toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Veronesi, S.; Pfusterschmied, G.; Fabbri, F.; Leitgeb, M.; Arif, O.; Esteban, D.A.; Bals, S.; Schmid, U.; Heun, S. url  doi
openurl 
  Title 3D arrangement of epitaxial graphene conformally grown on porousified crystalline SiC Type A1 Journal article
  Year 2022 Publication Carbon Abbreviated Journal Carbon  
  Volume 189 Issue Pages 210-218  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000760358800008 Publication Date 2021-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.9 Times cited 3 Open Access (down) OpenAccess  
  Notes Horizon 2020; European Commission; Horizon 2020 Framework Programme; European Research Council, 128 731 019 ; European Research Council, REALNANO 815 128 ; sygmaSB Approved Most recent IF: 10.9  
  Call Number EMAT @ emat @c:irua:186583 Serial 6952  
Permanent link to this record
 

 
Author Pompei, E.; Vlamidis, Y.; Ferbel, L.; Zannier, V.; Rubini, S.; Arenas Esteban, D.; Bals, S.; Marinelli, C.; Pfusterschmied, G.; Leitgeb, M.; Schmid, U.; Heun, S.; Veronesi, S. url  doi
openurl 
  Title Functionalization of three-dimensional epitaxial graphene with metal nanoparticles Type A1 Journal article
  Year 2024 Publication Nanoscale Abbreviated Journal  
  Volume 16 Issue 34 Pages 16107-16118  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate the first successful functionalization of epitaxial three-dimensional graphene with metal nanoparticles. The functionalization is obtained by immersing three-dimensional graphene in a nanoparticle colloidal solution. This method is versatile and demonstrated here for gold and palladium, but can be extended to other types of nanoparticles. We have measured the nanoparticle density on the top surface and in the porous layer volume by scanning electron microscopy and scanning transmission electron microscopy. The samples exhibit a wide coverage of nanoparticles with minimal clustering. We demonstrate that high-quality graphene promotes the functionalization, leading to higher nanoparticle density both on the surface and in the pores. X-ray photoelectron spectroscopy shows the absence of contamination after the functionalization process. Moreover, it confirms the thermal stability of the Au- and Pd-functionalized three-dimensional graphene up to 530 degrees C. Our approach opens new avenues for utilizing three-dimensional graphene as a versatile platform for catalytic applications, sensors, and energy storage and conversion. We report a new technique for fabricating metal-functionalized three-dimensional epitaxial graphene on porous SiC. The process is clean and scalable. The fabricated material exhibits high chemical and thermal stability, and versatility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001283 Publication Date 2024-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.7 Times cited Open Access (down)  
  Notes Approved Most recent IF: 6.7; 2024 IF: 7.367  
  Call Number UA @ admin @ c:irua:207655 Serial 9292  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: