|   | 
Details
   web
Records
Author Gholampour, N.; Chaemchuen, S.; Hu, Z.-Y.; Mousavi, B.; Van Tendeloo, G.; Verpoort, F.
Title Simultaneous creation of metal nanoparticles in metal organic frameworks via spray drying technique Type A1 Journal article
Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 322 Issue Pages 702-709
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In-situ fabrication of palladium(0) nanoparticles inside zeolitic imidazolate frameworks (ZIF-8) has been established via one-step facile spray-dry technique. Crystal structures and morphologies of the Pd@ZIF-8 samples are investigated by powder XRD, TEM, SAED, STEM, and EDX techniques. High angle annular dark field scanning transmission electron microscopy (HAAD-STEM) and 3D tomographic analysis confirm the presence of palladium nanoparticles inside the ZIF-8 structure. The porosity, surface area and N-2 physisorption properties are evaluated for Pd@ZIF-8 with various palladium contents. Furthermore, Pd@ZIF-8 samples are effectively applied as heterogeneous catalysts in alkenes hydrogenation. This straightforward method is able to speed up the synthesis of encapsulation of metal nanoparticles in metal organic frameworks. (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000401594200069 Publication Date 2017-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 0300-9467 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 14 Open Access (up) OpenAccess
Notes ; The authors would like to express their deep accolade to “State Key Laboratory of Advanced Technology for Materials Synthesis and Processing” for financial support. S.C. appreciates of the National Natural Science Foundation of China (303-41150231), the Fundamental Research Funds for the Central Universities (WUT: 2016IVA092) and the Research Fund for the Doctoral Program of Higher Education of China (471-40120222). N.G. thanks the Chinese Scholarship Council (CSC) for her Ph.D. study grant 2013GXZ985. Z.-Y. H and G. V.T. acknowledge the support from the EC Framework 7 program ESTEEM2 (Reference 312483). ; Approved Most recent IF: 6.216
Call Number UA @ lucian @ c:irua:144152 Serial 4686
Permanent link to this record
 

 
Author Ren, X.-N.; Hu, Z.-Y.; Jin, J.; Wu, L.; Wang, C.; Liu, J.; Liu, F.; Wu, M.; Li, Y.; Van Tendeloo, G.; Su, B.-L.
Title Cocatalyzing Pt/PtO phase-junction nanodots on hierarchically porous TiO2 for highly enhanced photocatalytic hydrogen production Type A1 Journal article
Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 9 Issue 35 Pages 29687-29698
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Phase-junctions. between a cocatalyst and its semiconductor host are quite effective to enhance the photo catalytic activity and are widely studied, while reports on the phase-juncted cocatalyst are still rare. In this work, we report the deposition of the Pt/PtO phase-juncted nanodots as cocatalyst via NaOH modification of an interconnected meso-macroporous TiO2 network with high surface area and inner-particle mesopores to enhance the performance of photocatalytic H-2 production. Our results show that NaOH modification can largely influence Pt/PtO phase-juncted nanodot formation and dispersity. Compared to the TiO2 nano particles, the hierarchically meso-macroporous TiO2 network containing 0.18 wt % Pt/PtO phase-juneted cocatalyst demonstrates a highest photocatalytic H-2 rate of 13 mmol g(-1) h(-1) under simulated solar light, and possesses a stable cycling activity without obvious decrease after five cycles. Such high H-2 production performance can be attributed to both the phase-juncted Pt/PtO providing more active sites while PtO suppresses the undesirable hydrogen back reaction, and the special hierarchically porous TiO2 network with inner-particle mesopores presenting short diffusion path lengths for photogenerated electrons and enhanced light harvesting efficiency. This work suggests that Pt/PtO phase-juncted cocatalyst on hierarchically porous TiO2 nanostructures is a promising strategy for advanced photocatalytic H-2 production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000410597500032 Publication Date 2017-08-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 18 Open Access (up) OpenAccess
Notes ; B.L.S. acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents”. Y.L. acknowledges the Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is supported by the National Key Research and Development Program of China (2016YFA0202602), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), International Science & Technology Cooperation Program of China (2015DFE52870), National Natural Science Foundation of China (51502225), and the Fundamental Research Funds for the Central Universities (WUT: 2016III029). Z.Y.H. and G.V.T. acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). ; Approved Most recent IF: 7.504
Call Number UA @ lucian @ c:irua:146765 Serial 4779
Permanent link to this record
 

 
Author Zhao, H.; Hu, Z.; Liu, J.; Li, Y.; Wu, M.; Van Tendeloo, G.; Su, B.-L.
Title Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO 2 -Au-CdS photonic crystals Type A1 Journal article
Year 2018 Publication Nano energy Abbreviated Journal Nano Energy
Volume 47 Issue Pages 266-274
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The slow photon effect, a structural effect of photonic crystal photocatalyst, is very efficient in the enhancement of photocatalytic reactions. However, slow photons in powdered photonic crystal photocatalyst have rarely been discussed because they are usually randomly oriented when the photocatalytic reaction happens in solution under constant stirring. In this work, for the first time we design a gradient ternary TiO2-Au-CdS photonic crystal based on three-dimensionally ordered macroporous (3DOM) TiO2 as skeleton, Au as electron transfer medium and CdS as active material for photocatalytic H2 production under visible-light. As a result, this gradient ternary photocatalyst is favorable to simultaneously enhance light absorption, extend the light responsive region and reduce the recombination rate of the charge carriers. In particular, we found that slow photons at blue-edge exhibit much higher photocatalytic activity than that at red-edge. The photonic crystal photocatalyst with a macropore size of 250 nm exhibits the highest visible-light H2 production rate of 3.50 mmolh⁻¹g⁻¹ due to the slow photon energy at the blue-edge to significantly enhance the incident photons utilization. This work verifies that slow photons at the blue-edge can largely enhance light harvesting and sheds a light on designing the powdered photonic crystal photocatalyst to promote the photocatalytic H2 production via slow photon effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430057000027 Publication Date 2018-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.343 Times cited 33 Open Access (up) OpenAccess
Notes B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents”. Y. Li acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is financially supported the National KeyR&D Program of China (2016YFA0202602), National Natural Science Foundation of China (U1663225, 51502225), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), Hubei Provincial Natural Science Foundation (2015CFB516), International Science &Technology Cooperation Program of China (2015DFE52870) and the Fundamental Research Funds for the Central Universities (WUT: 2016III029). Approved Most recent IF: 12.343
Call Number EMAT @ lucian @c:irua:150721 Serial 4924
Permanent link to this record
 

 
Author Das, S.; Rata, A.D.; Maznichenko, I., V; Agrestini, I.S.; Pippel, E.; Gauquelin, N.; Verbeeck, J.; Chen, K.; Valvidares, S.M.; Vasili, H.B.; Herrero-Martin, J.; Pellegrin, E.; Nenkov, K.; Herklotz, A.; Ernst, A.; Mertig, I.; Hu, Z.; Doerr, K.
Title Low-field switching of noncollinear spin texture at La0.7Sr0.3MnO3-SrRuO3interfaces Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 2 Pages 024416
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Interfaces of ferroic oxides can show complex magnetic textures which have strong impact on spintronics devices. This has been demonstrated recently for interfaces with insulating antiferromagnets such as BiFeO3. Here, noncollinear spin textures which can be switched in very low magnetic field are reported for conducting ferromagnetic bilayers of La0.7Sr0.3MnO3-SrRuO3 (LSMO-SRO). The magnetic order and switching are fundamentally different for bilayers coherently grown in reversed stacking sequence. The SRO top layer forms a persistent exchange spring which is antiferromagnetically coupled to LSMO and drives switching in low fields of a few milliteslas. Density functional theory reveals the crucial impact of the interface termination on the strength of Mn-Ru exchange coupling across the interface. The observation of an exchange spring agrees with ultrastrong coupling for the MnO2/SrO termination. Our results demonstrate low-field switching of noncollinear spin textures at an interface between conducting oxides, opening a pathway for manipulating and utilizing electron transport phenomena in controlled spin textures at oxide interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455821400005 Publication Date 2019-01-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access (up) OpenAccess
Notes ; The research in Halle was supported by Deutsche Forschungsgemeinschaft (DFG), SFB 762 Functional Oxide Interfaces (Projects No. A9 and No. B1). K.C. benefited from support of the DFG (Project 600575). Discussions with M. Trassin, M. Ziese, H. M. Christen, E.-J. Guo, F. Grcondciel, M. Bibes, and H. N. Lee are gratefully acknowledged. N. G. and J. V. acknowledge funding under the GOA project “Solarpaint” of the University of Antwerp. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:156717 Serial 5255
Permanent link to this record
 

 
Author Yu, W.-B.; Hu, Z.-Y.; Jin, J.; Yi, M.; Yan, M.; Li, Y.; Wang, H.-E.; Gao, H.-X.; Mai, L.-Q.; Hasan, T.; Xu, B.-X.; Peng, D.-L.; Van Tendeloo, G.; Su, B.-L.
Title Unprecedented and highly stable lithium storage capacity of (001) faceted nanosheet-constructed hierarchically porous TiO₂/rGO hybrid architecture for high-performance Li-ion batteries Type A1 Journal article
Year 2020 Publication National Science Review Abbreviated Journal Natl Sci Rev
Volume 7 Issue 6 Pages 1046-1058
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Active crystal facets can generate special properties for various applications. Herein, we report a (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture with unprecedented and highly stable lithium storage performance. Density functional theory calculations show that the (001) faceted TiO2 nanosheets enable enhanced reaction kinetics by reinforcing their contact with the electrolyte and shortening the path length of Li+ diffusion and insertion-extraction. The reduced graphene oxide (rGO) nanosheets in this TiO2/rGO hybrid largely improve charge transport, while the porous hierarchy at different length scales favors continuous electrolyte permeation and accommodates volume change. This hierarchically porous TiO2/rGO hybrid anode material demonstrates an excellent reversible capacity of 250 mAh g(-1) at 1 C (1 C = 335 mA g(-1)) at a voltage window of 1.0-3.0 V. Even after 1000 cycles at 5 C and 500 cycles at 10 C, the anode retains exceptional and stable capacities of 176 and 160 mAh g(-1), respectively. Moreover, the formed Li2Ti2O4 nanodots facilitate reversed Li+ insertion-extraction during the cycling process. The above results indicate the best performance of TiO2-based materials as anodes for lithium-ion batteries reported in the literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000544175300013 Publication Date 2020-02-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-5138 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 20.6 Times cited 3 Open Access (up) OpenAccess
Notes ; This work was supported by the National Key R&D Program of China (2016YFA0202602 and 2016YFA0202603), the National Natural Science Foundation of China (U1663225) and Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52). ; Approved Most recent IF: 20.6; 2020 IF: 8.843
Call Number UA @ admin @ c:irua:170776 Serial 6648
Permanent link to this record
 

 
Author Zhao, H.; Li, C.-F.; Yong, X.; Kumar, P.; Palma, B.; Hu, Z.-Y.; Van Tendeloo, G.; Siahrostami, S.; Larter, S.; Zheng, D.; Wang, S.; Chen, Z.; Kibria, M.G.; Hu, J.
Title Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn1-xCdxS homojunction Type A1 Journal article
Year 2021 Publication iScience Abbreviated Journal
Volume 24 Issue 2 Pages 102109
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Photocatalytic transformation of biomass into value-added chemicals coupled with co-production of hydrogen provides an explicit route to trap sunlight into the chemical bonds. Here, we demonstrate a rational design of Zn1-xCdxS solidsolution homojunction photocatalyst with a pseudo-periodic cubic zinc blende (ZB) and hexagonal wurtzite (WZ) structure for efficient glucose conversion to simultaneously produce hydrogen and lactic acid. The optimized Zn0.6Cd0.4S catalyst consists of a twinning superlattice, has a tuned bandgap, and displays excellent efficiency with respect to hydrogen generation (690 +/- 27.6 mu mol.h(-1).g(cat).(-1)), glucose conversion (similar to 90%), and lactic acid selectivity (similar to 87%) without any co-catalyst under visible light irradiation. The periodic WZ/ZB phase in twinning superlattice facilitates better charge separation, while superoxide radical (center dot O-2(-)) and photogenerated holes drive the glucose transformation and water oxidation reactions, respectively. This work demonstrates that rational photocatalyst design could realize an efficient and concomitant production of hydrogen and value-added chemicals from glucose photocatalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000621266700080 Publication Date 2021-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2589-0042 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access (up) OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:176744 Serial 6720
Permanent link to this record
 

 
Author Sun, M.-H.; Zhou, J.; Hu, Z.-Y.; Chen, L.-H.; Li, L.-Y.; Wang, Y.-D.; Xie, Z.-K.; Turner, S.; Van Tendeloo, G.; Hasan, T.; Su, B.-L.
Title Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency Type A1 Journal article
Year 2020 Publication Matter Abbreviated Journal
Volume 3 Issue 4 Pages 1226-1245
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract As a size- and shape-selective catalyst, zeolites are widely used in petroleum and fine-chemicals processing. However, their small micropores severely hinder molecular diffusion and are sensitive to coke formation. Hierarchically porous zeolite single crystals with fully interconnected, ordered, and tunable multimodal porosity at macro-, meso-, and microlength scale, like in leaves, offer the ideal solution. However, their synthesis remains highly challenging. Here, we report a versatile confined zeolite crystallization process to achieve these superior properties. Such zeolite single crystals lead to significantly improved mass transport properties by shortening the diffusion length while maintaining shape-selective properties, endowing them with a high efficiency of zeolite crystals, enhanced catalytic activities and lifetime, highly reduced coke formation, and reduced deactivation rate in bulky-molecule reactions and methanol-to-olefins process. Their industrial utilization can lead to the design of innovative and intensified reactors and processes with highly enhanced efficiency and minimum energy consumption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000581132600021 Publication Date 2020-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access (up) OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:174329 Serial 6727
Permanent link to this record
 

 
Author Li, C.-F.; Zhao, K.; Liao, X.; Hu, Z.-Y.; Zhang, L.; Zhao, Y.; Mu, S.; Li, Y.; Li, Y.; Van Tendeloo, G.; Sun, C.
Title Interface cation migration kinetics induced oxygen release heterogeneity in layered lithium cathodes Type A1 Journal article
Year 2021 Publication Energy Storage Materials Abbreviated Journal
Volume 36 Issue Pages 115-122
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The irreversible release of the lattice oxygen in layered cathodes is one of the major degradation mechanisms of lithium ion batteries, which accounts for a number of battery failures including the voltage/capacity fade, loss of cation ions and detachment of the primary particles, etc. Oxygen release is generally attributed to the stepwise thermodynamic controlled phase transitions from the layered to spinel and rock salt phases. Here, we report a strong kinetic effect from the mobility of cation ions, whose migration barrier can be significantly modulated by the phase epitaxy at the degrading interface. It ends up with a clear oxygen release heterogeneity and completely different reaction pathways between the thin and thick areas, as well as the interparticle valence boundaries, both of which widely exist in the mainstream cathode design with the secondary agglomerates. This work unveils the origin of the heterogenous oxygen release in the layered cathodes. It also sheds light on the rational design of cathode materials with enhanced oxygen stability by suppressing the cation migration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000620584300009 Publication Date 2020-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access (up) OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:176654 Serial 6730
Permanent link to this record
 

 
Author Cui, W.; Hu, Z.-Y.; Unocic, R.R.; Van Tendeloo, G.; Sang, X.
Title Atomic defects, functional groups and properties in MXenes Type A1 Journal article
Year 2021 Publication Chinese Chemical Letters Abbreviated Journal Chinese Chem Lett
Volume 32 Issue 1 Pages 339-344
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract MXenes, a new family of functional two-dimensional (2D) materials, have shown great potential for an extensive variety of applications within the last decade. Atomic defects and functional groups in MXenes are known to have a tremendous influence on the functional properties. In this review, we focus on recent progress in the characterization of atomic defects and functional group chemistry in MXenes, and how to control them to directly influence various properties (e.g., electron transport, Li' adsorption, hydrogen evolution reaction (HER) activity, and magnetism) of 2D MXenes materials. Dynamic structural transformations such as oxidation and growth induced by atomic defects in MXenes are also discussed. The review thus provides perspectives on property optimization through atomic defect engineering, and bottom-up synthesis methods based on defect-assisted homoepitaxial growth of MXenes. (C) 2020 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000618541800057 Publication Date 2020-04-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1001-8417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.932 Times cited Open Access (up) OpenAccess
Notes Approved Most recent IF: 1.932
Call Number UA @ admin @ c:irua:177568 Serial 6777
Permanent link to this record
 

 
Author Yang, M.; Orekhov, A.; Hu, Z.-Y.; Feng, M.; Jin, S.; Sha, G.; Li, K.; Samaee, V.; Song, M.; Du, Y.; Van Tendeloo, G.; Schryvers, D.
Title Shearing and rotation of β'' and β' precipitates in an Al-Mg-Si alloy under tensile deformation : in-situ and ex-situ studies Type A1 Journal article
Year 2021 Publication Acta Materialia Abbreviated Journal Acta Mater
Volume 220 Issue Pages 117310
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The interaction between dislocations and nano-precipitates during deformation directly influences hardening response of precipitation-strengthening metals such as Al-Mg-Si alloys. However, how coherent and semi-coherent nano-precipitates accommodate external deformation applied to an Al alloy remains to be elucidated. In-situ tensile experiments in a transmission electron microscope (TEM) were conducted to study the dynamic process of dislocations cutting through coherent needle-like beta '' precipitates with diameters of 3 similar to 8 nm. Comprehensive investigations using in-situ, ex-situ TEM and atom probe tomography uncovered that beta '' precipitates were firstly sheared into small fragments, and then the rotation of the fragments, via sliding along precipitate/matrix interfaces, destroyed their initially coherent interface with the Al matrix. In contrast, semi-coherent beta' precipitates with sizes similar to beta '' were more difficult to be fragmented and accumulation of dislocations at the interface increased interface misfit between beta' and the Al matrix. Consequently, beta' precipitates could basically maintain their needle-like shape after the tensile deformation. This research gains new insights into the interaction between nano-precipitates and dislocations. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000705535300005 Publication Date 2021-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited Open Access (up) OpenAccess
Notes Approved Most recent IF: 5.301
Call Number UA @ admin @ c:irua:182528 Serial 6884
Permanent link to this record
 

 
Author Wang, L.; Li, Y.; Yang, X.-Y.; Zhang, B.-B.; Ninane, N.; Busscher, H.J.; Hu, Z.-Y.; Delneuville, C.; Jiang, N.; Xie, H.; Van Tendeloo, G.; Hasan, T.; Su, B.-L.
Title Single-cell yolk-shell nanoencapsulation for long-term viability with size-dependent permeability and molecular recognition Type A1 Journal article
Year 2021 Publication National Science Review Abbreviated Journal Natl Sci Rev
Volume 8 Issue 4 Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Like nanomaterials, bacteria have been unknowingly used for centuries. They hold significant economic potential for fuel and medicinal compound production. Their full exploitation, however, is impeded by low biological activity and stability in industrial reactors. Though cellular encapsulation addresses these limitations, cell survival is usually compromised due to shell-to-cell contacts and low permeability. Here, we report ordered packing of silica nanocolloids with organized, uniform and tunable nanoporosities for single cyanobacterium nanoencapsulation using protamine as an electrostatic template. A space between the capsule shell and the cell is created by controlled internalization of protamine, resulting in a highly ordered porous shell-void-cell structure formation. These unique yolk-shell nano structures provide long-term cell viability with superior photosynthetic activities and resistance in harsh environments. In addition, engineering the colloidal packing allows tunable shell-pore diameter for size-dependent permeability and introduction of new functionalities for specific molecular recognition. Our strategy could significantly enhance the activity and stability of cyanobacteria for various nanobiotechnological applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000651827200002 Publication Date 2020-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-5138 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.843 Times cited Open Access (up) OpenAccess
Notes Approved Most recent IF: 8.843
Call Number UA @ admin @ c:irua:179085 Serial 6885
Permanent link to this record
 

 
Author Li, C.-F.; Chen, L.-D.; Wu, L.; Liu, Y.; Hu, Z.-Y.; Cui, W.-J.; Dong, W.-D.; Liu, X.; Yu, W.-B.; Li, Y.; Van Tendeloo, G.; Su, B.-L.
Title Directly revealing the structure-property correlation in Na+-doped cathode materials Type A1 Journal article
Year 2023 Publication Applied surface science Abbreviated Journal
Volume 612 Issue Pages 155810-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The introduction of Na+ is considered as an effective way to improve the performance of Ni-rich cathode materials. However, the direct structure-property correlation for Na+ doped NCM-based cathode materials remain unclear, due to the difficulty of local and accurate structural characterization for light elements such as Li and Na. Moreover, there is the complexity of the modeling for the whole Li ion battery (LIB) system. To tackle the above-mentioned issues, we prepared Na+-doped LiNi0.6Co0.2Mn0.2O2 (Na-NCM622) material. The crystal structure change and the lattice distortion with picometers precision of the Na+-doped material is revealed by Cs-corrected scanning transmission electron microscopy (STEM). Density functional theory (DFT) and the recently proposed electrochemical model, i.e., modified Planck-Nernst-Poisson coupled Frumkin-Butler-Volmer (MPNP-FBV), has been applied to reveal correlations between the activation energy and the charge transfer resistance at multiscale. It is shown that Na+ doping can reduce the activation energy barrier from. G = 1.10 eV to 1.05 eV, resulting in a reduction of the interfacial resistance from 297 O to 134 Omega. Consequently, the Na-NCM622 cathode delivers a superior capacity retention of 90.8 % (159 mAh.g(-1)) after 100 cycles compared to the pristine NCM622 (67.5 %, 108 mAh.g(-1)). Our results demonstrate that the kinetics of Li+ diffusion and the electrochemical reaction can be enhanced by Na+ doping the cathode material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000892940300001 Publication Date 2022-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited Open Access (up) OpenAccess
Notes Approved Most recent IF: 6.7; 2023 IF: 3.387
Call Number UA @ admin @ c:irua:192758 Serial 7296
Permanent link to this record
 

 
Author Liu, J.; Wang, C.; Yu, W.; Zhao, H.; Hu, Z.-Y.; Liu, F.; Hasan, T.; Li, Y.; Van Tendeloo, G.; Li, C.; Su, B.-L.
Title Bioinspired noncyclic transfer pathway electron donors for unprecedented hydrogen production Type A1 Journal article
Year 2023 Publication CCS chemistry Abbreviated Journal
Volume 5 Issue 6 Pages 1470-1482
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron donors are widely exploited in visible-light photocatalytic hydrogen production. As a typical electron donor pair and often the first choice for hydrogen production, the sodium sulfide-sodium sulfite pair has been extensively used. However, the resultant thiosulfate ions consume the photogenerated electrons to form an undesirable pseudocyclic electron transfer pathway during the photocatalytic process, strongly limiting the solar energy conversion efficiency. Here, we report novel and bioinspired electron donor pairs offering a noncyclic electron transfer pathway that provides more electrons without the consumption of the photogenerated electrons. Compared to the state-of-the-art electron donor pair Na2S-Na2SO3, these novel Na2S-NaH2PO2 and Na2S-NaNO2 electron donor pairs enable an unprecedented enhancement of up to 370% and 140% for average photocatalytic H-2 production over commercial CdS nanoparticles, and they are versatile for a large series of photocatalysts for visible-light water splitting. The discovery of these novel electron donor pairs can lead to a revolution in photocatalysis and is of great significance for industrial visible-light-driven H-2 production. [GRAPHICS] .
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001037091900008 Publication Date 2022-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access (up) OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198409 Serial 8837
Permanent link to this record
 

 
Author Yuan, Y.; Wu, F.-J.; Xiao, S.-T.; Wang, Y.-T.; Yin, Z.-W.; Van Tendeloo, G.; Chang, G.-G.; Tian, G.; Hu, Z.-Y.; Wu, S.-M.; Yang, X.-Y.
Title Hierarchical zeolites containing embedded Cd0.2Zn0.8S as a photocatalyst for hydrogen production from seawater Type A1 Journal article
Year 2023 Publication Chemical communications Abbreviated Journal
Volume 59 Issue 47 Pages 7275-7278
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Uncovering an efficient and stable photocatalytic system for seawater splitting is a highly desirable but challenging goal. Herein, Cd0.2Zn0.8S@Silicalite-1 (CZS@S-1) composites, in which CZS is embedded in the hierarchical zeolite S-1, were prepared and show remarkably high activity, stability and salt resistance in seawater.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000994367000001 Publication Date 2023-05-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record
Impact Factor 4.9 Times cited Open Access (up) OpenAccess
Notes Approved Most recent IF: 4.9; 2023 IF: 6.319
Call Number UA @ admin @ c:irua:197291 Serial 8878
Permanent link to this record