|   | 
Details
   web
Records
Author Quintanilla, M.; Zhang, Y.; Liz-Marzan, L.M.
Title Subtissue plasmonic heating monitored with CaF2:Nd3+,Y3+ nanothermometers in the second biological window Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 30 Issue 8 Pages 2819-2828
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Measuring temperature in biological environments is an ambitious goal toward supporting medical treatment and diagnosis. Minimally invasive techniques based on optical probes require very specific properties that are difficult to combine within a single material. These include high chemical stability in aqueous environments, optical signal stability, low toxicity, high emission intensity, and, essential, working at wavelengths within the biological transparency windows so as to minimize invasiveness while maximizing penetration depth. We propose CaF2:Nd3+,Y3+ as a candidate for thermometry based on an intraband ratiometric approach, fully working within the biological windows (excitation at 808 nm; emission around 1050 nm). We optimized the thermal probes through the addition of Y3+ as a dopant to improve both emission intensity and thermal sensitivity. To define the conditions under which the proposed technique can be applied, gold nanorods were used to optically generate subtissue hot areas, while the resulting temperature variation was monitored with the new nanothermometers.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000431088400038 Publication Date 2018-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 28 Open Access Not_Open_Access
Notes ; The authors would like to thank Dr. Guillermo Gonzalez Rubio for the kind support with the synthesis of gold nanorods. M.Q and L.M.L.-M. acknowledge financial support from the European Commission under the Marie Sklodowska-Curie program (H2020-MSCA-IF-2014_659021 – PHELLINI). Y.Z. acknowledges financial support from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 665501 through a FWO [PEGASUS]^2 Marie Sklodowska-Curie fellowship (12U4917N). ; Approved Most recent IF: 9.466
Call Number (down) UA @ lucian @ c:irua:151576 Serial 5042
Permanent link to this record
 

 
Author Berends, A.C.; van der Stam, W.; Hofmann, J.P.; Bladt, E.; Meeldijk, J.D.; Bals, S.; de Donega, C.M.
Title Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS2 nanocrystals Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 30 Issue 30 Pages 2400-2413
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract ZnS shelling of I-III-VI(2 )nanocrystals (NCs) invariably leads to blue-shifts in both the absorption and photoluminescence spectra. These observations imply that the outcome of ZnS shelling reactions on I-III-VI2 colloidal NCs results from a complex interplay between several processes taking place in solution, at the surface of, and within the seed NC. However, a fundamental understanding of the factors determining the balance between these different processes is still lacking. In this work, we address this need by investigating the impact of precursor reactivity, reaction temperature, and surface chemistry (due to the washing procedure) on the outcome of ZnS shelling reactions on CuInS2 NCs using a seeded growth approach. We demonstrate that low reaction temperatures (150 degrees C) favor etching, cation exchange, and alloying regardless of the precursors used. Heteroepitaxial shell overgrowth becomes the dominant process only if reactive S- and Zn-precursors (S-ODE/OLAM and ZnI2 ) and high reaction temperatures (210 degrees C) are used, although a certain degree of heterointerfacial alloying still occurs. Remarkably, the presence of residual acetate at the surface of CIS seed NCs washed with ethanol is shown to facilitate heteroepitaxial shell overgrowth, yielding for the first time CIS/ZnS core/shell NCs displaying red-shifted absorption spectra, in agreement with the spectral shifts expected for a type-I band alignment. The insights provided by this work pave the way toward the design of improved synthesis strategies to CIS/ZnS core/shell and alloy NCs with tailored elemental distribution profiles, allowing precise tuning of the optoelectronic properties of the resulting materials.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000430023700027 Publication Date 2018-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 85 Open Access OpenAccess
Notes ; Annelies van der Bok is gratefully acknowledged for performing the ICP measurements. A.C.B. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant No. ECHO.712.014.001. S.B. and E.B. acknowledge financial support from European Research Council (ERC Starting Grant No. 335078-COLOURATOMS). ; Ecas_Sara Approved Most recent IF: 9.466
Call Number (down) UA @ lucian @ c:irua:150772UA @ admin @ c:irua:150772 Serial 4972
Permanent link to this record
 

 
Author Verchenko, V.Y.; Wei, Z.; Tsirlin, A.A.; Callaert, C.; Jesche, A.; Hadermann, J.; Dikarev, E.V.; Shevelkov, A.V.
Title Crystal growth of the Nowotny chimney ladder phase Fe2Ge3 : exploring new Fe-based narrow-gap semiconductor with promising thermoelectric performance Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 23 Pages 9954-9963
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('A new synthetic approach based on chemical transport reactions has been introduced to obtain the Nowotny chimney ladder phase Fe2Ge3 in the form of single crystals and polycrystalline powders. The single crystals possess the stoichiometric composition and the commensurate chimney ladder structure of the Ru2Sn3 type in contrast to the polycrystalline samples that are characterized by a complex microstructure. In compliance with the 18-n electron counting rule formulated for T-E intermetallics, electronic structure calculations reveal a narrow-gap semiconducting behavior of Fe2Ge3 favorable for high thermoelectric performance. Measurements of transport and thermoelectric properties performed on the polycrystalline samples confirm the formation of a narrow band gap of similar to 30 meV and reveal high absolute values of the Seebeck coefficient at elevated temperatures. Low glass-like thermal conductivity is observed in a wide temperature range that might be caused by the underlying complex microstructure.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000418206600013 Publication Date 2017-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access OpenAccess
Notes ; The authors thank Dr. Sergey Kazakov and Oleg Tyablikov for their help with the PXRD experiments. V.Y.V. appreciates the help of Dr. Sergey Dorofeev in provision and handling of the Mo(CO)<INF>6</INF> reagent. The work is supported by the Russian Science Foundation, Grant No. 17-13-01033. V.Y.V. appreciates the support from the European Regional Development Fund, Project No. TK134. A.A.T. acknowledges financial support by the Federal Ministry for Education and Research under the Sofia Kovalevskaya Award of the Alexander von Humboldt Foundation. E.V.D. thanks the National Science Foundation, Grant No. CHE-1152441. C.C. acknowledges the support from the University of Antwerp through the BOF Grant No. 31445. ; Approved Most recent IF: 9.466
Call Number (down) UA @ lucian @ c:irua:148531 Serial 4869
Permanent link to this record
 

 
Author Pimenta, V.; Sathiya, M.; Batuk, D.; Abakumov, A.M.; Giaume, D.; Cassaignon, S.; Larcher, D.; Tarascon, J.-M.
Title Synthesis of Li-Rich NMC : a comprehensive study Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 23 Pages 9923-9936
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Li-rich NMC are considered nowadays as one of the most promising candidates for high energy density cathodes. One significant challenge is nested in adjusting their synthesis conditions to reach optimum electrochemical performance, but no consensus has been reached yet on the ideal synthesis protocol. Herein, we revisited the elaboration of Li-rich NMC electrodes by focusing on the science involved through each synthesis steps using carbonate Ni0.1625Mn0.675Co0.1625CO3 precursor coprecipitation combined with solid state synthesis. We demonstrated the effect of precursors concentration on the kinetics of the precipitation reaction and provided clues to obtain spherically agglomerated NMC carbonates of different sizes. Moreover, we highlighted the strong impact of the Li2CO3/NMC carbonate ratio on the morphology and particles size of Li-rich NMC and subsequently on their electrochemical performance. Ratio of 1.35 was found to reproducibly give the best performance with namely a first discharge capacity of 269 mAh g(-1) and capacity retention of 89.6% after 100 cycles. We hope that our results, which reveal how particle size, morphology, and phase composition affect the materials electrochemical performance, will help in reconciling literature data while providing valuable fundamental information for up scaling approaches.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000418206600010 Publication Date 2017-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 23 Open Access Not_Open_Access
Notes ; The authors acknowledge the French Research Network on Electrochemical Energy Storage (RS2E). V.P and J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. The authors are thankful to Dr. G. Rousse for the help on Rietveld refinements. ; Approved Most recent IF: 9.466
Call Number (down) UA @ lucian @ c:irua:148530 Serial 4899
Permanent link to this record
 

 
Author Arias-Duque, C.; Bladt, E.; Munoz, M.A.; Hernandez-Garrido, J.C.; Cauqui, M.A.; Rodriguez-Izquierdo, J.M.; Blanco, G.; Bals, S.; Calvino, J.J.; Perez-Omil, J.A.; Yeste, M.P.
Title Improving the redox response stability of ceria-zirconia nanocatalysts under harsh temperature conditions Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 29 Pages 9340-9350
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('By depositing ceria on the surface of yttrium stabilized zirconia (YSZ) nanocrystals and further activation under high-temperature reducing conditions, a 13% mol. CeO2/YSZ catalyst structured as subnanometer thick, pyrochlore-type, ceria-zirconia islands has been prepared. This nanostructured catalyst depicts not only high oxygen storage capacity (OSC) values but, more importantly, an outstandingly stable redox response upon oxidation and reduction treatments at very high temperatures, above 1000 degrees C. This behavior largely improves that observed on conventional ceria-zirconia solid solutions, not only of the same composition but also of those with much higher molar cerium contents. Advanced scanning transmission electron microscopy (STEM-XEDS) studies have revealed as key not only to detect the actual state of the lanthanide in this novel nanocatalyst but also to rationalize its unusual resistance to redox deactivation at very high temperatures. In particular, high-resolution X-ray dispersive energy studies have revealed the presence of unique bilayer ceria islands on top of the surface of YSZ nanocrystals, which remain at surface positions upon oxidation and reduction treatments up to 1000 degrees C. Diffusion of ceria into the bulk of these crystallites upon oxidation at 1100 degrees C irreversibly deteriorates both the reducibility and OSC of this nanostructured catalyst.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000415911600047 Publication Date 2017-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 20 Open Access OpenAccess
Notes ; Financial support from MINECO/FEDER (Project ref: MAT2013-40823-R), Junta de Andalucia (FQM334 and FQM110), and EU FP7 (ESTEEM2) are acknowledged. E.B. and S.B. acknowledges financial support from European Research Council (ERC- Starting Grant #33S078-COLOURA-TOM). J.C.H.-G. acknowledges support from the Ramon y Cajal Fellowships Program of MINECO (RYC-2012-10004). ; Approved Most recent IF: 9.466
Call Number (down) UA @ lucian @ c:irua:147706UA @ admin @ c:irua:147706 Serial 4880
Permanent link to this record
 

 
Author Savina, A.A.; Morozov, V.A.; Buzlukov, A.L.; Arapova, I.Y.; Stefanovich, S.Y.; Baklanova, Y.V.; Denisova, T.A.; Medvedeva, N.I.; Bardet, M.; Hadermann, J.; Lazoryak, B.I.; Khaikina, E.G.
Title New solid electrolyte Na9Al(MoO4)6 : structure and Na+ ion conductivity Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 20 Pages 8901-8913
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Solid electrolytes are important materials with a wide range of technological applications. This work reports the crystal structure and electrical properties of a new solid electrolyte Na9Al(MoO4)(6). The monoclinic Na9Al(MoO4)(6) consists of isolated polyhedral, [Al(MoO4)(6)](9-) clusters composed of a central AlO6 octahedron sharing vertices with six MoO4 tetrahedra to form a three-dimensional framework. The AlO6 octahedron also shares edges with one NalO(6) octahedron and two Na2O(6) octahedra. Na3-Na5 atoms are located in the framework cavities. The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)(3). High-temperature conductivity measurements revealed that the conductivity (sigma) of Na9Al(MoO4)(6) at 803 K equals 1.63 X 10(-2) S cm(-1). The temperature behavior of the Na-23 and Al-27 nuclear magnetic resonance spectra and the spin-lattice relaxation rates of the Na-23 nuclei indicate the presence of fast Na+ ion diffusion in the studied compound. At T\u003C490 K, diffusion occurs by means of Na+ ion jumps exclusively through the sublattice of Na3-Na5 positions, whereas Na1 and Na2 become involved in the diffusion processes (through chemical exchange with the Na3-Na5 sublattice) only at higher temperatures.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000413884900037 Publication Date 2017-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 13 Open Access OpenAccess
Notes ; The research was performed within the state assignment of FASO of Russia (Themes 01201463330, A16-116122810214-9, and 0339-2016-0007), supported in part by the Russian Foundation for Basic Research (Projects 16-03-00510, 16-03-00164, and 17-03-00333). ; Approved Most recent IF: 9.466
Call Number (down) UA @ lucian @ c:irua:147432 Serial 4886
Permanent link to this record
 

 
Author Sathiya, M.; Thomas, J.; Batuk, D.; Pimenta, V.; Gopalan, R.; Tarascon, J.-M.
Title Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-Ion cells based on P2-NaxMO2 electrodes Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 14 Pages 5948-5956
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sodium ion battery technology is gradually advancing and can be viewed as a viable alternative to lithium ion batteries in niche applications. One of the promising positive electrode candidates is P2 type layered sodium transition metal oxide, which offers attractive sodium ion conductivity. However, the reversible capacity of P2 phases is limited by the inability to directly synthesize stoichiometric compounds with a sodium to transition metal ratio equal to 1. To alleviate this issue, we report herein the in situ synthesis of P2-NaxO2 (x <= 0.7, M = transition metal ions)-Na2CO3 composites. We find that sodium carbonate acts as a sacrificial salt, providing Na+ ion to increase the reversible capacity of the P2 phase in sodium ion full cells, and also as a useful additive that stabilizes the formation of P2 over competing P3 phases. We offer a new phase diagram for tuning the synthesis of the P2 phase under various experimental conditions and demonstrate, by in situ XRD analysis, the role of Na2CO3 as a sodium reservoir in full sodium ion cells. These results provide insights into the practical use of P2 layered materials and can be extended to a variety of other layered phases.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000406573200026 Publication Date 2017-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 26 Open Access Not_Open_Access
Notes ; M.S., J.T., and R.G. acknowledge the financial support received from the Department of Science and Technology (DST-SERC), Government of India under the funding from the TRC Grant Agreement No. AI/1/65/ARCI/2014. The authors are thankful to Dr. Sundararajan, Chairman, TRC and Dr. G. Padmanabham, Director, ARCI for helpful discussions. Initial microscopy analysis by Dr. M. B. Sahana, Dr. Prabu, and Mr. Ravi Gautham of ARCI are greatly acknowledged. The elemental analysis by Dr. Domitille Giaume, IRCP – ENSCP, Chimie Paris Tech, Paris is greatly acknowledged. ; Approved Most recent IF: 9.466
Call Number (down) UA @ lucian @ c:irua:145759 Serial 4740
Permanent link to this record
 

 
Author Lebedev, O.I.; Turner, S.; Caignaert, V.; Cherepanov, V.A.; Raveau, B.
Title Exceptional layered ordering of cobalt and iron in perovskites Type A1 Journal article
Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 28 Issue 28 Pages 2907-2911
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375810400005 Publication Date 2016-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 4 Open Access
Notes Approved Most recent IF: 9.466
Call Number (down) UA @ lucian @ c:irua:133640 Serial 4178
Permanent link to this record
 

 
Author Milat, O.; Van Tendeloo, G.; Amelinckx, S.; Wright, A.J.; Greaves, C.
Title Effect of the substitution Ba\leftrightarrow Sr on the Ga-1222 superstructure : an electron diffraction study Type A1 Journal article
Year 1995 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 7 Issue 9 Pages 1709-1715
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The superstructure of the RE(2)(Sr0.85-xBaxNd0.15)(2)GaCU2O9 compound is found to change significantly with increasing substitution of Ba for Sr. Most of the changes take place in the (Sr0.85-xBaxNd0.15)O-GaO-(Sr0.85-xBaxNd0.15)O lamella, the rest of the basic structure being hardly affected. The structural changes for O less than or equal to x less than or equal to 0.65 are studied by electron diffraction. The arrangement of the chains of GaO4 tetrahedra in the Ba-free compound becomes disordered at x > 0.25. At x similar to 0.65 a rearrangement of the chains in the GaO layers takes place; they form a meandering arrangement, which can be described on a 4a(p) x 2a(p) x c(p) superlattice. This rearrangement is accompanied by ordering of Ba and Sr atoms in the adjacent (ST0.85-xBaxNd0.15)O layers. A simple scheme is proposed to explain the influence of the substitution of Ba for Sr on the linking of the GaO4 tetrahedra and on the geometry of the ''chains'' in the GaO layer.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos A1995RW21200021 Publication Date 2005-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record
Impact Factor 8.354 Times cited Open Access
Notes Approved no
Call Number (down) UA @ lucian @ c:irua:13326 Serial 850
Permanent link to this record
 

 
Author Morozov, V.A.; Raskina, M.V.; Lazoryak, B.I.; Meert, K.W.; Korthout, K.; Smet, P.F.; Poelman, D.; Gauquelin, N.; Verbeeck, J.; Abakumov, A.M.; Hadermann, J.;
Title Crystal Structure and Luminescent Properties of R2-xEux(MoO4)(3) (R = Gd, Sm) Red Phosphors Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 24 Pages 7124-7136
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The R-2(MoO4)(3) (R = rare earth elements) molybdates doped with Eu3+ cations are interesting red-emitting materials for display and solid-state lighting applications. The structure and luminescent properties of the R2-xEux(MoO4)(3) (R = Gd, Sm) solid solutions have been investigated as a function of chemical composition and preparation conditions. Monoclinic (alpha) and orthorhombic (beta') R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) modifications were prepared by solid-state reaction, and their structures were investigated using synchrotron powder X-ray diffraction and transmission electron microscopy. The pure orthorhombic beta'-phases could be synthesized only by quenching from high temperature to room temperature for Gd2-xEux(MoO4)(3) in the Eu3+-rich part (x > 1) and for all Sm2-xEux(MoO4)(3) solid solutions. The transformation from the alpha-phase to the beta'-phase results in a notable increase (similar to 24%) of the unit cell volume for all R2-xEux(MoO4)(3) (R = Sm, Gd) solid solutions. The luminescent properties of all R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) solid solutions were measured, and their optical properties were related to their structural properties. All R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) phosphors emit intense red light dominated by the D-5(0)-> F-7(2) transition at similar to 616 nm. However, a change in the multiplet splitting is observed when switching from the monoclinic to the orthorhombic structure, as a consequence of the change in coordination polyhedron of the luminescent ion from RO8 to RO7 for the alpha- and beta'-modification, respectively. The Gd2-xEux(MoO4)(3) solid solutions are the most efficient emitters in the range of 0 < x < 1.5, but their emission intensity is comparable to or even significantly lower than that of Sm2-xEux(MoO4)(3) for higher Eu3+ concentrations (1.5 <= x <= 1.75). Electron energy loss spectroscopy (EELS) measurements revealed the influence of the structure and element content on the number and positions of bands in the ultraviolet-visible-infrared regions of the EELS spectrum.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347139700027 Publication Date 2014-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 24 Open Access
Notes Fwo G039211n; G004413n; 278510 Vortex ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number (down) UA @ lucian @ c:irua:122829UA @ admin @ c:irua:122829 Serial 558
Permanent link to this record
 

 
Author Volkova, N.E.; Lebedev, O.I.; Gavrilova, L.Y.; Turner, S.; Gauquelin, N.; Seikh, M.M.; Caignaert, V.; Cherepanov, V.A.; Raveau, B.; Van Tendeloo, G.
Title Nanoscale ordering in oxygen deficient quintuple perovskite Sm2-\epsilonBa3+\epsilonFe5O15-\delta : implication for magnetism and oxygen stoichiometry Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 21 Pages 6303-6310
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The investigation of the system SmBaFe-O in air has allowed an oxygen deficient perovskite Sm2-epsilon Ba3+epsilon Fe5O15-delta (delta = 0.75, epsilon = 0.125) to be synthesized. In contrast to the XRPD pattern which gives a cubic symmetry (a(p) = 3.934 angstrom), the combined HREM/EELS study shows that this phase is nanoscale ordered with a quintuple tetragonal cell, a(p) X a(p) X 5(ap). The nanodomains exhibit a unique stacking sequence of the A-site cationic layers along the crystallographic c-axis, namely SmBaBa/SmBa/SmBaSm, and are chemically twinned in the three crystallographic directions. The nanoscale ordering of this perovskite explains its peculiar magnetic properties on the basis of antiferromagnetic interactions with spin blockade at the boundary between the nanodomains. The variation of electrical conductivity and oxygen content of this oxide versus temperature suggest potential SOFC applications. They may be related to the particular distribution of oxygen vacancies in the lattice and to the 3d(5)(L) under bar configuration of iron.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344905600029 Publication Date 2014-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 16 Open Access
Notes The UrFU authors were financially supported by the Ministry of Education and Science of Russian Federation (project N 4.1039.2014/K) and by UrFU under the Framework Program of development of UrFU through the «Young scientists UrFU» competition. The CRISMAT authors gratefully acknowledge the EC, the CNRS and the French Minister of Education and Research for financial support through their Research, Strategic and Scholarship programs. This work was supported by funding from the European Research Council under the Seventh Framework Program (FP7), ERC grant N°246791 – COUNTATOMS. S.T. gratefully acknowledges the fund for scientific research Flanders for a post-doctoral fellowship and for financial support under contract number G004413N. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC starting grant number 278510 – VORTEX; ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number (down) UA @ lucian @ c:irua:122137 Serial 2269
Permanent link to this record
 

 
Author Damm, H.; Adriaensens, P.; De Dobbelaere, C.; Capon, B.; Elen, K.; Drijkoningen, J.; Conings, B.; Manca, J.V.; D’Haen, J.; Detavernier, C.; Magusin, P.C.M.M.; Hadermann, J.; Hardy, A.; Van Bael, M.K.;
Title Factors Influencing the Conductivity of Aqueous Sol(ution)-Gel-Processed Al-Doped ZnO Films Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 20 Pages 5839-5851
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000343950300004 Publication Date 2014-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 24 Open Access
Notes Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number (down) UA @ lucian @ c:irua:121211 Serial 1170
Permanent link to this record
 

 
Author Abakumov, A.M.; Tsirlin, A.A.; Bakaimi, I.; Van Tendeloo, G.; Lappas, A.
Title Multiple twinning as a structure directing mechanism in layered rock-salt-type oxides : NaMnO2 polymorphism, redox potentials, and magnetism Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 10 Pages 3306-3315
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract New polymorphs of NaMnO2 have been observed using transmission electron microscopy and synchrotron X-ray powder diffraction. Coherent twin planes confined to the (NaMnO2) layers, parallel to the (10 (1) over bar) crystallographic planes of the monoclinic layered rock-salt-type alpha-NaMnO2 (O3) structure, form quasi-periodic modulated sequences, with the known alpha-and beta-NaMnO2 polymorphs as the two limiting cases. The energy difference between the polymorphic forms, estimated using a DFT-based structure relaxation, is on the scale of the typical thermal energies that results in a high degree of stacking disorder in these compounds. The results unveil the remarkable effect of the twin planes on both the magnetic and electrochemical properties. The polymorphism drives the magnetic ground state from a quasi-1D spin system for the geometrically frustrated alpha-polymorph through a two-leg spin ladder for the intermediate stacking sequence toward a quasi-2D magnet for the beta-polymorph. A substantial increase of the equilibrium potential for Na deintercalation upon increasing the concentration of the twin planes is calculated, providing a possibility to tune the electrochemical potential of the layered rock-salt ABO(2) cathodes by engineering the materials with a controlled concentration of twins.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000336637000036 Publication Date 2014-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 35 Open Access
Notes Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number (down) UA @ lucian @ c:irua:117766 Serial 2232
Permanent link to this record
 

 
Author Morozov, V.A.; Lazoryak, B.I.; Shmurak, S.Z.; Kiselev, A.P.; Lebedev, O.I.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Van Tendeloo, G.
Title Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 10 Pages 3238-3248
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Scheelite related compounds (A',A '')(n)[(B',B '')O-4](m) with B', B '' = W and/or Mo are promising new materials for red phosphors in pc-WLEDs (phosphor-converted white-light-emitting-diode) and solid-state lasers. Cation substitution in CaMoO4 of Ca2+ by the combination of Na+ and Eu3+, with the creation of A cation vacancies, has been investigated as a factor for controlling the scheelite-type structure and the luminescent properties. Na5Eu(MoO4)(4) and NaxEu(2-x)/33+square(2-x)/3MoO4 (0.138 <= x <= 0.5) phases with a scheelite-type structure were synthesized by the solid state method; their structural characteristics were investigated using transmission electron microscopy. Contrary to powder synchrotron X-ray diffraction before, the study by electron diffraction and high resolution transmission electron microscopy in this paper revealed that Na0.286Eu0.571MoO4 has a (3 + 2)D incommensurately modulated structure and that (3 + 2)D incommensurately modulated domains are present in Na0.200Eu0.600MoO4. It also confirmed the (3 + 1)D incommensurately modulated character of Na(0.138)Eu(0.621)Mo04. The luminescent properties of all phases under near-ultraviolet (n-UV) light have been investigated. The excitation spectra of these phosphors show the strongest absorption at about 395 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. The emission spectra indicate an intense red emission due to the D-5(0) -> F-7(2) transition of Eu3+, with local minima in the intensity at Na0.286Eu0.571MoO4 and Na0.200Eu0.600MoO4 for similar to 613 nm and similar to 616 nm bands. The phosphor Na5Eu(MoO4)(4) shows the brightest red light emission among the phosphors in the Na2MoO4-Eu2/3MoO4 system and the maximum luminescence intensity of Na5Eu(MoO4)(4) (lambda(ex) = 395 nm) in the D-5(0) -> F-7(2) transition region is close to that of the commercially used red phosphor YVO4:Eu3+ (lambda(ex) = 326 nm). Electron energy loss spectroscopy measurements revealed the influence of the structure and Na/Eu cation distribution on the number and positions of bands in the UV-optical-infrared regions of the EELS spectrum.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000336637000028 Publication Date 2014-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 53 Open Access
Notes Fwo G039211n; Fwo G004413n; 278510 Vortex ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number (down) UA @ lucian @ c:irua:117765UA @ admin @ c:irua:117765 Serial 1652
Permanent link to this record
 

 
Author Ustarroz, J.; Altantzis, T.; Hammons, J.A.; Hubin, A.; Bals, S.; Terryn, H.
Title The role of nanocluster aggregation, coalescence, and recrystallization in the electrochemical deposition of platinum nanostructures Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 7 Pages 2396-2406
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract By using an optimized characterization approach that combines aberration-corrected transmission electron microscopy, electron tomography, and in situ ultrasmall angle X-ray scattering (USAXS), we show that the early stages of Pt electrochemical growth on carbon substrates may be affected by the aggregation, self-alignment, and partial coalescence of nanoclusters of d ≈ 2 nm. The morphology of the resulting nanostructures depends on the degree of coalescence and recrystallization of nanocluster aggregates, which in turn depends on the electrodeposition potential. At low overpotentials, a self-limiting growth mechanism may block the epitaxial growth of primary nanoclusters and results in loose dendritic aggregates. At more negative potentials, the extent of nanocluster coalescence and recrystallization is larger and further growth by atomic incorporation may be allowed. On one hand, this suggests a revision of the VolmerWeber island growth mechanism. Whereas this theory has traditionally assumed direct attachment as the only growth mechanism, it is suggested that nanocluster self-limiting growth, aggregation, and coalescence should also be taken into account during the early stages of nanoscale electrodeposition. On the other hand, depending on the deposition potential, ultrahigh porosities can be achieved, turning electrodeposition in an ideal process for highly active electrocatalyst production without the need of using high surface area carbon supports.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000334572300026 Publication Date 2014-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 55 Open Access Not_Open_Access
Notes FWO; contract no. FWOAL527 Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number (down) UA @ lucian @ c:irua:116956 Serial 2916
Permanent link to this record
 

 
Author Abakumov, A.M.; Erni, R.; Tsirlin, A.A.
Title Reply to Comment on “Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3-xTiO3 perovskites” Type Editorial
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 2 Pages 1288
Keywords Editorial; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000330543600051 Publication Date 2014-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 1 Open Access
Notes Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number (down) UA @ lucian @ c:irua:115730 Serial 2874
Permanent link to this record
 

 
Author Morozov, V.A.; Bertha, A.; Meert, K.W.; Van Rompaey, S.; Batuk, D.; Martinez, G.T.; Van Aert, S.; Smet, P.F.; Raskina, M.V.; Poelman, D.; Abakumov, A.M.; Hadermann, J.;
Title Incommensurate modulation and luminescence in the CaGd2(1-x)Eu2x(MoO4)4(1-y)(WO)4y (0\leq x\leq1, 0\leq y\leq1) red phosphors Type A1 Journal article
Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 25 Issue 21 Pages 4387-4395
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Scheelite related compounds (A',A '') [(B',B '')O-4], with B', B '' = W and/or Mo are promising new light-emitting materials for photonic applications, including phosphor converted LEDs (light-emitting diodes). In this paper, the creation and ordering of A-cation vacancies and the effect of cation substitutions in the scheelite-type framework are investigated as a factor for controlling the scheelite-type structure and luminescent properties. CaGd2(1-x)Eu2x(MoO4)(4(1-y))(WO4)(4y) (0 <= x <= 1, 0 <= y <= 1) solid solutions with scheelite-type structure were synthesized by a solid state method, and their structures were investigated using a combination of transmission electron microscopy techniques and powder X-ray diffraction. Within this series all complex molybdenum oxides have (3 + 2)D incommensurately modulated structures with superspace group I4(1)/a(alpha,beta,0)00(-beta,alpha,0)00, while the structures of all tungstates are (3 + 1)D incommensurately modulated with superspace group I2/b(alpha beta 0)00. In both cases the modulation arises because of cation-vacancy ordering at the A site. The prominent structural motif is formed by columns of A-site vacancies running along the c-axis. These vacant columns occur in rows of two or three aligned along the [110] direction of the scheelite subcell. The replacement of the smaller Gd3+ by the larger Eu3+ at the A-sublattice does not affect the nature of the incommensurate modulation, but an increasing replacement of Mo6+ by W6+ switches the modulation from (3 + 2)D to (3 + 1)D regime. Thus, these solid solutions can be considered as a model system where the incommensurate modulation can be monitored as a function of cation nature while the number of cation vacancies at the A sites remain constant upon the isovalent cation replacement. All compounds' luminescent properties were measured, and the optical properties were related to the structural properties of the materials. CaGd2(1-x)(MoO4)(4(1-y))(WO4)(4y) phosphors emit intense red light dominated by the D-5(0)-F-7(2) transition at 612 nm, along with other transitions from the D-5(1) and D-5(0) excited states. The intensity of the 5D0-7F2 transition reaches a maximum at x = 0.5 for y = 0 and 1.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000327045000030 Publication Date 2013-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 63 Open Access
Notes Approved Most recent IF: 9.466; 2013 IF: 8.535
Call Number (down) UA @ lucian @ c:irua:112776 Serial 1594
Permanent link to this record
 

 
Author Retuerto, M.; Emge, T.; Hadermann, J.; Stephens, P.W.; Li, M.R.; Yin, Z.P.; Croft, M.; Ignatov, A.; Zhang, S.J.; Yuan, Z.; Jin, C.; Simonson, J.W.; Aronson, M.C.; Pan, A.; Basov, D.N.; Kotliar, G.; Greenblatt, M.;
Title Synthesis and properties of charge-ordered thallium halide perovskites, CsTl0.5+Tl0.53+X3 (X = F or Cl) : theoretical precursors for superconductivity? Type A1 Journal article
Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 25 Issue 20 Pages 4071-4079
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Recently, CsTlCl3 and CsTlF3 perovskites were theoretically predicted to be potential superconductors if they were optimally doped. The syntheses of these two compounds together with a complete characterization of the samples are reported. CsTlCl3 was obtained as orange crystals in two different polymorphs: a tetragonal phase (I4/m) and a cubic phase (Fm (3) over barm). CsTlF3 was formed as a light brown powder, and also as a double cubic perovskite (Fm (3) over barm). In all three CsTlX3 phases, Tl+ and Tl3+ were located in two different crystallographic positions that accommodate their different bond lengths. In CsTlCl3, some Tl vacancies were found in the Tl+ position. The charge ordering between Tl+ and Tl3+ was confirmed by X-ray absorption and Raman spectroscopy. The Raman spectroscopy of CsTlCl3 at high pressure (58 GPa) did not indicate any phase transition to a possible single Tl2+ state. However, the highly insulating material became less resistive with an increasing high pressure, while it underwent a change in its optical properties, from transparent to deeply opaque red, indicative of a decrease in the magnitude of the band gap. The theoretical design and experimental validation of the existence of CsTlF3 and CsTlCl3 cubic perovskites are the necessary first steps in confirming the theoretical prediction of superconductivity in these materials.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000326209200017 Publication Date 2013-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 28 Open Access
Notes Approved Most recent IF: 9.466; 2013 IF: 8.535
Call Number (down) UA @ lucian @ c:irua:112248 Serial 3434
Permanent link to this record
 

 
Author Pietra, F.; van Dijk-Moes, R.J.A.; Ke, X.; Bals, S.; Van Tendeloo, G.; de Mello Donega, C.; Vanmaekelbergh, D.
Title Synthesis of highly luminescent silica-coated CdSe/CdS nanorods Type A1 Journal article
Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 25 Issue 17 Pages 3427-3434
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract CdSe(core)/CdS(shell) nanorods (NRs) have been extensively investigated for their unique optical properties, such as high photoluminescence (PL) quantum efficiency (QE) and polarized light emission. The incorporation of these NRs in silica (SiO2) is of high interest, since this renders them processable in polar solvents while increasing their photochemical stability, which would be beneficial for their application in LEDs and as biolabels. We report the synthesis of highly luminescent silica-coated CdSe/CdS NRs, by using the reverse micelle method. The mechanism for the encapsulation of the NRs in silica is unravelled and shown to be strongly influenced by the NR shape and its asymmetry. This is attributed to both the different morphology and the different crystallographic nature of the facets terminating the opposite tips of the NRs. These results lead to the formation of a novel class of NR architectures, whose symmetry can be controlled by tuning the degree of coverage of the silica shell. Interestingly, the encapsulation of the NRs in silica leads to a remarkable increase in their photostability, while preserving their optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000330097900004 Publication Date 2013-08-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 46 Open Access
Notes 262348 ESMI; 246791 COUNTATOMS; Hercules Approved Most recent IF: 9.466; 2013 IF: 8.535
Call Number (down) UA @ lucian @ c:irua:110037 Serial 3456
Permanent link to this record
 

 
Author Abakumov, A.M.; Erni, R.; Tsirlin, A.A.; Rossell, M.D.; Batuk, D.; Nénert, G.; Van Tendeloo, G.
Title Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3-xTiO3 perovskites Type A1 Journal article
Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 25 Issue 13 Pages 2670-2683
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Perovskite-structured titanates with layered A-site ordering form remarkably complex superstructures. Using transmission electron microscopy, synchrotron X-ray and neutron powder diffraction, and ab initio structure relaxation, we present the structural solution of the incommensurately modulated Li3xNd2/3xTiO3 perovskites (x = 0.05, superspace group Pmmm(α1,1/2,0)000(1/2,β2 0)000, a = 3.831048(5) Å, b = 3.827977(4) Å, c = 7.724356(8) Å, q1 = 0.45131(8)a* + 1/2b*, q2 = 1/2a* + 0.41923(4)b*). In contrast to earlier conjectures on the nanoscale compositional phase separation in these materials, all peculiarities of the superstructure can be understood in terms of displacive modulations related to an intricate octahedral tilting pattern. It involves fragmenting the pattern of the out-of-phase tilted TiO6 octahedra around the a- and b-axes into antiphase domains, superimposed on the pattern of domains with either pronounced or suppressed in-phase tilt component around the c-axis. The octahedral tilting competes with the second order JahnTeller distortion of the TiO6 octahedra. This competition is considered as the primary driving force for the modulated structure. The A cations are suspected to play a role in this modulation affecting it mainly through the tolerance factor and the size variance. The reported crystal structure calls for a revision of the structure models proposed for the family of layered A-site ordered perovskites exhibiting a similar type of modulated structure.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000321809700015 Publication Date 2013-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 23 Open Access
Notes Countatoms Approved Most recent IF: 9.466; 2013 IF: 8.535
Call Number (down) UA @ lucian @ c:irua:109216 Serial 1292
Permanent link to this record
 

 
Author Hamelet, S.; Casas-Cabanas, M.; Dupont, L.; Davoisne, C.; Tarascon, J.M.; Masquelier, C.
Title Existence of superstructures due to large amounts of Fe vacancies in the LiFePO4-type framework Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue 1 Pages 32-38
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract LiFePO4 has been under intense scrutiny over the past decade because it stands as an attractive positive electrode material for the next generation of Li-ion batteries to power electric vehicles and hybrid electric vehicles, hence the importance of its thermal behavior. The reactivity of LiFePO4 with air at moderate temperatures is shown to be dependent on its particle size. For nanosized materials, a progressive displacement of Fe from the core structure leading to a composite made of nanosize Fe2O3 and highly defective, oxidized LixFeyPO4 compositions, among which the “ideal” formula LiFe2/3PO4. Herein we report, from both temperature-controlled X-ray diffraction and electronic diffraction microscopy, that these off-stoichiometry olivine-type compounds show a defect ordering resulting in the formation of a superstructure. Such a finding shows striking similarities with the temperature-driven oxidation of fayalite Fe2SiO4 (another olivine) to structurally defective laihunite, reported in the literature three decades ago.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000285726900007 Publication Date 2010-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 30 Open Access
Notes Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number (down) UA @ lucian @ c:irua:105605 Serial 1130
Permanent link to this record
 

 
Author Luhrs, C.C.; Molins, E.; Van Tendeloo, G.; Beltran-Porter, D.; Fuertes, A.
Title Crystal structure of Bi6Sr8-xCa3+xO22(-0.5\leq x\leq1.7): a mixed valence bismuth oxide related to perovskite Type A1 Journal article
Year 1998 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 10 Issue 7 Pages 1875-1881
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of BiSr8-xCa3+xO22 has been determined by single-crystal X-ray diffraction. This phase is the same as Bi9Sr11Ca5Oy that was previously studied by several authors as a secondary phase in the Bi-Sr-Ca-Cu-O system and coexists in thermodynamic equilibrium with the superconductors Bi2Sr2CuO6 and Bi2Sr2CaCu2O8 It crystallizes in the monoclinic space group P2(1)/c, with cell parameters a 11.037(3) Angstrom, b = 5.971(2) Angstrom, c = 19.703(7) Angstrom, beta = 101.46(3)degrees Z = 2. The structure was solved by direct methods and full-matrix least-squares refinement. It is built up by perovskite-related blocks of composition [Sr8-xBi2Ca3+xO16] that intergrow with double rows [Bi4O6] running along b. The perovskite blocks are formed by groups of five octahedra that are shifted from each other 3/2 root 2a(p) along [110](p) (a(p) being the parameter of the cubic perovskite subcell) in a zigzag configuration and are aligned with this direction parallel to the one forming an angle of 25" with the c axis. In turn, the perovskite blocks [Sr8-xBi2Ca3+xO16] are shifted from each other 1/2 of both a(p) and root 2a(p) along [100](p) and [110](p), respectively. In the double rows, two trivalent bismuth atoms are placed, forming dimeric anion complexes [Bi2O6].(6-).6- The oxygen atoms around bismuth in these dimers are placed in the vertexes of a distorted trigonal bipyramid, with one vacant position that would be occupied by the lone pairs characteristic for the electronic configuration of Bi(III). The B sites in the perovskite blocks are occupied by pentavalent bismuth atoms and calcium atoms; the remaining Sr and Ca ions occupy the A sites of the perovskite blocks with coordination numbers with oxygen ranging from 10 to 12. The mean valence for Bi is +3.67 [33.3% of Bi(V) and 66.7% of Bi(III)]. The oxygen vacancies are located in the boundaries between domains having the two possible configurations of the perovskite subcell as in the anionic superconductor Bi3BaO5.5. The oxidation of Bi6Sr8-xCa3+xO22 at 650 degrees C allows the complete filling of the oxygen vacancies to form the double perovskite (Sr2-xCax)Bi1.4Ca0.6O6 that shows 92.5% of bismuth in +5 oxidation state. The experimental high-resolution electon microscopy image and the electron diffraction pattern of powder samples along the [010]* zone axis are in good agreement with those calculated from the structural model obtained by single-crystal X-ray diffraction. The material is almost free of defects and the occurrence of planar defects is very exceptional.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000075019300023 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 6 Open Access
Notes Approved Most recent IF: 9.466; 1998 IF: 3.359
Call Number (down) UA @ lucian @ c:irua:104328 Serial 570
Permanent link to this record
 

 
Author Hervieu, M.; Martin, C.; Maignan, A.; Van Tendeloo, G.; Jirak, Z.; Hejtmanek, J.; Barnabe, A.; Thopart, D.; Raveau, B.
Title Structural and magnetotransport transitions in the electron-doped Pr1-xSrxMnO3(0.85\leq x\leq1) manganites Type A1 Journal article
Year 2000 Publication Chemistry and materials Abbreviated Journal Chem Mater
Volume 12 Issue 5 Pages 1456-1462
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The exploration of the Mn4+-rich side of the Pr1-xSrxMnO3 system has allowed the extension of the domain of the cubic perovskite, by using a two-step process, combining synthesis under Ar flow at high temperature and O-2 pressure annealing at lower temperature. We show that these Pr-doped cubic perovskites exhibit a coupled structural (cubic-tetragonal) and magnetic (para-antiferro) transition connected with a resistivity jump at the same temperature. The strong interplay between lattice, charges, and spins for these oxides results from the appearance at low temperature of the distorted C-type antiferromagnetic structure. The Pr1-xSrxMnO3 magnetic phase diagram shows, for 0.9 less than or equal to x less than or equal to 1 (i.e., on the Mn4+-rich side), the existence at low temperature of C- and G-type antiferromagnetism. The absence of ferromagnetic-antiferromagnetic competition explains that magnetoresistante properties are not observed in this system, in contrast to Mn4+-rich Ln(1-x)Ca(x)MnO(3) systems.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000087136800039 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 24 Open Access
Notes Approved Most recent IF: 9.466; 2000 IF: 3.580
Call Number (down) UA @ lucian @ c:irua:103454 Serial 3198
Permanent link to this record
 

 
Author Lazoryak, B.I.; Baryshnikova, O.V.; Stefanovich, S.Y.; Malakho, A.P.; Morozov, V.A.; Belik, A.A.; Leonidov, I.A.; Leonidova, O.N.; Van Tendeloo, G.
Title Ferroelectric and ionic-conductive properties of nonlinear-optical vanadate, Ca9Bi(VO4)7 Type A1 Journal article
Year 2003 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 15 Issue 15 Pages 3003-3010
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Structural, chemical, and physical properties of whitlockite-type Ca9Bi(VO4)(7) were studied by X-ray powder diffraction (XRD), electron diffraction (ED), second-harmonic generation (SHG), thermogravimetry, differential scanning calorimetry, dielectric, and electrical-conductivity measurements. A new phase-transition of the ferroelectric type was found in Ca9Bi(VO4)(7) with a transition temperature, T-c of 1053 +/- 3 K. The polar phase, beta-Ca9Bi(VO4)(7), is stable below T-c down to at least 160 K. The centrosymmetric beta'-phase is stable above T-c up to 1273 +/- 5 K. Above 1273 K, it decomposes to give BiVO4 and whitlockite-type solid solutions of Ca9+1.5xBi1-x(VO4)(7). The beta<---->beta' phase transition is reversible and of second order. Electrical conductivity of beta'-Ca9Bi(VO4)(7) is rather high (sigma = 0.6 x 10(-3) S/cm at 1200 K) and obeys the Arrhenius law with an activation energy of 1.0 eV. Structure parameters of Ca9Bi(VO4)(7) are refined by the Rietveld method from XRD data measured at room temperature (space group R3c; Z = 6; a = 10.8992(1) Angstrom, c = 38.1192(4) Angstrom, and V = 3921.6(1) Angstrom(3); R-wp = 3.06% and R-p = 2.36%). Bi3+ ions together with Ca2+ ions are statistically distributed among the M1, M2, M3, and M5 sites. Ca9Bi(VO4)(7) has a SHG efficiency of about 140 times that of quartz. Through the powder SHG measurements, we estimated the nonlinear optical susceptibility, Digital, at about 6.1-7.2 pm/V. This value for Ca9Bi(VO4)(7) is comparable with that for known nonlinear optical materials such as LiNbO3 and LiTaO3.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000184379900024 Publication Date 2003-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 51 Open Access
Notes Iup V-1; Dwtc Approved Most recent IF: 9.466; 2003 IF: 4.374
Call Number (down) UA @ lucian @ c:irua:103284 Serial 1179
Permanent link to this record
 

 
Author Linssen, T.; Cassiers, K.; Cool, P.; Lebedev, O.; Whittaker, A.; Vansant, E.F.
Title Physicochemical and structural characterization of mesoporous aluminosilicates synthesized from leached saponite with additional aluminum incorporation Type A1 Journal article
Year 2003 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 15 Issue 25 Pages 4863-4873
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract A thorough investigation was performed on the physical (mechanical, thermal, and hydrothermal stability) and chemical (ion exchange capacity and silanol number) characteristics of aluminosilicate FSMs, synthesized via a new successful short-time synthesis route using leached saponite and a low concentration of CTAB. Moreover, the influence of an additional Al incorporation, utilizing different aluminum sources, on the structure of the FSM derived from saponite is studied. A mesoporous aluminosilicate with a low Si/Al ratio of 12.8 is synthesized, and still has a very large surface area of 1130 m(2)/g and pore volume of 0.92 cm(3)/g. The aluminum-containing samples all have a high cation exchange capacity of around 1 mmol/9 while they still have a silanol number of about 0.9 OH/nm(2); both characteristics being interesting for high-yield postsynthesis modification reactions. Finally, a study is performed on the transformation of the aluminosilicates into their Bronsted acid form via the exchange with ammonium ions and a consecutive heat treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000187250800026 Publication Date 2003-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access
Notes Approved Most recent IF: 9.466; 2003 IF: 4.374
Call Number (down) UA @ lucian @ c:irua:103265 Serial 2618
Permanent link to this record
 

 
Author Recham, N.; Casas-Cabanas, M.; Cabana, J.; Grey, C.P.; Jumas, J.-C.; Dupont, L.; Armand, M.; Tarascon, J.-M.
Title Formation of a complete solid solution between the triphylite and fayalite olivine structures Type A1 Journal article
Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 20 Issue 21 Pages 6798-6809
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The recent infatuation for LiFePO4 as positive electrode material in Li-ion batteries has prompted a renewed interest in olivine-type structures, with a view to enhance their conduction proper-ties. We show that the dual substitution of Li for Fe and of P for Si in the olivine LiFePO4 phase leads to a complete solid solution Li1-xFe1+xP1-xSixO4 as deduced from combined X-ray diffraction, Mossbauer, and NMR experiments. Our findings challenge the common belief that the anionic network cannot be substituted. Moreover. it is found that such a substitution promotes Li intersite mixing between the olivine M1 and M2 sites. Such mixing, together with the worsening of the conducting properties of the dually substituted samples, is believed to be responsible for the poor electrochemical performances of the member's series. Beyond x = 0.20, the samples were electrochemically inactive. While the current materials are disappointing application-wise, such a study provides clues to the rich chemistry remaining to be unveiled with olivine-type structures in particular and polyanionic compounds in general.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000260658100036 Publication Date 2008-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 35 Open Access
Notes Approved Most recent IF: 9.466; 2008 IF: 5.046
Call Number (down) UA @ lucian @ c:irua:103082 Serial 1255
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.; Van Rompaey, S.; Perkisas, T.; Filinchuk, Y.; Van Tendeloo, G.
Title Crystal structure of a lightweight borohydride from submicrometer crystallites by precession electron diffraction Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue 17 Pages 3401-3405
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We demonstrate that precession electron diffraction at low-dose conditions can be successfully applied for structure analysis of extremely electron-beam-sensitive materials. Using LiBH4 as a test material, complete structural information, including the location of the H atoms, was obtained from submicrometer-sized crystallites. This demonstrates for the first time that, where conventional transmission electron microscopy techniques fail, quantitative precession electron diffraction can provide structural information from submicrometer particles of such extremely electron-beam-sensitive materials as complex lightweight hydrides. We expect the precession electron diffraction technique to be a useful tool for nanoscale investigations of thermally unstable lightweight hydrogen-storage materials.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000308833400012 Publication Date 2012-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 17 Open Access
Notes Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number (down) UA @ lucian @ c:irua:101845 Serial 567
Permanent link to this record
 

 
Author Adamson, P.; Hadermann, J.; Smura, C.F.; Rutt, O.J.; Hyett, G.; Free, D.G.; Clarke, S.J.
Title Competing magnetic structures and the evolution of copper ion/vacancy ordering with composition in the manganite oxide chalcogenides Sr2MnO2Cu1.5(S1-xSex)2 Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue 14 Pages 2802-2816
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The series Sr2MnO2Cu1.5(S1-xSex)(2) (0 <= x <= 1) contains mixed-valent Mn ions (Mn2+/Mn3+) in MnO2 sheets which are separated by copper-deficient antifluorite-type Cu(2-delta)Ch(2) layers with delta similar to 0.5. The compounds crystallize in the structure type first described for Sr2Mn3Sb2O2 and are described in the I4/mmm space group at ambient temperatures. Below about 250 K, ordering between Cu+ ions and tetrahedral vacancies occurs which is long-range and close to complete in the sulfide-containing end member of the series Sr2MnO2Cu1.5S2 but which occurs over shorter length scales as the selenide content increases. The superstructure is an orthorhombic 2 root 2a x root 2a x c expansion in Ibam of the room temperature cell. For x > 0.3 there are no superstructure reflections evident in the X-ray or neutron diffraction patterns, and the I4/mmm description is valid for the average structure at all temperatures. However, in the pure selenide end member, Sr2MnO2Cu1.5Se2, diffuse scattering in electron diffractograms and modulation in high resolution lattice image profiles may arise from short-range Cu/vacancy order. All members of the series exhibit long-range magnetic order. In the sulfide-rich end member and in compounds with x < 0.1 in the formula Sr2MnO2Cu1.5(S1-xSex)(2), which show well developed superstructures due to long-range Cu/vacancy order, the magnetic structure has a (1/4 1/4 0) propagation vector in which ferromagnetic zigzag chains of Mn moments in the MnO2 sheets are coupled antiferromagnetically in an arrangement described as the CE-type magnetic structure and found in many mixed-valent perovskite and Ruddlesden-Popper type oxide manganites. In these cases the magnetic cell is an a x 2b x c expansion of the low temperature Ibam structural cell. For x >= 0.2 in the formula Sr2MnO2Cu1.5(S1-xSex)(2) the magnetic structure has a (0 0 0) propagation vector and is similar to the A-type structure, also commonly adopted by some perovskite-related manganites, in which the Mn moments in the MnO2 sheets are coupled ferromagnetically and long-range antiferromagnetic order results from antiferromagnetic coupling between planes. In the region of the transition between the two different structural and magnetic long-range ordering schemes (0.1 < x < 0.2) the two magnetic structures coexist in the same sample. The evolution of the competition between magnetic ordering schemes and the length scale of the structural order with composition in Sr2MnO2Cu1.5(S1-xSex)(2) suggest that the changes in magnetic and structural order are related consequences of the introduction of chemical disorder.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000306674200024 Publication Date 2012-06-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access
Notes Esteem 026019 Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number (down) UA @ lucian @ c:irua:100839 Serial 435
Permanent link to this record
 

 
Author Hao, Y.; Velpula, G.; Kaltenegger, M.; Bodlos, W.R.; Vibert, F.; Mali, K.S.; De Feyter, S.; Resel, R.; Geerts, Y.H.; Van Aert, S.; Beljonne, D.; Lazzaroni, R.
Title From 2D to 3D : bridging self-assembled monolayers to a substrate-induced polymorph in a molecular semiconductor Type A1 Journal article
Year 2022 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 34 Issue 5 Pages 2238-2248
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this study, a new bottom-up approach is proposed to predict the crystal structure of the substrate-induced polymorph (SIP) of an archetypal molecular semiconductor. In spite of intense efforts, the formation mechanism of SIPs is still not fully understood, and predicting their crystal structure is a very delicate task. Here, we selected lead phthalocyanine (PbPc) as a prototypical molecular material because it is a highly symmetrical yet nonplanar molecule and we demonstrate that the growth and crystal structure of the PbPc SIPs can be templated by the corresponding physisorbed self-assembled molecular networks (SAMNs). Starting from SAMNs of PbPc formed at the solution/graphite interface, the structural and energetic aspects of the assembly were studied by a combination of in situ scanning tunneling microscopy and multiscale computational chemistry approach. Then, the growth of a PbPc SIP on top of the physisorbed monolayer was modeled without prior experimental knowledge, from which the crystal structure of the SIP was predicted. The theoretical prediction of the SIP was verified by determining the crystal structure of PbPc thin films using X-ray diffraction techniques, revealing the formation of a new polymorph of PbPc on the graphite substrate. This study clearly illustrates the correlation between the SAMNs and SIPs, which are traditionally considered as two separate but conceptually connected research areas. This approach is applicable to molecular materials in general to predict the crystal structure of their SIPs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000812125800001 Publication Date 2022-02-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.6 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 8.6
Call Number (down) UA @ admin @ c:irua:189086 Serial 7084
Permanent link to this record
 

 
Author Li, W.; Tong, W.; Yadav, A.; Bladt, E.; Bals, S.; Funston, A.M.; Etheridge, J.
Title Shape control beyond the seeds in gold nanoparticles Type A1 Journal article
Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater
Volume 33 Issue 23 Pages 9152-9164
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In typical seed-mediated syntheses of metal nanocrystals, the shape of the nanocrystal is determined largely by the seed nucleation environment and subsequent growth environment (where “environment” refers to the chemical environment, including the surfactant and additives). In this approach, crystallinity is typically determined by the seeds, and surfaces are controlled by the environment(s). However, surface energies, and crystallinity, are both influenced by the choice of environment(s). This limits the permutations of crystallinity and surface facets that can be mixed and matched to generate new nanocrystal morphologies. Here, we control post-seed growth to deliberately incorporate twin planes during the growth stage to deliver new final morphologies, including twinned cubes and bipyramids from single-crystal seeds. The nature and number of twin planes, together with surfactant control of facet growth, define the final nanoparticle morphology. Moreover, by breaking symmetry, the twin planes introduce new facet orientations. This additional mechanism opens new routes for the synthesis of different morphologies and facet orientations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000753956100012 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 3 Open Access Not_Open_Access
Notes This work was supported by the Australian Research Council (ARC) Grants DP160104679 and CE170100026 and used microscopes at the Monash Centre for Electron Microscopy funded by ARC Grants LE0454166, LE110100223, and LE140100104. W.L. thanks the support of the Australian Government Research Training Program (RTP) scholarship. W.T. thanks the Australian Department of Education and Monash University for the IPRS and APA scholarships. E.B. acknowledges financial support and a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). The authors thank Dr. Matthew Weyland and Dr. Tim Peterson for helpful discussions. A.Y. thanks the support from Post Graduation Publication Award (PPA) scholarship from Monash University. Approved Most recent IF: 9.466
Call Number (down) UA @ admin @ c:irua:187229 Serial 7065
Permanent link to this record