toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mallick, S.; Zhang, W.; Batuk, M.; Gibbs, A.S.; Hadermann, J.; Halasyamani, P.S.; Hayward, M.A. url  doi
openurl 
  Title The crystal and defect structures of polar KBiNb2O7 Type A1 Journal article
  Year 2022 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 51 Issue 5 Pages 1866-1873  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract KBiNb2O7 was prepared from RbBiNb2O7 by a sequence of cation exchange reactions which first convert RbBiNb2O7 to LiBiNb2O7, before KBiNb2O7 is formed by a further K-for-Li cation exchange. A combination of neutron, synchrotron X-ray and electron diffraction data reveal that KBiNb2O7 adopts a polar, layered, perovskite structure (space group A11m) in which the BiNb2O7 layers are stacked in a (0, ½, z) arrangement, with the K+ cations located in half of the available 10-coordinate interlayer cation sites. The inversion symmetry of the phase is broken by a large displacement of the Bi3+ cations parallel to the y-axis. HAADF-STEM images reveal that KBiNb2O7 exhibits frequent stacking faults which convert the (0. ½, z) layer stacking to (½, 0, z) stacking and vice versa, essentially switching the x- and y-axes of the material. By fitting the complex diffraction peak shape of the SXRD data collected from KBiNb2O7 it is estimated that each layer has approximately an ~11% chance of being defective – a high level which is attributed to the lack of cooperative NbO6 tilting in the material, which limits the lattice strain associated with each fault.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000741540300001 Publication Date 2022-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access (up) OpenAccess  
  Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford/Warwick Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE18786). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC (RB 2000148). SM thanks Somerville College for an Oxford Ryniker Lloyd scholarship. PSH and WZ thank the National Science Foundation (DMR-2002319) for support. Approved Most recent IF: 4  
  Call Number EMAT @ emat @c:irua:185504 Serial 6951  
Permanent link to this record
 

 
Author Missen, O.P.; Mills, S.J.; Canossa, S.; Hadermann, J.; Nenert, G.; Weil, M.; Libowitzky, E.; Housley, R.M.; Artner, W.; Kampf, A.R.; Rumsey, M.S.; Spratt, J.; Momma, K.; Dunstan, M.A. url  doi
openurl 
  Title Polytypism in mcalpineite : a study of natural and synthetic Cu₃TeO₆ Type A1 Journal article
  Year 2022 Publication Acta Crystallographica. Section B: Structural Science, Crystal Engineering and Materials (Online) Abbreviated Journal Acta Crystallogr B  
  Volume 78 Issue 1 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synthetic and naturally occurring forms of tricopper orthotellurate, (Cu3TeO6)-Te-II-O-IV (the mineral mcalpineite) have been investigated by 3D electron diffraction (3D ED), X-ray powder diffraction (XRPD), Raman and infrared (IR) spectroscopic measurements. As a result of the diffraction analyses, (Cu3TeO6)-Te-II-O-IV is shown to occur in two polytypes. The higher-symmetric (Cu3TeO6)-Te-II-O-IV-1C polytype is cubic, space group 1a (3) over bar, with a = 9.537 (1) angstrom and V = 867.4 (3) angstrom(3) as reported in previous studies. The 1C polytype is a well characterized structure consisting of alternating layers of (CuO6)-O-II octahedra and both (CuO6)-O-II and (TeO6)-O-VI octahedra in a patchwork arrangement. The structure of the lower-symmetric orthorhombic (Cu3TeO6)-Te-II-O-IV-2O polytype was determined for the first time in this study by 3D ED and verified by Rietveld refinement. The 2O polytype crystallizes in space group Pcca, with a = 9.745 (3) angstrom, b = 9.749 (2) angstrom, c = 9.771 (2) angstrom and V = 928.3 (4) angstrom(3) . High-precision XRPD data were also collected on (Cu3TeO6)-Te-II-O-IV-2O to verify the lower-symmetric structure by performing a Rietveld refinement. The resultant structure is identical to that determined by 3D ED, with unit-cell parameters a = 9.56157 (19) angstrom, b = 9.55853 (11) angstrom, c = 9.62891 (15) angstrom and V = 880.03 (2) angstrom(3) . The lower symmetry of the 2O polytype is a consequence of a different cation ordering arrangement, which involves the movement of every second (CuO6)-O-II and (TeO6)-O-VI octahedral layer by (1/4, 1/4, 0), leading to an offset of (TeO6)-O-VI and (CuO6)-O-II octahedra in every second layer giving an ABAB* stacking arrangement. Syntheses of (Cu3TeO6)-Te-II-O-IV showed that low-temperature (473 K) hydrothermal conditions generally produce the 2O polytype. XRPD measurements in combination with Raman spectroscopic analysis showed that most natural mcalpineite is the orthorhombic 2O polytype. Both XRPD and Raman spectroscopy measurements may be used to differentiate between the two polytypes of (Cu3TeO6)-Te-II-O-IV. In Raman spectroscopy, (Cu3TeO6)-Te-II-O-IV-1C has a single strong band around 730 cm(-1), whereas (Cu3TeO6)-Te-II-O-IV-2O shows a broad double maximum with bands centred around 692 and 742 cm(-1).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000752899700003 Publication Date 2022-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-5206 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.9 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 1.9  
  Call Number UA @ admin @ c:irua:186529 Serial 6962  
Permanent link to this record
 

 
Author Quintelier, M.; Perkisas, T.; Poppe, R.; Batuk, M.; Hendrickx, M.; Hadermann, J. url  doi
openurl 
  Title Determination of spinel content in cycled Li1.2Ni0.13Mn0.54Co0.13O2 using three-dimensional electron diffraction and precession electron diffraction Type A1 Journal article
  Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue 11 Pages 1989-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Electron microscopy for materials research (EMAT)  
  Abstract Among lithium battery cathode materials, Li1.2Ni0.13Mn0.54Co0.13O2 (LR-NMC) has a high theoretical capacity, but suffers from voltage and capacity fade during cycling. This is partially ascribed to transition metal cation migration, which involves the local transformation of the honeycomb layered structure to spinel-like nano-domains. Determination of the honeycomb layered/spinel phase ratio from powder X-ray diffraction data is hindered by the nanoscale of the functional material and the domains, diverse types of twinning, stacking faults, and the possible presence of the rock salt phase. Determining the phase ratio from transmission electron microscopy imaging can only be done for thin regions near the surfaces of the crystals, and the intense beam that is needed for imaging induces the same transformation to spinel as cycling does. In this article, it is demonstrated that the low electron dose sufficient for electron diffraction allows the collection of data without inducing a phase transformation. Using calculated electron diffraction patterns, we demonstrate that it is possible to determine the volume ratio of the different phases in the particles using a pair-wise comparison of the intensities of the reflections. Using this method, the volume ratio of spinel structure to honeycomb layered structure is determined for a submicron sized crystal from experimental three-dimensional electron diffraction (3D ED) and precession electron diffraction (PED) data. Both twinning and the possible presence of the rock salt phase are taken into account. After 150 charge-discharge cycles, 4% of the volume in LR-NMC particles was transformed irreversibly from the honeycomb layered structure to the spinel structure. The proposed method would be applicable to other multi-phase materials as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000815310500001 Publication Date 2021-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.457 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 1.457  
  Call Number UA @ admin @ c:irua:189468 Serial 7080  
Permanent link to this record
 

 
Author Watanabe, Y.; Hyeon-Deuk, K.; Yamamoto, T.; Yabuuchi, M.; Karakulina, O.M.; Noda, Y.; Kurihara, T.; Chang, I.-Y.; Higashi, M.; Tomita, O.; Tassel, C.; Kato, D.; Xia, J.; Goto, T.; Brown, C.M.; Shimoyama, Y.; Ogiwara, N.; Hadermann, J.; Abakumov, A.M.; Uchida, S.; Abe, R.; Kageyama, H. url  doi
openurl 
  Title Polyoxocationic antimony oxide cluster with acidic protons Type A1 Journal article
  Year 2022 Publication Science Advances Abbreviated Journal  
  Volume 8 Issue 24 Pages eabm5379-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The success and continued expansion of research on metal-oxo clusters owe largely to their structural richness and wide range of functions. However, while most of them known to date are negatively charged polyoxometalates, there is only a handful of cationic ones, much less functional ones. Here, we show an all-inorganic hydroxyiodide [H(10.)7Sb(32.1)O(44)][H2.1Sb2.1I8O6][Sb0.76I6](2)center dot 25H(2)O (HSbOI), forming a face-centered cubic structure with cationic Sb32O44 clusters and two types of anionic clusters in its interstitial spaces. Although it is submicrometer in size, electron diffraction tomography of HSbOI allowed the construction of the initial structural model, followed by powder Rietveld refinement to reach the final structure. The cationic cluster is characterized by the presence of acidic protons on its surface due to substantial Sb3+ deficiencies, which enables HSbOI to serve as an excellent solid acid catalyst. These results open up a frontier for the exploration and functionalization of cationic metal-oxo clusters containing heavy main group elements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000812533800008 Publication Date 2022-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.6 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 13.6  
  Call Number UA @ admin @ c:irua:189689 Serial 7091  
Permanent link to this record
 

 
Author Poppe, R.; Vandemeulebroucke, D.; Neder, R.B.; Hadermann, J. pdf  url
doi  openurl
  Title Quantitative analysis of diffuse electron scattering in the lithium-ion battery cathode material Li1.2Ni0.13Mn0.54Co0.13O2 Type A1 Journal article
  Year 2022 Publication IUCrJ Abbreviated Journal Iucrj  
  Volume 9 Issue 5 Pages 695-704  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In contrast to perfectly periodic crystals, materials with short-range order produce diffraction patterns that contain both Bragg reflections and diffuse scattering. To understand the influence of short-range order on material properties, current research focuses increasingly on the analysis of diffuse scattering. This article verifies the possibility to refine the short-range order parameters in submicrometre-sized crystals from diffuse scattering in single-crystal electron diffraction data. The approach was demonstrated on Li<sub>1.2</sub>Ni<sub>0.13</sub>Mn<sub>0.54</sub>Co<sub>0.13</sub>O<sub>2</sub>, which is a state-of-the-art cathode material for lithium-ion batteries. The intensity distribution of the 1D diffuse scattering in the electron diffraction patterns of Li<sub>1.2</sub>Ni<sub>0.13</sub>Mn<sub>0.54</sub>Co<sub>0.13</sub>O<sub>2</sub>depends on the number of stacking faults and twins in the crystal. A model of the disorder in Li<sub>1.2</sub>Ni<sub>0.13</sub>Mn<sub>0.54</sub>Co<sub>0.13</sub>O<sub>2</sub>was developed and both the stacking fault probability and the percentage of the different twins in the crystal were refined using an evolutionary algorithm in<italic>DISCUS</italic>. The approach was applied on reciprocal space sections reconstructed from 3D electron diffraction data since they exhibit less dynamical effects compared with in-zone electron diffraction patterns. A good agreement was achieved between the calculated and the experimental intensity distribution of the diffuse scattering. The short-range order parameters in submicrometre-sized crystals can thus successfully be refined from the diffuse scattering in single-crystal electron diffraction data using an evolutionary algorithm in<italic>DISCUS</italic>.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000852551800018 Publication Date 2022-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-2525 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited Open Access (up) OpenAccess  
  Notes The research leading to these results has received funding from the Research Foundation Flanders, G035619N G040116N ; Approved Most recent IF: 3.9  
  Call Number EMAT @ emat @c:irua:190647 Serial 7105  
Permanent link to this record
 

 
Author Lopez-Garcia, C.; Canossa, S.; Hadermann, J.; Gorni, G.; Oropeza, F.E.; de la Pena O'Shea, V.A.; Iglesias, M.; Monge, M.A.; Gutierrez-Puebla, E.; Gandara, F. url  doi
openurl 
  Title Heterometallic molecular complexes act as messenger building units to encode desired metal-atom combinations to multivariate metal-organic frameworks Type A1 Journal article
  Year 2022 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 144 Issue 36 Pages 16262-16266  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A novel synthetic approach is described for the targeted preparation of multivariate metal-organic frameworks (MTV-MOFs) with specific combinations of metal elements. This methodology is based on the use of molecular complexes that already comprise desired metal-atom combinations, as building units for the MTV-MOF synthesis. These units are transformed into the MOF structural constituents through a ligand/linker exchange process that involves structural modifications while preserving their origina l l y encoded atomic combination. Thus, through the use of heterometalli c ring-shaped molecules combining gallium and nickel or cobalt, we have obtained MOFs with identical combinations of the metal elements, now incorporated in the rod-shaped secondary building unit, as confirmed with a combination of X-ray and electron diffraction, electron microscopy, and X-ray absorption spectroscopy techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000841435900001 Publication Date 2022-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 15  
  Call Number UA @ admin @ c:irua:190023 Serial 7169  
Permanent link to this record
 

 
Author Sheath, B.C.; Xu, X.; Manuel, P.; Hadermann, J.; Batuk, M.; O'Sullivan, J.; Bonilla, R.S.; Clarke, S.J. url  doi
openurl 
  Title Structures and magnetic ordering in layered Cr oxide arsenides Sr₂CrO₂Cr₂OAs₂ and Sr₂CrO₃CrAs Type A1 Journal article
  Year 2022 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 61 Issue 31 Pages 10-12385  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Two novel chromium oxide arsenide materials have been synthesized, Sr2CrO2Cr2OAs2 (i.e., Sr2Cr3As2O3) and Sr2CrO3CrAs (i.e., Sr2Cr2AsO3), both of which contain chromium ions in two distinct layers. Sr2CrO2Cr2OAs2 was targeted following electron microscopy measurements on a related phase. It crystallizes in the space group P4/mmm and accommodates distorted CrO4As2 octahedra containing Cr2+ and distorted CrO(2)As(4 )octahedra containing Cr3+. In contrast, Sr2CrO3CrAs incorporates Cr3+ in CrO5 square-pyramidal coordination in [Sr2CrO3](+) layers and Cr2+ ions in CrAs(4 )tetrahedra in [CrAs](-) layers and crystallizes in the space group P4/nmm. Powder neutron diffraction data reveal antiferromagnetic ordering in both compounds. In Sr2CrO3CrAs the Cr2+ moments in the [CrAs](-) layers exhibit long-range ordering, while the Cr3+ moments in the [Sr2CrO3](+) layers only exhibit short-range ordering. However, in Sr2CrO2Cr2OAs2, both the Cr(2+ )moments in the CrO4As2 environments and the Cr3+ moments in the CrO2As4 polyhedra are long-range-ordered below 530(10) K. Above this temperature, only the Cr3+ moments are ordered with a Neel temperature slightly in excess of 600 K. A subtle structural change is evident in Sr2CrO2Cr2OAs2 below the magnetic ordering transitions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000841943600001 Publication Date 2022-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:190007 Serial 7215  
Permanent link to this record
 

 
Author Batuk, M.; Vandemeulebroucke, D.; Ceretti, M.; Paulus, W.; Hadermann, J. url  doi
openurl 
  Title Topotactic redox cycling in SrFeO2.5+δ explored by 3D electron diffraction in different gas atmospheres Type A1 Journal article
  Year 2022 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract For oxygen conducting materials applied in solid oxide fuel cells and chemical-looping processes, the understanding of the oxygen diffusion mechanism and the materials’ crystal structure at different stages of the redox reactions is a key parameter to control their performance. In this paper we report the first ever in situ 3D ED experiment in a gas environment and with it uncover the structure evolution of SrFeO2.5 as notably different from that reported from in situ X-ray and in situ neutron powder diffraction studies in gas environments. Using in situ 3D ED on submicron sized single crystals obtained from a high quality monodomain SrFeO2.5 single crystal , we observe the transformation under O2 flow of SrFeO2.5 with an intra- and interlayer ordering of the left and right twisted (FeO4) tetrahedral chains (space group Pcmb) into consecutively SrFeO2.75 with space group Cmmm (at 350°C, 33% O2) and SrFeO3-δ with space group Pm3 ̅m (at 400°C, 100% O2). Upon reduction in H2 flow, the crystals return to the brownmillerite structure with intralayer order, but without regaining the interlayer order of the pristine crystals. Therefore, redox cycling of SrFeO2.5 crystals in O2 and H2 introduces stacking faults into the structure, resulting in an I2/m(0βγ)0s symmetry with variable β.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000891928400001 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.9 Times cited Open Access (up) OpenAccess  
  Notes Financial support is acknowledged from the FWO-Hercules fund I003218N ‘Infrastructure for imaging nanoscale processes in gas/vapor or liquid environments’, from the University of Antwerp through grant BOF TOP 38689. This work was supported by the European Commission Horizon 2020 NanED grant number 956099. Financial support from the French National Research Agency (ANR) through the project “Structural induced Electronic Complexity controlled by low temperature Topotactic Reaction” (SECTOR No. ANR-14-CE36- 0006-01) is gratefully acknowledged. Approved Most recent IF: 11.9  
  Call Number EMAT @ emat @c:irua:192325 Serial 7229  
Permanent link to this record
 

 
Author Vladimirova, N.V.; Frolov, A.S.; Sanchez-Barriga, J.; Clark, O.J.; Matsui, F.; Usachov, D.Y.; Muntwiler, M.; Callaert, C.; Hadermann, J.; Neudachina, V.S.; Tamm, M.E.; Yashina, L.V. pdf  url
doi  openurl
  Title Occupancy of lattice positions probed by X-ray photoelectron diffraction : a case study of tetradymite topological insulators Type A1 Journal article
  Year 2023 Publication Surfaces and interfaces Abbreviated Journal  
  Volume 36 Issue Pages 102516-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Occupancy of different structural positions in a crystal lattice often seems to play a key role in material prop-erties. Several experimental techniques have been developed to uncover this issue, all of them being mostly bulk sensitive. However, many materials including topological insulators (TIs), which are among the most intriguing modern materials, are intended to be used in devices as thin films, for which the sublattice occupancy may differ from the bulk. One of the possible approaches to occupancy analysis is X-ray Photoelectron Diffraction (XPD), a structural method in surface science with chemical sensitivity. We applied this method in a case study of Sb2(Te1-xSex)3 mixed crystals, which belong to prototypical TIs. We used high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) as a reference method to verify our analysis. We revealed that the XPD data for vacuum cleaved bulk crystals are in excellent agreement with the reference ones. Also, we demonstrate that the anion occupancy near a naturally formed surface can be rather different from that of the bulk. The present results are relevant for a wide range of compositions where the system remains a topological phase, as we ultimately show by probing the transiently occupied topological surface state above the Fermi level by ultrafast photoemission.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000901694900001 Publication Date 2022-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.2 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 6.2; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:193502 Serial 7327  
Permanent link to this record
 

 
Author Sasaki, S.; Giri, S.; Cassidy, S.J.; Dey, S.; Batuk, M.; Vandemeulebroucke, D.; Cibin, G.; Smith, R.I.; Holdship, P.; Grey, C.P.; Hadermann, J.; Clarke, S.J. url  doi
openurl 
  Title Anion redox as a means to derive layered manganese oxychalcogenides with exotic intergrowth structures Type A1 Journal article
  Year 2023 Publication Nature communications Abbreviated Journal  
  Volume 14 Issue 1 Pages 2917-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Topochemistry enables step-by-step conversions of solid-state materials often leading to metastable structures that retain initial structural motifs. Recent advances in this field revealed many examples where relatively bulky anionic constituents were actively involved in redox reactions during (de)intercalation processes. Such reactions are often accompanied by anion-anion bond formation, which heralds possibilities to design novel structure types disparate from known precursors, in a controlled manner. Here we present the multistep conversion of layered oxychalcogenides Sr(2)MnO(2)Cu(1.5)Ch(2) (Ch=S, Se) into Cu-deintercalated phases where antifluorite type [Cu(1.5)Ch(2)](2.5-) slabs collapsed into two-dimensional arrays of chalcogen dimers. The collapse of the chalcogenide layers on deintercalation led to various stacking types of Sr(2)MnO(2)Ch(2) slabs, which formed polychalcogenide structures unattainable by conventional high-temperature syntheses. Anion-redox topochemistry is demonstrated to be of interest not only for electrochemical applications but also as a means to design complex layered architectures. Low temperature chemical transformations of solids using high-energy intermediates have enabled the synthesis of a new series of layered oxide chalcogenide containing oxidised chalcogenide dimers promising a new range of solids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001024186000011 Publication Date 2023-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 16.6; 2023 IF: 12.124  
  Call Number UA @ admin @ c:irua:199281 Serial 8832  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: