge density wave (CDW), and unconventional superconductivity. Despite possessing a normal-state CDW order in the form of topological chiral charge order and diverse superconducting gaps structures, it remains unclear how fundamental atomic-level properties and many-body effects including Fermi surface nesting, electron-phonon coupling, and orbital hybridization contribute to these symmetry-breaking phenomena. Here, the direct participation of the V3d-Sb5p orbital hybridization in mediating the CDW phase transition in CsV3Sb5 is reported. The combination of temperature-dependent X-ray absorption and first-principles studies clearly indicates the inverse Star-of-David structure as the preferred reconstruction in the low-temperature CDW phase. The results highlight the critical role that Sb orbitals play and establish orbital hybridization as the direct mediator of the CDW states and structural transition dynamics in kagome unconventional superconductors. This is a significant step toward the fundamental understanding and control of the emerging correlated phases from the kagome lattice through the orbital interactions and provides promising approaches to novel regimes in unconventional orders and topology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (down)
Language Wos 000903664200001 Publication Date 2022-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.4 Times cited 1 Open Access OpenAccess
Notes Approved Most recent IF: 29.4
Call Number UA @ admin @ c:irua:193500 Serial 7328
Permanent link to this record