|   | 
Details
   web
Records
Author Amin-Ahmadi, B.; Idrissi, H.; Galceran, M.; Colla, M.S.; Raskin, J.P.; Pardoen, T.; Godet, S.; Schryvers, D.
Title Effect of deposition rate on the microstructure of electron beam evaporated nanocrystalline palladium thin films Type A1 Journal article
Year 2013 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 539 Issue Pages 145-150
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The influence of the deposition rate on the formation of growth twins in nanocrystalline Pd films deposited by electron beam evaporation is investigated using transmission electron microscopy. Statistical measurements prove that twin boundary (TB) density and volume fraction of grains containing twins increase with increasing deposition rate. A clear increase of the dislocation density was observed for the highest deposition rate of 5 Å/s, caused by the increase of the internal stress building up during deposition. Based on crystallographic orientation indexation using transmission electron microscopy, it can be concluded that a {111} crystallographic texture increases with increasing deposition rate even though the {101} crystallographic texture remains dominant. Most of the TBs are fully coherent without any residual dislocations. However, for the highest deposition rate (5 Å/s), the coherency of the TBs decreases significantly as a result of the interaction of lattice dislocations emitted during deposition with the growth TBs. The analysis of the grain boundary character of different Pd films shows that an increasing fraction of high angle grain boundaries with misorientation angles around 5565° leads to a higher potential for twin formation.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000321111100025 Publication Date 2013-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 13 Open Access
Notes Fwo Approved Most recent IF: 1.879; 2013 IF: 1.867
Call Number (down) UA @ lucian @ c:irua:109268 Serial 807
Permanent link to this record
 

 
Author Comrie, C.M.; Ahmed, A.; Smeets, D.; Demeulemeester, J.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Vantomme, A.
Title Effect of high temperature deposition on CoSi2 phase formation Type A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 113 Issue 23 Pages 234902-234908
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This paper discusses the nucleation behaviour of the CoSi to CoSi2 transformation from cobalt silicide thin films grown by deposition at elevated substrate temperatures ranging from 375 °C to 600 °C. A combination of channelling, real-time Rutherford backscattering spectrometry, real-time x-ray diffraction, and transmission electron microscopy was used to investigate the effect of the deposition temperature on the subsequent formation temperature of CoSi2, its growth behaviour, and the epitaxial quality of the CoSi2 thus formed. The temperature at which deposition took place was observed to exert a significant and systematic influence on both the formation temperature of CoSi2 and its growth mechanism. CoSi films grown at the lowest temperatures were found to increase the CoSi2 nucleation temperature above that of CoSi2 grown by conventional solid phase reaction, whereas the higher deposition temperatures reduced the nucleation temperature significantly. In addition, a systematic change in growth mechanism of the subsequent CoSi2 growth occurs as a function of deposition temperature. First, the CoSi2 growth rate from films grown at the lower reactive deposition temperatures is substantially lower than that grown at higher reactive deposition temperatures, even though the onset of growth occurs at a higher temperature, Second, for deposition temperatures below 450 °C, the growth appears columnar, indicating nucleation controlled growth. Elevated deposition temperatures, on the other hand, render the CoSi2 formation process layer-by-layer which indicates enhanced nucleation of the CoSi2 and diffusion controlled growth. Our results further indicate that this observed trend is most likely related to stress and changes in microstructure introduced during reactive deposition of the CoSi film. The deposition temperature therefore provides a handle to tune the CoSi2 growth mechanism.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000321011700077 Publication Date 2013-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 2 Open Access
Notes Fwo; Countatoms Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number (down) UA @ lucian @ c:irua:109266 Serial 815
Permanent link to this record
 

 
Author Vandenberghe, W.G.; Verhulst, A.S.; Sorée, B.; Magnus, W.; Groeseneken, G.; Smets, Q.; Heyns, M.; Fischetti, M.V.
Title Figure of merit for and identification of sub-60 mV/decade devices Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 102 Issue 1 Pages 013510-13514
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A figure of merit I60 is proposed for sub-60 mV/decade devices as the highest current where the input characteristics exhibit a transition from sub- to super-60 mV/decade behavior. For sub-60 mV/decade devices to be competitive with metal-oxide-semiconductor field-effect devices, I60 has to be in the 1-10 μA/μm range. The best experimental tunnel field-effect transistors (TFETs) in the literature only have an I60 of 6×10-3 μA/μm but using theoretical simulations, we show that an I60 of up to 10 μA/μm should be attainable. It is proven that the Schottky barrier FET (SBFET) has a 60 mV/decade subthreshold swing limit while combining a SBFET and a TFET does improve performance.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000313646500132 Publication Date 2013-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 64 Open Access
Notes ; William G. Vandenberghe gratefully acknowledges the support of a Ph.D. stipend from IWT-Vlaanderen. The authors thank Danielle Leonelli, Lars-Ake Ragnarsson, and Krishna Bhuwalka for useful discussions. This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number (down) UA @ lucian @ c:irua:109262 Serial 1192
Permanent link to this record
 

 
Author Abakumov, A.M.; Erni, R.; Tsirlin, A.A.; Rossell, M.D.; Batuk, D.; Nénert, G.; Van Tendeloo, G.
Title Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3-xTiO3 perovskites Type A1 Journal article
Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 25 Issue 13 Pages 2670-2683
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Perovskite-structured titanates with layered A-site ordering form remarkably complex superstructures. Using transmission electron microscopy, synchrotron X-ray and neutron powder diffraction, and ab initio structure relaxation, we present the structural solution of the incommensurately modulated Li3xNd2/3xTiO3 perovskites (x = 0.05, superspace group Pmmm(α1,1/2,0)000(1/2,β2 0)000, a = 3.831048(5) Å, b = 3.827977(4) Å, c = 7.724356(8) Å, q1 = 0.45131(8)a* + 1/2b*, q2 = 1/2a* + 0.41923(4)b*). In contrast to earlier conjectures on the nanoscale compositional phase separation in these materials, all peculiarities of the superstructure can be understood in terms of displacive modulations related to an intricate octahedral tilting pattern. It involves fragmenting the pattern of the out-of-phase tilted TiO6 octahedra around the a- and b-axes into antiphase domains, superimposed on the pattern of domains with either pronounced or suppressed in-phase tilt component around the c-axis. The octahedral tilting competes with the second order JahnTeller distortion of the TiO6 octahedra. This competition is considered as the primary driving force for the modulated structure. The A cations are suspected to play a role in this modulation affecting it mainly through the tolerance factor and the size variance. The reported crystal structure calls for a revision of the structure models proposed for the family of layered A-site ordered perovskites exhibiting a similar type of modulated structure.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000321809700015 Publication Date 2013-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 23 Open Access
Notes Countatoms Approved Most recent IF: 9.466; 2013 IF: 8.535
Call Number (down) UA @ lucian @ c:irua:109216 Serial 1292
Permanent link to this record
 

 
Author Kirsanova, M.A.; Mori, T.; Maruyama, S.; Abakumov, A.M.; Van Tendeloo, G.; Olenev, A.; Shevelkov, A.V.
Title Cationic clathrate of type-III Ge172-xPxTey (y\approx21,5, x\approx2y) : synthesis, crystal structure and thermoelectric properties Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 52 Issue 14 Pages 8272-8279
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A first germanium-based cationic clathrate of type-III, Ge129.3P42.7Te21.53, was synthesized and structurally characterized (space group P42/mnm, a = 19.948(3) Å, c = 10.440(2) Å, Z = 1). In its crystal structure, germanium and phosphorus atoms form three types of polyhedral cages centered with Te atoms. The polyhedra share pentagonal and hexagonal faces to form a 3D framework. Despite the complexity of the crystal structure, the Ge129.3P42.7Te21.53 composition corresponds to the Zintl counting scheme with a good accuracy. Ge129.3P42.7Te21.53 demonstrates semiconducting/insulating behavior of electric resistivity, high positive Seebeck coefficient (500 μV K1 at 300 K), and low thermal conductivity (<0.92 W m1 K1) within the measured temperature range.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000322087100052 Publication Date 2013-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 3 Open Access
Notes Countatoms Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number (down) UA @ lucian @ c:irua:109214 Serial 301
Permanent link to this record
 

 
Author Abakumov, A.M.; Batuk, M.; Tsirlin, A.A.; Tyablikov, O.A.; Sheptyakov, D.V.; Filimonov, D.S.; Pokholok, K.V.; Zhidal, V.S.; Rozova, M.G.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G.;
Title Structural and magnetic phase transitions in the AnBnO3n-2 anion-deficient perovskites Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 52 Issue 14 Pages 7834-7843
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Novel anion-deficient perovskite-based ferrites Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 were synthesized by solid-state reaction in air. Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 belong to the perovskite-based AnBnO3n2 homologous series with n = 5 and 6, respectively, with a unit cell related to the perovskite subcell ap as ap√2 × ap × nap√2. Their structures are derived from the perovskite one by slicing it with 1/2[110]p(1̅01)p crystallographic shear (CS) planes. The CS operation results in (1̅01)p-shaped perovskite blocks with a thickness of (n 2) FeO6 octahedra connected to each other through double chains of edge-sharing FeO5 distorted tetragonal pyramids which can adopt two distinct mirror-related configurations. Ordering of chains with a different configuration provides an extra level of structure complexity. Above T ≈ 750 K for Pb2Ba2BiFe5O13 and T ≈ 400 K for Pb1.5Ba2.5Bi2Fe6O16 the chains have a disordered arrangement. On cooling, a second-order structural phase transition to the ordered state occurs in both compounds. Symmetry changes upon phase transition are analyzed using a combination of superspace crystallography and group theory approach. Correlations between the chain ordering pattern and octahedral tilting in the perovskite blocks are discussed. Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 undergo a transition into an antiferromagnetically (AFM) ordered state, which is characterized by a G-type AFM ordering of the Fe magnetic moments within the perovskite blocks. The AFM perovskite blocks are stacked along the CS planes producing alternating FM and AFM-aligned FeFe pairs. In spite of the apparent frustration of the magnetic coupling between the perovskite blocks, all n = 4, 5, 6 AnFenO3n2 (A = Pb, Bi, Ba) feature robust antiferromagnetism with similar Néel temperatures of 623632 K.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000322087100006 Publication Date 2013-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 10 Open Access
Notes Countatoms Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number (down) UA @ lucian @ c:irua:109213 Serial 3196
Permanent link to this record
 

 
Author Batuk, M.
Title New perovskite-based homologous series : AnBnO3n-2 and An+1BnO3n-1Cl Type Doctoral thesis
Year 2013 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number (down) UA @ lucian @ c:irua:109208 Serial 2331
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A.
Title The effect of the sampling cone position and diameter on the gas flow dynamics in an ICP Type A1 Journal article
Year 2013 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 28 Issue 9 Pages 1485-1492
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An inductively coupled plasma, connected to a sampling cone of a mass spectrometer, is computationally investigated. The effects of the sampler orifice diameter (ranging from 1 to 2 mm) and distance of the sampler cone from the load coil (ranging from 7 to 17 mm) are studied. An increase in sampler orifice diameter leads to a higher central plasma temperature at the place of the sampler, as well as more efficient gas transfer through the sampler, by reducing the interaction of the plasma gas with the sampling cone. However, the flow velocity at the sampler position is found to be independent of the sampler orifice diameter. Moreover, by changing the sampler orifice diameter, we can control whether only the central gas or also the auxiliary gas can exit through the sampler. Finally, with the increasing distance of the sampler from the load coil, the plasma temperature at the place of the sampler decreases slightly, which might also have consequences for the ion generation and transport through the sampling cone.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000322922300016 Publication Date 2013-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 14 Open Access
Notes Approved Most recent IF: 3.379; 2013 IF: 3.396
Call Number (down) UA @ lucian @ c:irua:109204 Serial 848
Permanent link to this record
 

 
Author Mourdikoudis, S.; Chirea, M.; Altantzis, T.; Pastoriza-Santos, I.; Perez-Juste, J.; Silva, F.; Bals, S.; Liz-Marzan, L.M.
Title Dimethylformamide-mediated synthesis of water-soluble platinum nanodendrites for ethanol oxidation electrocatalysis Type A1 Journal article
Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 5 Issue 11 Pages 4776-4784
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Herein we describe the synthesis of water-soluble platinum nanodendrites in dimethylformamide (DMF), in the presence of polyethyleneimine (PEI) as a stabilizing agent. The average size of the dendrites is in the range of 20-25 nm while their porosity can be tuned by modifying the concentration of the metal precursor. Electron tomography revealed different crystalline orientations of nanocrystallites in the nanodendrites and allowed a better understanding of their peculiar branching and porosity. The high surface area of the dendrites (up to 22 m(2) g(-1)) was confirmed by BET measurements, while X-ray diffraction confirmed the abundance of high-index facets in the face-centered-cubic crystal structure of Pt. The prepared nanodendrites exhibit excellent performance in the electrocatalytic oxidation of ethanol in alkaline solution. Sensing, selectivity, cycleability and great tolerance toward poisoning were demonstrated by cyclic voltammetry measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000319008700028 Publication Date 2013-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 50 Open Access
Notes Esf; 262348 Esmi Approved Most recent IF: 7.367; 2013 IF: 6.739
Call Number (down) UA @ lucian @ c:irua:109060 Serial 705
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Costamagna, S.; Peeters, F.M.
Title Thermomechanical properties of a single hexagonal boron nitride sheet Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 18 Pages 184106-184107
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using atomistic simulations we investigate the thermodynamical properties of a single atomic layer of hexagonal boron nitride (h-BN). The thermal induced ripples, heat capacity, and thermal lattice expansion of large scale h-BN sheets are determined and compared to those found for graphene (GE) for temperatures up to 1000 K. By analyzing the mean-square height fluctuations < h(2)> and the height-height correlation function H(q) we found that the h-BN sheet is a less stiff material as compared to graphene. The bending rigidity of h-BN (i) is about 16% smaller than the one of GE at room temperature (300 K), and (ii) increases with temperature as in GE. The difference in stiffness between h-BN and GE results in unequal responses to external uniaxial and shear stress and different buckling transitions. In contrast to a GE sheet, the buckling transition of a h-BN sheet depends strongly on the direction of the applied compression. The molar heat capacity, thermal-expansion coefficient, and Gruneisen parameter are estimated to be 25.2 J mol(-1) K-1, 7.2 x 10(-6) K-1, and 0.89, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000318653800001 Publication Date 2013-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 80 Open Access
Notes ; We thank K. H. Michel and D. A. Kirilenko for their useful comments on the manuscript. M. N.-A. was supported by EU-Marie Curie IIF Postdoctorate Fellowship No. 299855. S. Costamagna was supported by the Belgian Science Foundation (BELSPO). This work was supported by the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem program of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number (down) UA @ lucian @ c:irua:109010 Serial 3638
Permanent link to this record
 

 
Author Shapoval, O.; Huehn, S.; Verbeeck, J.; Jungbauer, M.; Belenchuk, A.; Moshnyaga, V.
Title Interface-controlled magnetism and transport of ultrathin manganite films Type A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 113 Issue 17 Pages 17c711-3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report ferromagnetic, T-C = 240 K, and metallic, T-MI = 250 K, behaviors of a three unit cell thick interface engineered lanthanum manganite film, grown by metalorganic aerosol deposition technique on SrTiO3(100) substrates. Atomically resolved electron microscopy and chemical analysis show that ultrathin manganite films start to grow with La-O layer on a strongly Mn/Ti-intermixed interface, engineered by an additional deposition of 2 u.c. of Sr-Mn-O. Such interface engineering results in a hole-doped manganite layer and stabilizes ferromagnetism and metallic conductivity down to the thickness of d = 3 u.c. The films with d = 8 u.c. demonstrate a bulk-like transport behavior with T-MI similar to T-C = 310 – 330 K. (C) 2013 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000319292800195 Publication Date 2013-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 7 Open Access
Notes Ifox; Countatoms; Vortex; Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number (down) UA @ lucian @ c:irua:109009UA @ admin @ c:irua:109009 Serial 1692
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M.
Title Four-band tunneling in bilayer graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 20 Pages 205427-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The conductance, the transmission, and the reflection probabilities through rectangular potential barriers and p-n junctions are obtained for bilayer graphene taking into account the four bands of the energy spectrum. We have evaluated the importance of the skew hopping parameters gamma(3) and gamma(4) to these properties and show that for energies E > gamma(1)/100 their effect is negligible. For high energies two modes of propagation exist and we investigate scattering between these modes. For perpendicular incidence both propagation modes are decoupled, and scattering between them is forbidden. This extends the concept of pseudospin as defined within the two-band approximation to a four-band model and corresponds to the (anti) symmetry of the wave functions under in-plane mirroring. New transmission resonances are found that appear as sharp peaks in the conductance which are absent in the two-band approximation. The application of an interlayer bias to the system (1) breaks the pseudospin structure, (2) opens a band gap that results in a distinct feature of suppressed transmission in the conductance, and (3) breaks the angular symmetry with respect to normal incidence in the transmission and reflection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319282000002 Publication Date 2013-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 37 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant research grant to B. Van Duppen and the Methusalem Programme of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number (down) UA @ lucian @ c:irua:109001 Serial 1269
Permanent link to this record
 

 
Author Milovanovic, S.P.; Masir, M.R.; Peeters, F.M.
Title Graphene hall bar with an asymmetric pn-junction Type A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 113 Issue 19 Pages 193701-193708
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigated the magnetic field dependence of the Hall and the bend resistances in the ballistic regime for a single layer graphene Hall bar structure containing a pn-junction. When both regions are n-type the Hall resistance dominates and Hall type of plateaus are formed. These plateaus occur as a consequence of the restriction on the angle imposed by Snell's law allowing only electrons with a certain initial angles to transmit though the potential step. The size of the plateau and its position is determined by the position of the potential interface as well as the value of the applied potential. When the second region is p-type, the bend resistance dominates, which is asymmetric in field due to the presence of snake states. Changing the position of the pn-interface in the Hall bar strongly affects these states and therefore the bend resistance is also changed. Changing the applied potential, we observe that the bend resistance exhibits a peak around the charge-neutrality point (CNP), which is independent of the position of the pn-interface, while the Hall resistance shows a sign reversal when the CNP is crossed, which is in very good agreement with a recent experiment [J. R. Williams and C. M. Marcus, Phys. Rev. Lett. 107, 046602 (2011)].
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000319295200022 Publication Date 2013-05-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 7 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. We acknowledge fruitful discussions with M. Barbier. Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number (down) UA @ lucian @ c:irua:108999 Serial 1371
Permanent link to this record
 

 
Author Van Duppen, B.; Sena, S.H.R.; Peeters, F.M.
Title Multiband tunneling in trilayer graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 19 Pages 195439-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic tunneling properties of the two stable forms of trilayer graphene (TLG), rhombohedral ABC and Bernal ABA, are examined for p-n and p-n-p junctions as realized by using a single gate (SG) or a double gate (DG). For the rhombohedral form, due to the chirality of the electrons, the Klein paradox is found at normal incidence for SG devices, while at high-energy interband scattering between additional propagation modes can occur. The electrons in Bernal ABA TLG can have a monolayer- or bilayer-like character when incident on a SG device. Using a DG, however, both propagation modes will couple by breaking the mirror symmetry of the system, which induces intermode scattering and resonances that depend on the width of the DG p-n-p junction. For ABC TLG the DG opens up a band gap which suppresses Klein tunneling. The DG induces also an unexpected asymmetry in the tunneling angle for single-valley electrons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319281700004 Publication Date 2013-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-VI) by an aspirant research grant to B. Van Duppen and the Methusalem Programme of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number (down) UA @ lucian @ c:irua:108998 Serial 2216
Permanent link to this record
 

 
Author Sree, S.P.; Dendooven, J.; Masschaele, K.; Hamed, H.M.; Deng, S.; Bals, S.; Detavernier, C.; Martens, J.A.
Title Synthesis of uniformly dispersed anatase nanoparticles inside mesoporous silica thin films via controlled breakup and crystallization of amorphous TiO2 deposited using atomic layer deposition Type A1 Journal article
Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 5 Issue 11 Pages 5001-5008
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Amorphous titanium dioxide was introduced into the pores of mesoporous silica thin films with 75% porosity and 12 nm average pore diameter via Atomic Layer Deposition (ALD) using alternating pulses of tetrakis(dimethylamino)titanium and water. Calcination provoked fragmentation of the deposited amorphous TiO2 phase and its crystallization into anatase nanoparticles inside the nanoporous film. The narrow particle size distribution of 4 ± 2 nm and the uniform dispersion of the particles over the mesoporous silica support were uniquely revealed using electron tomography. These anatase nanoparticle bearing films showed photocatalytic activity in methylene blue degradation. This new synthesis procedure of the anatase nanophase in mesoporous silica films using ALD is a convenient fabrication method of photocatalytic coatings amenable to application on very small as well as very large surfaces
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000319008700056 Publication Date 2013-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 22 Open Access
Notes Fwo; Iap-Pai; Erc Approved Most recent IF: 7.367; 2013 IF: 6.739
Call Number (down) UA @ lucian @ c:irua:108774 Serial 3460
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Abakumov, A.M.; Tsirlin, A.A.; Schnelle, W.; Egoavil, R.; Verbeeck, J.; Van Tendeloo, G.; Glazyrin, K.V.; Hanfland, M.; Dubrovinsky, L.
Title Perovskite-like Mn2O3 : a path to new manganites Type A1 Journal article
Year 2013 Publication Angewandte Chemie Abbreviated Journal Angew Chem Int Edit
Volume 52 Issue 5 Pages 1494-1498
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Korund-artiges ε-Mn2O3 und Perowskit-artiges ζ-Mn2O3, zwei neue Phasen von Mn2O3, wurden unter hohen Drücken bei hohen Temperaturen synthetisiert. Die Manganatome können vollständig die A- und B-Positionen der Perowskitstruktur besetzen. ζ-Mn2O3 (siehe Bild, A-Positionsordnung) enthält Mn in den drei Oxidationsstufen +II, +III und +IV.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000313913300027 Publication Date 2012-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 84 Open Access
Notes This work was supported by the DFG (project OV-110/1-1), Alexander von Humboldt foundation, European Union Council (FP7)-Grant no. 246102 IFOX, European Research Council (FP7)-ERC Starting Grant no. 278510 VORTEX and ERC Grant no. 246791-COUNTATOMS, and Hercules fund from the Flemish Government. ECASJO_; Approved Most recent IF: 11.994; 2013 IF: 11.336
Call Number (down) UA @ lucian @ c:irua:108765UA @ admin @ c:irua:108765 Serial 2573
Permanent link to this record
 

 
Author Ostrikov, K.; Neyts, E.C.; Meyyappan, M.
Title Plasma nanoscience : from nano-solids in plasmas to nano-plasmas in solids Type A1 Journal article
Year 2013 Publication Advances in physics Abbreviated Journal Adv Phys
Volume 62 Issue 2 Pages 113-224
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The unique plasma-specific features and physical phenomena in the organization of nanoscale soild-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter to nano-plasma effects and nano-plasmas of different states of matter.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000320913600001 Publication Date 2013-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-8732;1460-6976; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 21.818 Times cited 380 Open Access
Notes Approved Most recent IF: 21.818; 2013 IF: 18.062
Call Number (down) UA @ lucian @ c:irua:108723 Serial 2639
Permanent link to this record
 

 
Author Vereecke, B.; van der Veen, M.H.; Sugiura, M.; Kashiwagi, Y.; Ke, X.; Cott, D.J.; Hantschel, T.; Huyghebaert, C.; Tökei, Z.
Title Wafer-level electrical evaluation of vertical carbon nanotube bundles as a function of growth temperature Type A1 Journal article
Year 2013 Publication Japanese journal of applied physics Abbreviated Journal Jpn J Appl Phys
Volume 52 Issue 42 Pages 04cn02-5
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have evaluated the resistance of carbon nanotubes (CNTs) grown at a CMOS-compatible temperature using a realistic integration scheme. The structural analysis of the CNTs by transmission electron microscopy (TEM) showed that the degree of graphitization decreased significantly when the growth temperature was decreased from 540 to 400 °C. The CNTs were integrated to form 150-nm-diameter vertical interconnects between a TiN layer and Cu metal trenches on 200 mm full wafers. Wafers with CNTs grown at low temperature were found to have a lower single-contact resistance than those produced at high temperatures. Thickness measurements showed that the low contact resistance is a result of small contact height. This height dependence is masking the impact of CNT graphitization quality on resistance. When benchmarking our results with data from the literature, a relationship between resistivity and growth temperature cannot be found for CNT-based vertical interconnects.
Address
Corporate Author Thesis
Publisher Place of Publication Kyoto Editor
Language Wos 000320002400150 Publication Date 2013-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-4922;1347-4065; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.384 Times cited 5 Open Access
Notes Approved Most recent IF: 1.384; 2013 IF: 1.057
Call Number (down) UA @ lucian @ c:irua:108713 Serial 3902
Permanent link to this record
 

 
Author Borgatti, F.; Park, C.; Herpers, A.; Offi, F.; Egoavil, R.; Yamashita, Y.; Yang, A.; Kobata, M.; Kobayashi, K.; Verbeeck, J.; Panaccione, G.; Dittmann, R.;
Title Chemical insight into electroforming of resistive switching manganite heterostructures Type A1 Journal article
Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 5 Issue 9 Pages 3954-3960
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We have investigated the role of the electroforming process in the establishment of resistive switching behaviour for Pt/Ti/Pr0.5Ca0.5MnO3/SrRuO3 layered heterostructures (Pt/Ti/PCMO/SRO) acting as non-volatile Resistance Random Access Memories (RRAMs). Electron spectroscopy measurements demonstrate that the higher resistance state resulting from electroforming of as-prepared devices is strictly correlated with the oxidation of the top electrode Ti layer through field-induced electromigration of oxygen ions. Conversely, PCMO exhibits oxygen depletion and downward change of the chemical potential for both resistive states. Impedance spectroscopy analysis, supported by the detailed knowledge of these effects, provides an accurate model description of the device resistive behaviour. The main contributions to the change of resistance from the as-prepared (low resistance) to the electroformed (high resistance) states are respectively due to reduced PCMO at the boundary with the Ti electrode and to the formation of an anisotropic np junction between the Ti and the PCMO layers.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000317859400051 Publication Date 2013-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 40 Open Access
Notes Vortex; Countatoms ECASJO_; Approved Most recent IF: 7.367; 2013 IF: 6.739
Call Number (down) UA @ lucian @ c:irua:108710UA @ admin @ c:irua:108710 Serial 348
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Miliani, C.; Brunetti, B.G.; Vagnini, M.; Vanmeert, F.; Falkenberg, G.; Abakumov, A.; Lu, Y.; Tian, H.; Verbeeck, J.; Radepont, M.; Cotte, M.; Hendriks, E.; Geldof, M.; van der Loeff, L.; Salvant, J.; Menu, M.;
Title Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods : 3 : synthesis, characterization, and detection of different crystal forms of the chrome yellow pigment Type A1 Journal article
Year 2013 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 85 Issue 2 Pages 860-867
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The painter, Vincent van Gogh, and some of his contemporaries frequently made use of the pigment chrome yellow that is known to show a tendency toward darkening. This pigment may correspond to various chemical compounds such as PbCrO4 and PbCr1-xSxO4, that may each be present in various crystallographic forms with different tendencies toward degradation. Investigations by X-ray diffraction (XRD), mid-Fourier Transform infrared (FTIR), and Raman instruments (benchtop and portable) and synchrotron radiation-based micro-XRD and X-ray absorption near edge structure spectroscopy performed on oil-paint models, prepared with in-house synthesized PbCrO4 and PbCr1-xSxO4, permitted us to characterize the spectroscopic features of the various forms. On the basis of these results, an extended study has been carried out on historic paint tubes and on embedded paint microsamples taken from yellow-orange/pale yellow areas of 12 Van Gogh paintings, demonstrating that Van Gogh effectively made use of different chrome yellow types. This conclusion was also confirmed by in situ mid-FTIR investigations on Van Goghs Portrait of Gauguin (Van Gogh Museum, Amsterdam).
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000313668400031 Publication Date 2012-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 79 Open Access
Notes Goa; Fwo Approved Most recent IF: 6.32; 2013 IF: 5.825
Call Number (down) UA @ lucian @ c:irua:108707UA @ admin @ c:irua:108707 Serial 631
Permanent link to this record
 

 
Author Somers, W.; Bogaerts, A.; van Duin, A.C.T.; Huygh, S.; Bal, K.M.; Neyts, E.C.
Title Temperature influence on the reactivity of plasma species on a nickel catalyst surface : an atomic scale study Type A1 Journal article
Year 2013 Publication Catalysis today Abbreviated Journal Catal Today
Volume 211 Issue Pages 131-136
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In recent years, the potential use of hydrogen as a clean energy source has gained considerable attention. Especially H2 formation by Ni-catalyzed reforming of methane at elevated temperatures is an attractive process. However, a more fundamental knowledge at the atomic level is needed for a full comprehension of the reactions at the catalyst surface. In this contribution, we therefore investigate the H2 formation after CHx impacts on a Ni(1 1 1) surface in the temperature range 4001600 K, by means of reactive molecular dynamics (MD) simulations using the ReaxFF potential. While some H2 formation is already observed at the lower temperatures, substantial H2 formation is only obtained at elevated temperatures of 1400 K and above. At 1600 K, the H2 molecules are even the most frequently formed species. In direct correlation with the increasing dehydrogenation at elevated temperatures, an increased surface-to-subsurface C-diffusivity is observed as well. This study highlights the major importance of the temperature on the H2 formation.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000320697800020 Publication Date 2013-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.636 Times cited 27 Open Access
Notes Approved Most recent IF: 4.636; 2013 IF: 3.309
Call Number (down) UA @ lucian @ c:irua:108675 Serial 3500
Permanent link to this record
 

 
Author Zarenia, M.
Title Confined states in mono- and bi-layer grapheme nanostructures Type Doctoral thesis
Year 2013 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number (down) UA @ lucian @ c:irua:108668 Serial 485
Permanent link to this record
 

 
Author Goux, L.; Fantini, A.; Govoreanu, B.; Kar, G.; Clima, S.; Chen, Y.-Y.; Degraeve, R.; Wouters, D.J.; Pourtois, G.; Jurczak, M.
Title Asymmetry and switching phenomenology in TiN\ (Al2O3) \ HfO2 \ Hf systems Type A1 Journal article
Year 2012 Publication ECS solid state letters Abbreviated Journal Ecs Solid State Lett
Volume 1 Issue 4 Pages 63-65
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this letter, we address the bipolar resistive switching phenomenology in scaled TiN\HfO2\Hf cells. By means of stack engineering using a thin Al2O3 layer inserted either at the TiN\HfO2 or at the Hf\HfO2 interface, we demonstrate that the reset operation takes place close to the TiNanode. Due to the increase of the oxygen-vacancy profile from the TiN to the Hf interface, the filament-confining and wide band-gap Al2O3 layer should indeed be engineered at the interface with the TiN electrode in order to further improve the switching control and to allow reaching larger state resistances. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.003204ssl] All rights reserved.
Address
Corporate Author Thesis
Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
Language Wos 000318340300005 Publication Date 2012-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8742;2162-8750; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.184 Times cited 11 Open Access
Notes Approved Most recent IF: 1.184; 2012 IF: NA
Call Number (down) UA @ lucian @ c:irua:108530 Serial 160
Permanent link to this record
 

 
Author Singh, S.K.; Srinivasan, S.G.; Neek-Amal, M.; Costamagna, S.; van Duin, A.C.T.; Peeters, F.M.
Title Thermal properties of fluorinated graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 10 Pages 104114-104116
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Large-scale atomistic simulations using the reactive force field approach are implemented to investigate the thermomechanical properties of fluorinated graphene (FG). A set of parameters for the reactive force field potential optimized to reproduce key quantum mechanical properties of relevant carbon-fluorine cluster systems are presented. Molecular dynamics simulations are used to investigate the thermal rippling behavior of FG and its mechanical properties and compare them with graphene, graphane and a sheet of boron nitride. The mean square value of the height fluctuations < h(2)> and the height-height correlation function H(q) for different system sizes and temperatures show that FG is an unrippled system in contrast to the thermal rippling behavior of graphene. The effective Young's modulus of a flake of fluorinated graphene is obtained to be 273 N/m and 250 N/m for a flake of FG under uniaxial strain along armchair and zigzag directions, respectively. DOI: 10.1103/PhysRevB.87.104114
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316933500002 Publication Date 2013-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 80 Open Access
Notes ; M.N.-A. is supported by the EU-Marie Curie IIF postdoc Fellowship/299855. This work is supported by the ESF-Eurographene project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. S. G. S. and A.C.T.vD. acknowledge support by the Air Force Office of Scientific Research (AFOSR) under Grant No. FA9550-10-1-0563. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number (down) UA @ lucian @ c:irua:108495 Serial 3629
Permanent link to this record
 

 
Author Barba-Ortega, J.; Sardella, E.; Aguiar, J.A.; Peeters, F.M.
Title Non-conventional vortex configurations in a mesoscopic flat disk Type A1 Journal article
Year 2013 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 487 Issue Pages 47-55
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The influence of superficial defects on the vortex configurations of a thin superconducting disk is investigated within the time dependent Ginzburg-Landau formalism. The free energy, magnetization, vorticity, and the Cooper pair density are calculated for both metastable and stable vortex configurations and different number of defects on its surface in the presence of an external magnetic field applied perpendicular to the disk area. We show that the competition between the confinement geometry and the geometric position of the defects leads to non-conventional vortex configurations which are not compatible with the symmetry of the sample geometry. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000317743300009 Publication Date 2013-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 17 Open Access
Notes ; This work was partially supported by the Brazilian agencies CNPq, CAPES, FACEPE (APQ 0589-105/08), FAPESP, CNPq-FWO bilateral project, and Colombian Agencies Colciencias and DIB. ; Approved Most recent IF: 1.404; 2013 IF: 1.110
Call Number (down) UA @ lucian @ c:irua:108486 Serial 2344
Permanent link to this record
 

 
Author Berdonosov, P.S.; Akselrud, L.; Prots, Y.; Abakumov, A.M.; Smet, P.F.; Poelman, D.; Van Tendeloo, G.; Dolgikh, V.A.
Title Cs7Nd11(SeO3)12Cl16 : first noncentrosymmetric structure among alkaline-metal lanthanide selenite halides Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 52 Issue 7 Pages 3611-3619
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Cs7Nd11(SeO3)(12)Cl-16, the complex selenite chloride of cesium and neodymium, was synthesized in the NdOCl-SeO2-CsCl system. The compound has been characterized using single-crystal X-ray diffraction, electron diffraction, transmission electron microscopy, luminescence spectroscopy, and second-harmonic-generation techniques. Cs7Nd11(SeO3)(12)Cl-16 crystallizes in an orthorhombic unit cell with a = 15.911(1) angstrom, b = 15.951(1) angstrom, and c = 25.860(1) angstrom and a noncentrosymmetric space group Pna2(1) (No. 33). The crystal structure of Cs7Nd11(SeO3)(12)Cl-16 can be represented as a stacking of Cs7Nd11(SeO3)(12) lamellas and CsCl-like layers. Because of the layered nature of the Cs7Nd11(SeO3)(12)Cl-16 structure, it features numerous planar defects originating from occasionally missing the CsCl-like layer and violating the perfect stacking of the Cs7Nd11(SeO3)(12)Cl-16 lamellas. Cs7Nd11(SeO3)(12)Cl-16 represents the first example of a noncentrosymmetric structure among alkaline-metal lanthanide selenite halides. Cs7Nd11(SeO3)(12)Cl-16 demonstrates luminescence emission in the near-IR region with reduced efficiency due to a high concentration of Nd3+ ions causing nonradiative cross-relaxation.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000317094300022 Publication Date 2013-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 10 Open Access
Notes Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number (down) UA @ lucian @ c:irua:108482 Serial 3524
Permanent link to this record
 

 
Author Rossell, M.D.; Abakumov, A.M.; Ramasse, Q.M.; Erni, R.
Title Direct evidence of stacking disorder in the mixed ionic-electronic conductor Sr4Fe6O12+\delta Type A1 Journal article
Year 2013 Publication ACS nano Abbreviated Journal Acs Nano
Volume 7 Issue 4 Pages 3078-3085
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Determining the structure-to-property relationship of materials becomes particularly challenging when the material under investigation is dominated by defects and structural disorder. Knowledge on the exact atomic arrangement at the defective structure is required to understand its influence on the functional properties. However, standard diffraction techniques deliver structural information that is averaged over many unit cells. In particular, information about defects and order-disorder phenomena is contained in the coherent diffuse scattering intensity which often is difficult to uniquely interpret. Thus, the examination of the local disorder in materials requires a direct method to study their structure on the atomic level with chemical sensitivity. Using aberration-corrected scanning transmission electron microscopy in combination with atomic-resolution electron energy-loss spectroscopy, we show that the controversial structural arrangement of the Fe2O2+delta layers in the mixed ionic-electronic conducting Sr4Fe6O12+delta perovskite can be unambiguously resolved. Our results provide direct experimental evidence for the presence of a nanomixture of “ordered” and “disordered” domains in an epitaxial Sr4Fe6O12+delta thin film. The most favorable arrangement is the disordered structure and is interpreted as a randomly occurring but well-defined local shift of the Fe-O chains in the Fe2O2+delta layers. By analyzing the electron energy-loss near-edge structure of the different building blocks in the Sr4Fe6O12+delta unit cell we find that the mobile holes in this mixed ionic-electronic conducting oxide are highly localized in the Fe2O2+delta layers, which are responsible for the oxide-ion conductivity. A possible link between disorder and oxygen-ion transport along the Fe2O2+delta layers is proposed by arguing that the disorder can effectively break the oxygen diffusion pathways.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000318143300021 Publication Date 2013-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 4 Open Access
Notes Approved Most recent IF: 13.942; 2013 IF: 12.033
Call Number (down) UA @ lucian @ c:irua:108476 Serial 713
Permanent link to this record
 

 
Author Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F.M.
Title Anomalous Raman spectra and thickness-dependent electronic properties of WSe2 Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 16 Pages 165409-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Typical Raman spectra of transition-metal dichalcogenides (TMDs) display two prominent peaks, E-2g and A(1g), that are well separated from each other. We find that these modes are degenerate in bulk WSe2 yielding one single Raman peak in contrast to other TMDs. As the dimensionality is lowered, the observed peak splits in two. In contrast, our ab initio calculations predict that the degeneracy is retained even for WSe2 monolayers. Interestingly, for minuscule biaxial strain, the degeneracy is preserved, but once the crystal symmetry is broken by a small uniaxial strain, the degeneracy is lifted. Our calculated phonon dispersion for uniaxially strained WSe2 shows a good match to the measured Raman spectrum, which suggests that uniaxial strain exists in WSe2 flakes, possibly induced during the sample preparation and/or as a result of the interaction between WSe2 and the substrate. Furthermore, we find that WSe2 undergoes an indirect-to-direct band-gap transition from bulk to monolayers, which is ubiquitous for semiconducting TMDs. These results not only allow us to understand the vibrational and electronic properties of WSe2, but also point to effects of the interaction between the monolayer TMDs and the substrate on the vibrational and electronic properties. DOI: 10.1103/PhysRevB.87.165409
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000317195400007 Publication Date 2013-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 365 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. is supported by the FWO Pegasus Marie Curie Long Fellowship program. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number (down) UA @ lucian @ c:irua:108471 Serial 134
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M.
Title Tight-binding description of intrinsic superconducting correlations in multilayer graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 13 Pages 134509-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using highly efficient GPU-based simulations of the tight-binding Bogoliubov-de Gennes equations we solve self-consistently for the pair correlation in rhombohedral (ABC) and Bernal (ABA) multilayer graphene by considering a finite intrinsic s-wave pairing potential. We find that the two different stacking configurations have opposite bulk/surface behavior for the order parameter. Surface superconductivity is robust for ABC stacked multilayer graphene even at very low pairing potentials for which the bulk order parameter vanishes, in agreement with a recent analytical approach. In contrast, for Bernal stacked multilayer graphene, we find that the order parameter is always suppressed at the surface and that there exists a critical value for the pairing potential below which no superconducting order is achieved. We considered different doping scenarios and find that homogeneous doping strongly suppresses surface superconductivity while nonhomogeneous field-induced doping has a much weaker effect on the superconducting order parameter. For multilayer structures with hybrid stacking (ABC and ABA) we find that when the thickness of each region is small (few layers), high-temperature surface superconductivity survives throughout the bulk due to the proximity effect between ABC/ABA interfaces where the order parameter is enhanced. DOI: 10.1103/PhysRevB.87.134509
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000317390000006 Publication Date 2013-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 37 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number (down) UA @ lucian @ c:irua:108469 Serial 3660
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Peeters, F.M.
Title Melting of graphene clusters Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 13 Pages 134103-134109
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Density-functional tight-binding and classical molecular dynamics simulations are used to investigate the structural deformations and melting of planar carbon nanoclusters C-N with N = 2-55. The minimum-energy configurations for different clusters are used as starting configurations for the study of the temperature effects on the bond breaking and rotation in carbon lines (N < 6), carbon rings (5 < N < 19), and graphene nanoflakes. The larger the rings (graphene nanoflakes) the higher the transition temperature (melting point) with ring-to-line (perfect-to-defective) transition structures. The melting point was obtained by using the bond energy, the Lindemann criteria, and the specific heat. We found that hydrogen-passivated graphene nanoflakes (CNHM) have a larger melting temperature with a much smaller dependence on size. The edges in the graphene nanoflakes exhibit several different metastable configurations (isomers) during heating before melting occurs. DOI: 10.1103/PhysRevB.87.134103
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000317390700001 Publication Date 2013-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 28 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF Postdoctoral Fellowship No. 299855 (for M.N.-A.), the ESF-EuroGRAPHENE Project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number (down) UA @ lucian @ c:irua:108467 Serial 1987
Permanent link to this record