toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Peeters, H.; Keulemans, M.; Nuyts, G.; Vanmeert, F.; Li, C.; Minjauw, M.; Detavernier, C.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. url  doi
openurl 
  Title Plasmonic gold-embedded TiO2 thin films as photocatalytic self-cleaning coatings Type A1 Journal article
  Year 2020 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 267 Issue 267 Pages 118654  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Transparent photocatalytic TiO2 thin films hold great potential in the development of self-cleaning glass sur-

faces, but suffer from a poor visible light response that hinders the application under actual sunlight. To alleviate this problem, the photocatalytic film can be modified with plasmonic nanoparticles that interact very effectively with visible light. Since the plasmonic effect is strongly concentrated in the near surroundings of the nano- particle surface, an approach is presented to embed the plasmonic nanostructures in the TiO2 matrix itself, rather than deposit them loosely on the surface. This way the interaction interface is maximised and the plasmonic effect can be fully exploited. In this study, pre-fabricated gold nanoparticles are made compatible with the organic medium of a TiO2 sol-gel coating suspension, resulting in a one-pot coating suspension. After spin coating, homogeneous, smooth, highly transparent and photoactive gold-embedded anatase thin films are ob- tained.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518865300002 Publication Date 2020-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.1 Times cited 57 Open Access OpenAccess  
  Notes H.P. is grateful to the Research Foundation Flanders (FWO) for an aspirant PhD scholarship. Approved Most recent IF: 22.1; 2020 IF: 9.446  
  Call Number (down) EMAT @ emat @c:irua:165616 Serial 5446  
Permanent link to this record
 

 
Author He, L.; Wang, H.; Chen, L.; Wang, X.; Xie, H.; Jiang, C.; Li, C.; Elibol, K.; Meyer, J.; Watanabe, K.; Taniguchi, T.; Wu, Z.; Wang, W.; Ni, Z.; Miao, X.; Zhang, C.; Zhang, D.; Wang, H.; Xie, X. url  doi
openurl 
  Title Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment Type A1 Journal article
  Year 2019 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 10 Issue 1 Pages 2815  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Atomically thin hexagonal boron nitride (h-BN) is often regarded as an elastic film that is impermeable to gases. The high stabilities in thermal and chemical properties allow h-BN to serve as a gas barrier under extreme conditions. Here, we demonstrate the isolation of hydrogen in bubbles of h-BN via plasma treatment. Detailed characterizations reveal that the substrates do not show chemical change after treatment. The bubbles are found to withstand thermal treatment in air, even at 800°C. Scanning transmission electron microscopy investigation shows that the h-BN multilayer has a unique aligned porous stacking nature, which is essential for the character of being transparent to atomic hydrogen but impermeable to hydrogen molecules. In addition, we successfully demonstrated the extraction of hydrogen gases from gaseous compounds or mixtures containing hydrogen element. The successful production of hydrogen bubbles on h-BN flakes has potential for further application in nano/ micro-electromechanical systems and hydrogen storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000473002500004 Publication Date 2019-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 8 Open Access Not_Open_Access  
  Notes The work was partially supported by the National Key R&D program (Grant No. 2017YFF0206106), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), the National Science Foundation of China (Grant Nos. 51772317, 51302096), the Science and Technology Commission of Shanghai Municipality (Grant No. 16ZR1442700), the Hubei Provincial Natural Science Foundation of China (Grant No. ZRMS2017000370), and the Fundamental Research Funds of Wuhan City (No. 2016060101010075). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and JSPS KAKENHI Grant Numbers JP15K21722. C.L. acknowledges support from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grants No. 656378—Interfacial Reactions. L.H. acknowledges financial support from the program of China Scholarships Council (No. 201706160037). H.W. and D.Z. thank Y. Gu, Y. Ma, X. Chen (Shanghai Institute of Technical Physics, Chinese Academy of Sciences) for FTIR spectra measurement. L.C. and L.H. thank Q. Liu and Z. Liu (Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences) for measurement in XPS spectra and mass spectra. Approved Most recent IF: 12.124  
  Call Number (down) EMAT @ emat @c:irua:160714 Serial 5191  
Permanent link to this record
 

 
Author Yan, Y.; Zhou, X.; Jin, H.; Li, C.-Z.; Ke, X.; Van Tendeloo, G.; Liu, K.; Yu, D.; Dressel, M.; Liao, Z.-M. url  doi
openurl 
  Title Surface-Facet-Dependent Phonon Deformation Potential in Individual Strained Topological Insulator Bi2Se3 Nanoribbons Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue 9 Pages 10244-10251  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Strain is an important method to tune the properties of topological insulators. For example, compressive strain can induce superconductivity in Bi2Se3 bulk material. Topological insulator nanostructures are the superior candidates to utilize the unique surface states due to the large surface to volume ratio. Therefore, it is highly desirable to monitor the local strain effects in individual topological insulator nanostructures. Here, we report the systematical micro-Raman spectra of single strained Bi2Se3 nanoribbons with different thicknesses and different surface facets, where four optical modes are resolved in both Stokes and anti-Stokes Raman spectral lines. A striking anisotropy of the strain dependence is observed in the phonon frequency of strained Bi2Se3 nanoribbons grown along the ⟨112̅0⟩ direction. The frequencies of the in-plane Eg2 and out-of-plane A1g1 modes exhibit a nearly linear blue-shift against bending strain when the nanoribbon is bent along the ⟨112̅0⟩ direction with the curved {0001} surface. In this case, the phonon deformation potential of the Eg2 phonon for 100 nm-thick Bi2Se3 nanoribbon is up to 0.94 cm–1/%, which is twice of that in Bi2Se3 bulk material (0.52 cm–1/%). Our results may be valuable for the strain modulation of individual topological insulator nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000363915300079 Publication Date 2015-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 14 Open Access  
  Notes Y.Y. would like to thank Xuewen Fu for helpful discussions. This work was supported by MOST (Nos. 2013CB934600, 2013CB932602) and NSFC (Nos. 11274014, 11234001). Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number (down) c:irua:129216 Serial 3963  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: