|   | 
Details
   web
Records
Author Lutz, L.; Corte, D.A.D.; Chen, Y.; Batuk, D.; Johnson, L.R.; Abakumov, A.; Yate, L.; Azaceta, E.; Bruce, P.G.; Tarascon, J.-M.; Grimaud, A.
Title The role of the electrode surface in Na-Air batteries : insights in electrochemical product formation and chemical growth of NaO2 Type A1 Journal article
Year 2018 Publication Advanced energy materials Abbreviated Journal Adv Energy Mater
Volume 8 Issue 4 Pages 1701581
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The Na-air battery, because of its high energy density and low charging overpotential, is a promising candidate for low-cost energy storage, hence leading to intensive research. However, to achieve such a battery, the role of the positive electrode material in the discharge process must be understood. This issue is herein addressed by exploring the electrochemical reduction of oxygen, as well as the chemical formation and precipitation of NaO2 using different electrodes. Whereas a minor influence of the electrode surface is demonstrated on the electrochemical formation of NaO2, a strong dependence of the subsequent chemical precipitation of NaO2 is identified. In the origin, this effect stems from the surface energy and O-2/O-2(-) affinity of the electrode. The strong interaction of Au with O-2/O-2(-) increases the nucleation rate and leads to an altered growth process when compared to C surfaces. Consequently, thin (3 mu m) flakes of NaO2 are found on Au, whereas on C large cubes (10 mu m) of NaO2 are formed. This has significant impact on the cell performance and leads to four times higher capacity when C electrodes with low surface energy and O-2/O-2(-) affinity are used. It is hoped that these findings will enable the design of new positive electrode materials with optimized surfaces.
Address
Corporate Author Thesis
Publisher WILEY-VCH Verlag GmbH & Co. Place of Publication Weinheim Editor
Language Wos 000424152200009 Publication Date 2017-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.721 Times cited 13 Open Access Not_Open_Access
Notes ; L.L. thanks ALISTORE-ERI for his PhD grant. P.G.B. is indebted to the EPSRC for financial support, including the Supergen Energy Storage grant. ; Approved Most recent IF: 16.721
Call Number (down) UA @ lucian @ c:irua:149269 Serial 4951
Permanent link to this record
 

 
Author Stosic, D.; Ludermir, T.B.; Milošević, M.V.
Title Pinning of magnetic skyrmions in a monolayer Co film on Pt(111) : Theoretical characterization and exemplified utilization Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 21 Pages 214403
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Magnetic skyrmions are nanoscale windings of the spin structure that can be observed in chiral magnets and hold promise for potential applications in storing or processing information. Pinning due to ever-present material imperfections crucially affects the mobility of skyrmions. Therefore, a proper understanding of how magnetic skyrmions pin to defects is necessary for the development and performance of spintronic devices. Here we present a fundamental analysis on the interactions of single skyrmions with atomic defects of distinctly different origins, in a Co monolayer on Pt, based on minimum-energy paths considerations and atomic-spin simulations. We first report the preferred pinning loci of the skyrmion as a function of its nominal size and the type of defect being considered, to further reveal the manipulation and \u0022breathing\u0022 of skyrmion core in the vicinity of a defect. We also show the behavior of skyrmions in the presence of an extended defect of particular geometry, that can lead to ratcheted skyrmion motion or a facilitated guidance on a defect \u0022trail.\u0022 We close the study with reflections on the expected thermal stability of the skyrmion against collapse on itself for a given nature of the defect, and discuss the applications where control of skyrmions by defects is of particular interest.'));
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000416846900002 Publication Date 2017-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 52 Open Access
Notes ; This work was supported by the Research Foundation, Flanders (FWO-Vlaanderen) and Brazilian agency CNPq (Grants No. 442668/2014-7 and No. 140840/2016-8). ; Approved Most recent IF: 3.836
Call Number (down) UA @ lucian @ c:irua:147684 Serial 4890
Permanent link to this record
 

 
Author Savina, A.A.; Morozov, V.A.; Buzlukov, A.L.; Arapova, I.Y.; Stefanovich, S.Y.; Baklanova, Y.V.; Denisova, T.A.; Medvedeva, N.I.; Bardet, M.; Hadermann, J.; Lazoryak, B.I.; Khaikina, E.G.
Title New solid electrolyte Na9Al(MoO4)6 : structure and Na+ ion conductivity Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 20 Pages 8901-8913
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Solid electrolytes are important materials with a wide range of technological applications. This work reports the crystal structure and electrical properties of a new solid electrolyte Na9Al(MoO4)(6). The monoclinic Na9Al(MoO4)(6) consists of isolated polyhedral, [Al(MoO4)(6)](9-) clusters composed of a central AlO6 octahedron sharing vertices with six MoO4 tetrahedra to form a three-dimensional framework. The AlO6 octahedron also shares edges with one NalO(6) octahedron and two Na2O(6) octahedra. Na3-Na5 atoms are located in the framework cavities. The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)(3). High-temperature conductivity measurements revealed that the conductivity (sigma) of Na9Al(MoO4)(6) at 803 K equals 1.63 X 10(-2) S cm(-1). The temperature behavior of the Na-23 and Al-27 nuclear magnetic resonance spectra and the spin-lattice relaxation rates of the Na-23 nuclei indicate the presence of fast Na+ ion diffusion in the studied compound. At T\u003C490 K, diffusion occurs by means of Na+ ion jumps exclusively through the sublattice of Na3-Na5 positions, whereas Na1 and Na2 become involved in the diffusion processes (through chemical exchange with the Na3-Na5 sublattice) only at higher temperatures.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000413884900037 Publication Date 2017-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 13 Open Access OpenAccess
Notes ; The research was performed within the state assignment of FASO of Russia (Themes 01201463330, A16-116122810214-9, and 0339-2016-0007), supported in part by the Russian Foundation for Basic Research (Projects 16-03-00510, 16-03-00164, and 17-03-00333). ; Approved Most recent IF: 9.466
Call Number (down) UA @ lucian @ c:irua:147432 Serial 4886
Permanent link to this record
 

 
Author Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Seovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Ricco, M.; Bulusheva, L.G.; Okotrub, A.V.
Title Single-walled carbon nanotube reactor for redox transformation of mercury dichloride Type A1 Journal article
Year 2017 Publication ACS nano Abbreviated Journal Acs Nano
Volume 11 Issue 9 Pages 8643-8649
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Single-walled carbon nanotubes (SWCNTs) possessing a confined inner space protected by chemically resistant shells are promising for delivery, storage, and desorption of various compounds, as well as carrying out specific reactions. Here, we show that SWCNTs interact with molten mercury dichloride (HgCl2) and guide its transformation into dimercury dichloride (Hg2Cl2) in the cavity. The chemical state of host SWCNTs remains almost unchanged except for a small p-doping from the guest Hg2Cl2 nanocrystals. The density functional theory calculations reveal that the encapsulated HgCl2 molecules become negatively charged and start interacting via chlorine bridges when local concentration increases. This reduces the bonding strength in HgCl2, which facilitates removal of chlorine, finally leading to formation of Hg2Cl2 species. The present work demonstrates that SWCNTs not only serve as a template for growing nanocrystals but also behave as an electron-transfer catalyst in the spatially confined redox reaction by donation of electron density for temporary use by the guests.'));
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411918200012 Publication Date 2017-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 11 Open Access Not_Open_Access
Notes ; Collaboration between partner institutions was partially supported by European FP7 IRSES project 295180. We are grateful to the bilateral Program “Russian-German Laboratory at BESSY II” for the assistance in XPS and NEXAFS measurements. We acknowledge C. Tollan for proofreading the manuscript. We are grateful to Dr. Y.V. Shubin for XRD measurements of graphite with HgCl<INF>2</ INF>. ; Approved Most recent IF: 13.942
Call Number (down) UA @ lucian @ c:irua:146770 Serial 4895
Permanent link to this record
 

 
Author Lu, A.K.A.; Houssa, M.; Luisier, M.; Pourtois, G.
Title Impact of layer alignment on the behavior of MoS2-ZrS2 tunnel field-effect transistors : an ab initio study Type A1 Journal article
Year 2017 Publication Physical review applied Abbreviated Journal Phys Rev Appl
Volume 8 Issue 3 Pages 034017
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Tunnel field-effect transistors based on van der Waals heterostructures are emerging device concepts for low-power applications, auguring sub-60 mV/dec subthreshold swing values. In these devices, the channel is built from a stack of several different two-dimensional materials whose nature allows tailoring the band alignments and enables a good electrostatic control of the device. In this work, we propose a theoretical study of the variability of the performances of a MoS2-ZrS2 tunnel field-effect transistor induced by fluctuations of the relative position or the orientation of the layers. Our results indicate that although a steep subthreshold slope (20 mV/dec) is achievable, fluctuations in the relative orientation of the ZrS2 layer with respect to the MoS2 one lead to a significant variability in the tunneling current by about one decade. This arises from changes in the orbital overlap between the layers and from the modulation of the transport direction.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication College Park, Md Editor
Language Wos 000411460400001 Publication Date 2017-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.808 Times cited 6 Open Access OpenAccess
Notes Approved Most recent IF: 4.808
Call Number (down) UA @ lucian @ c:irua:146741 Serial 4785
Permanent link to this record
 

 
Author Vatanparast, M.; Egoavil, R.; Reenaas, T.W.; Verbeeck, J.; Holmestad, R.; Vullum, P.E.
Title Bandgap measurement of high refractive index materials by off-axis EELS Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 182 Issue Pages 92-98
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In the present work Cs aberration corrected and monochromated scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) has been used to explore experimental setups that allow bandgaps of high refractive index materials to be determined. Semi-convergence and collection angles in the mu rad range were combined with off-axis or dark field EELS to avoid relativistic losses and guided light modes in the low loss range to contribute to the acquired EEL spectra. Off-axis EELS further supressed the zero loss peak and the tail of the zero loss peak. The bandgap of several GaAs-based materials were successfully determined by simple regression analyses of the background subtracted EEL spectra. The presented set-up does not require that the acceleration voltage is set to below the. Cerenkov limit and can be applied over the entire acceleration voltage range of modern TEMs and for a wide range of specimen thicknesses. (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000413436500013 Publication Date 2017-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 3 Open Access Not_Open_Access
Notes ; The authors would like to thank Professor Shu Min Wang and Mahdad Sadeghi at the Nanofabrication Laboratory at Chalmers University, Sweden for providing the samples. The Norwegian Research Council is acknowledged for funding the HighQ-IB project under contract no. 10415201. M.V. and T.W.R. acknowledge funding from the EEA Financial Mechanism 2009-2014 under the project contract no 23SEE/30.06.2014. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2(Integrated Infrastructure Initiative-I3) through the system of transnational access. R.E. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: 2.843
Call Number (down) UA @ lucian @ c:irua:146639UA @ admin @ c:irua:146639 Serial 4778
Permanent link to this record
 

 
Author Zhou, Y.; Ramaneti, R.; Anaya, J.; Korneychuk, S.; Derluyn, J.; Sun, H.; Pomeroy, J.; Verbeeck, J.; Haenen, K.; Kuball, M.
Title Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 111 Issue 4 Pages 041901
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycrystalline diamond (PCD) was grown onto high-k dielectric passivated AlGaN/GaN-on-Si high electron mobility transistor (HEMT) structures, with film thicknesses ranging from 155 to 1000 nm. Transient thermoreflectance results were combined with device thermal simulations to investigate the heat spreading benefit of the diamond layer. The observed thermal conductivity (k(Dia)) of PCD films is one-to-two orders of magnitude lower than that of bulk PCD and exhibits a strong layer thickness dependence, which is attributed to the grain size evolution. The films exhibit a weak temperature dependence of k(Dia) in the measured 25-225 degrees C range. Device simulation using the experimental jDia and thermal boundary resistance values predicts at best a 15% reduction in peak temperature when the source-drain opening of a passivated AlGaN/GaN-on-Si HEMT is overgrown with PCD. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000406779700008 Publication Date 2017-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 78 Open Access Not_Open_Access
Notes ; The authors are grateful to Professor Michael Uren and Dr. Roland B. Simon (University of Bristol) for helpful discussions and to Dr. Sien Drijkoningen (Hasselt University) for taking the SEM micrographs. This work was in part supported by DARPA under Contract No. FA8650-15-C-7517, monitored by Dr. Avram Bar Cohen and Dr. John Blevins, and supported by Dr. Joseph Maurer and Dr. Abirami Sivananthan. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA. Y.Z. acknowledges China Scholarship Council for the financial support. S.K. and J.V. acknowledge the FWO-Vlaanderen for financial support under contract G.0044.13N “Charge ordering.” ; Approved Most recent IF: 3.411
Call Number (down) UA @ lucian @ c:irua:145203 Serial 4728
Permanent link to this record
 

 
Author Lundeberg, M.B.; Gao, Y.; Asgari, R.; Tan, C.; Van Duppen, B.; Autore, M.; Alonso-Gonzalez, P.; Woessner, A.; Watanabe, K.; Taniguchi, T.; Hillenbrand, R.; Hone, J.; Polini, M.; Koppens, F.H.L.
Title Tuning quantum nonlocal effects in graphene plasmonics Type A1 Journal article
Year 2017 Publication Science Abbreviated Journal Science
Volume 357 Issue 6347 Pages 187-190
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The response of electron systems to electrodynamic fields that change rapidly in space is endowed by unique features, including an exquisite spatial nonlocality. This can reveal much about the materials' electronic structure that is invisible in standard probes that use gradually varying fields. Here, we use graphene plasmons, propagating at extremely slow velocities close to the electron Fermi velocity, to probe the nonlocal response of the graphene electron liquid. The near-field imaging experiments reveal a parameter-free match with the full quantum description of the massless Dirac electron gas, which involves three types of nonlocal quantum effects: single-particle velocity matching, interaction-enhanced Fermi velocity, and interaction-reduced compressibility. Our experimental approach can determine the full spatiotemporal response of an electron system.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000405391700042 Publication Date 2017-07-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075; 1095-9203 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 37.205 Times cited 87 Open Access
Notes ; F.H.L.K., M.P., and R.H. acknowledge support by the European Union Seventh Framework Programme under grant agreement no. 696656 Graphene Flagship. M. P. acknowledges support by Fondazione Istituto Italiano di Tecnologia. F. H. L. K. acknowledges financial support from the European Union Seventh Framework Programme under the ERC starting grant (307806, CarbonLight) and project GRASP (FP7-ICT-2013-613024-GRASP). F. H. L. K. acknowledges support from the Spanish Ministry of Economy and Competitiveness, through the “ Severo Ochoa” Programme for Centres of Excellence in R& D (SEV-2015-0522), support by Fundacio Cellex Barcelona, CERCA Programme/Generalitat de Catalunya, the Mineco grants Ramon y Cajal (RYC-2012-12281), Plan Nacional (FIS2013-47161-P and FIS2014-59639-JIN), and support from the Government of Catalonia through the SGR grant (2014-SGR-1535). R. H. acknowledges support from the Spanish Ministry of Economy and Competitiveness (national project MAT-2015-65525-R). P. A-G. acknowledges financial support from the national project FIS2014-60195-JIN and the ERC starting grant 715496, 2DNANOPTICA. K. W. and T. T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, and JSPS KAKENHI grant numbers JP26248061, JP15K21722, and JP25106006. Y. G., C. T., and J. H. acknowledge support from the U. S. Office of Naval Research N00014-13-1-0662. C. T. was supported under contract FA9550-11-C-0028 and awarded by the Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. This research used resources of the Center for Functional Nanomaterials, which is a U. S. Department of Energy Office of Science Facility at Brookhaven National Laboratory under contract no. DE-SC0012704. B. V. D. acknowledges support from the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. M. P. is extremely grateful for the financial support granted by ICFO during a visit in August 2016. This work used open source software (www. python. org, www. matplotlib. org, and www. blender. org). R. H. is cofounder of Neaspec GmbH, a company producing scattering-type scanning near-field optical microscope systems such as the ones used in this study. All other authors declare no competing financial interests. ; Approved Most recent IF: 37.205
Call Number (down) UA @ lucian @ c:irua:144833 Serial 4730
Permanent link to this record
 

 
Author Van Eynde, E.; Hu, Z.-Y.; Tytgat, T.; Verbruggen, S.W.; Watte, J.; Van Tendeloo, G.; Van Driessche, I.; Blust, R.; Lenaerts, S.
Title Diatom silica-titania photocatalysts for air purification by bio-accumulation of different titanium sources Type A1 Journal article
Year 2016 Publication Environmental science : nano Abbreviated Journal Environ Sci-Nano
Volume 3 Issue 5 Pages 1052-1061
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract We present a green, biological production route for silica-titania photocatalysts using diatom microalgae. Diatoms are single-celled, eukaryotic microalgae (2-2000 mu m) that self-assemble soluble silicon (Si(OH)(4)) into intricate silica cell walls, called frustules. These diatom frustules are formed under ambient conditions and consist of hydrated silica with specific 3D morphologies and micro-meso or macroporosity. A remarkable characteristic of diatoms is their ability to bioaccumulate soluble titanium from cell culture medium and incorporate them into their nanostructured silica cell wall. Controlled cultivation of the diatom Pinnularia sp. on soluble titanium in a batch process resulted in the biological immobilisation of titanium dioxide in the porous 3D architecture of the frustules. Six different titanium sources are tested. The silica-titania frustules were isolated by treating the harvested Pinnularia cells with nitric acid (65%) or by high temperature treatment. Thermal annealing converted the amorphous titania into crystalline titania. The produced silica-titania material is evaluated towards photocatalytic activity for acetaldehyde (C2H4O) abatement. Frustules cultivated with TiBaldH showed the highest photocatalytic performance. Comparison of the photocatalytic activity with P25 reveals that P25 has a 4 fold higher photocatalytic activity, but when photocatalytic activity is normalized for titania content, the frustules show double activity. Further material characterization (morphology, crystallinity, surface area and elemental distribution) of the TiBaldH silica-titania frustules provides additional insight into their structure-activity relationship. These natural biosilicatitania materials have excellent properties for photocatalytic purposes, including high surface area (108 m(2) g(-1)) and good porosity, and show reliable immobilization of TiO2 in the ordered structure of the diatom frustule.
Address
Corporate Author Thesis
Publisher Royal Society of Chemistry Place of Publication Cambridge Editor
Language Wos 000385257900011 Publication Date 2016-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2051-8153; 2051-8161 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.047 Times cited 7 Open Access
Notes ; ; Approved Most recent IF: 6.047
Call Number (down) UA @ lucian @ c:irua:144751 Serial 4644
Permanent link to this record
 

 
Author Lu, A.K.A.; Pourtois, G.; Agarwal, T.; Afzalian, A.; Radu, I.P.; Houssa, M.
Title Origin of the performances degradation of two-dimensional-based metal-oxide-semiconductor field effect transistors in the sub-10 nm regime: A first-principles study Type A1 Journal article
Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 108 Issue 4 Pages 043504
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs. (C) 2016 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000375217200061 Publication Date 2016-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 4 Open Access
Notes Approved Most recent IF: 3.411
Call Number (down) UA @ lucian @ c:irua:144750 Serial 4677
Permanent link to this record
 

 
Author Madan, I.; Kusar, P.; Baranov, V.V.; Lu-Dac, M.; Kabanov, V.V.; Mertelj, T.; Mihailovic, D.
Title Real-time measurement of the emergence of superconducting order in a high-temperature superconductor Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue 22 Pages 224520
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Systems which rapidly evolve through symmetry-breaking transitions on timescales comparable to the fluctuation timescale of the single-particle excitations may behave very differently than under controlled near-ergodic conditions. A real-time investigation with high temporal resolution may reveal insights into the ordering through the transition that are not available in static experiments. We present an investigation of the system trajectory through a normal-to-superconductor transition in a prototype high-temperature superconducting cuprate in which such a situation occurs. Using a multiple pulse femtosecond spectroscopy technique we measure the system trajectory and time evolution of the single-particle excitations through the transition in La1.9Sr0.1CuO4 and compare the data to a simulation based on the time-dependent Ginzburg-Landau theory, using the laser excitation fluence as an adjustable parameter controlling the quench conditions in both experiment and theory. The comparison reveals the presence of significant superconducting fluctuations which precede the transition on short timescales. By including superconducting fluctuations as a seed for the growth of the superconducting order we can obtain a satisfactory agreement of the theory with the experiment. Remarkably, the pseudogap excitations apparently play no role in this process.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000378815800003 Publication Date 2016-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; We wish to acknowledge the useful discussion with T. W. Kibble regarding the importance of a variable quench rate in the experiment. The funding was provided by European Research Council advanced grant TRAJECTORY. ; Approved Most recent IF: 3.836
Call Number (down) UA @ lucian @ c:irua:144701 Serial 4683
Permanent link to this record
 

 
Author Lu, A.K.A.; Houssa, M.; Radu, I.P.; Pourtois, G.
Title Toward an understanding of the electric field-induced electrostatic doping in van der Waals heterostructures : a first-principles study Type A1 Journal article
Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 9 Issue 8 Pages 7725-7734
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Since the discovery of graphene, a broad range of two-dimensional (2D) materials has captured the attention of the scientific communities. Materials, such as hexagonal boron nitride (hBN) and the transition metal dichalcogenides (TMDs) family, have shown promising semiconducting and insulating properties that are very appealing for the semiconductor industry. Recently, the possibility of taking advantage of the properties of 2D-based heterostructures has been investigated for low-power nanoelectronic applications. In this work, we aim at evaluating the relation between the nature of the materials used in such heterostructures and the amplitude of the layer-to-layer charge transfer induced by an external electric field, as is typically present in nanoelectronic gated devices. A broad range of combinations of TMDs, graphene, and hBN has been investigated using density functional theory. Our results show that the electric field induced charge transfer strongly depends on the nature of the 2D materials used in the van der Waals heterostructures and to a lesser extent on the relative orientation of the materials in the structure. Our findings contribute to the building of the fundamental understanding required to engineer electrostatically the doping of 2D materials and to establish the factors that drive the charge transfer mechanisms in electron tunneling-based devices. These are key ingredients for the development of 2D -based nanoelectronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000395494200119 Publication Date 2017-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 10 Open Access Not_Open_Access
Notes Approved Most recent IF: 7.504
Call Number (down) UA @ lucian @ c:irua:142483 Serial 4696
Permanent link to this record
 

 
Author Belov, I.; Paulussen, S.; Bogaerts, A.
Title Analysis and comparison of the co2 and co dielectric barrier discharge solid products Type P1 Proceeding
Year 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The CO and CO2 Dielectric Barrier Discharges (DBD) and their solid products were analyzed keeping similar energy input regimes. Gas chromatography analysis revealed the presence of CO2, CO and O-2 mixture in the exhaust of the CO2 DBD, while no O-2 was found when CO was used as a feed gas. It was shown that the C-2 Swan lines observed with optical emission spectroscopy were distinct in the CO plasma while they were not observed in the CO2 emission spectrum. Also the solid products of the plasmas exhibited remarkable differences. Nanoparticles with a diameter between10 and 300 nm, composed of Fe, O and C (Fe: O: C similar to 13: 50: 30) were produced by the CO2 DBD, while microscopic dendrite-like carbon structure (C: O similar to 73: 27) were formed in the CO plasma. The growth rate in the CO2 and CO DBDs was evaluated to be on the level of 0.15 mg/min and 15 mg/min, respectively. The difference of the CO and CO2 discharges and their products might be attributed to the oxygen content in the latter (6.4 mol.% O-2 in the exhaust) and subsequent etching of the carbonaceous film.
Address
Corporate Author Thesis
Publisher Masarykova univ Place of Publication Brno Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-80-210-8318-9 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number (down) UA @ lucian @ c:irua:141554 Serial 4516
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Lu, A.; Pourtois, G.; Afanas'ev, V.; Stesmans, A.
Title Silicene nanoribbons on transition metal dichalcogenide substrates : effects on electronic structure and ballistic transport Type A1 Journal article
Year 2016 Publication Nano Research Abbreviated Journal Nano Res
Volume 9 Issue 9 Pages 3394-3406
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The idea of stacking multiple monolayers of different two-dimensional materials has become a global pursuit. In this work, a silicene armchair nanoribbon of width W and van der Waals-bonded to different transition-metal dichalcogenide (TMD) bilayer substrates MoX2 and WX2, where X = S, Se, Te is considered. The orbital resolved electronic structure and ballistic transport properties of these systems are simulated by employing van der Waals-corrected density functional theory and nonequilibrium Green's functions. We find that the lattice mismatch with the underlying substrate determines the electronic structure, correlated with the silicene buckling distortion and ultimately with the contact resistance of the two-terminal system. The smallest lattice mismatch, obtained with the MoTe2 substrate, results in the silicene ribbon properties coming close to those of a freestanding one. With the TMD bilayer acting as a dielectric layer, the electronic structure is tunable from a direct to an indirect semiconducting layer, and subsequently to a metallic electronic dispersion layer, with a moderate applied perpendicular electric field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386770300018 Publication Date 2016-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1998-0124 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.354 Times cited 2 Open Access
Notes Approved Most recent IF: 7.354
Call Number (down) UA @ lucian @ c:irua:138210 Serial 4469
Permanent link to this record
 

 
Author Balasubramaniam, Y.; Pobedinskas, P.; Janssens, S.D.; Sakr, G.; Jomard, F.; Turner, S.; Lu, Y.G.; Dexters, W.; Soltani, A.; Verbeeck, J.; Barjon, J.; Nesládek, M.; Haenen, K.;
Title Thick homoepitaxial (110)-oriented phosphorus-doped n-type diamond Type A1 Journal article
Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 109 Issue 109 Pages 062105
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The fabrication of n-type diamond is essential for the realization of electronic components for extreme environments. We report on the growth of a 66 mu m thick homoepitaxial phosphorus-doped diamond on a (110)-oriented diamond substrate, grown at a very high deposition rate of 33 mu m h(-1). A pristine diamond lattice is observed by high resolution transmission electron microscopy, which indicates the growth of high quality diamond. About 2.9 x 10(16) cm(-3) phosphorus atoms are electrically active as substitutional donors, which is 60% of all incorporated dopant atoms. These results indicate that P-doped (110)-oriented diamond films deposited at high growth rates are promising candidates for future use in high-power electronic applications. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000383183600025 Publication Date 2016-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 20 Open Access
Notes This work was financially supported by the EU through the FP7 Collaborative Project “DIAMANT,” the “H2020 Research and Innovation Action Project” “GreenDiamond” (No. 640947), and the Research Foundation-Flanders (FWO) (Nos. G.0C02.15N and VS.024.16N). J.V. acknowledges funding from the “Geconcentreerde Onderzoekacties” (GOA) project “Solarpaint” of the University of Antwerp. The TEM instrument was partly funded by the Hercules fund from the Flemish Government. We particularly thank Dr. J. E. Butler (Naval Research Laboratory, USA) for the sample preparation by laser slicing for TEM analysis, Dr. J. Pernot (Universite Grenoble Alpes/CNRS-Institut Neel, France) for helpful discussions, Ms. C. Vilar (Universite de Versailles St. Quentin en Yvelines, France) for technical help on SEM-CL experiments, and Dr. S. S. Nicley (Hasselt University, Belgium) for improving the language of the text. P.P. and S.T. are Postdoctoral Fellows of the Research Foundation-Flanders (FWO). Approved Most recent IF: 3.411
Call Number (down) UA @ lucian @ c:irua:137160 Serial 4407
Permanent link to this record
 

 
Author Stosic, D.; Stosic, D.; Ludermir, T.; Stosic, B.; Milošević, M.V.
Title GPU-advanced 3D electromagnetic simulations of superconductors in the Ginzburg-Landau formalism Type A1 Journal article
Year 2016 Publication Journal of computational physics Abbreviated Journal J Comput Phys
Volume 322 Issue 322 Pages 183-198
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ginzburg-Landau theory is one of the most powerful phenomenological theories in physics, with particular predictive value in superconductivity. The formalism solves coupled nonlinear differential equations for both the electronic and magnetic responsiveness of a given superconductor to external electromagnetic excitations. With order parameter varying on the short scale of the coherence length, and the magnetic field being long-range, the numerical handling of 3D simulations becomes extremely challenging and time-consuming for realistic samples. Here we show precisely how one can employ graphics-processing units (GPUs) for this type of calculations, and obtain physics answers of interest in a reasonable time-frame – with speedup of over 100x compared to best available CPU implementations of the theory on a 2563grid. (C) 2016 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000381585100010 Publication Date 2016-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.744 Times cited 4 Open Access
Notes ; This work was supported through research grants from Brazilian agencies CNPq (306719/2012-6, 140840/2016-8) and FACEPE (IBPG-0510-1.03/15), BOF-UA, and the Research Foundation-Flanders (FWO-Vlaanderen). ; Approved Most recent IF: 2.744
Call Number (down) UA @ lucian @ c:irua:137115 Serial 4354
Permanent link to this record
 

 
Author Ardashnikova, E.I.; Lubarsky, S.V.; Denisenko, D.I.; Shpanchenko, R.V.; Antipov, E.V.; Van Tendeloo, G.
Title A new way of synthesis and characterization of superconducting oxyfluoride Sr2Cu(O,F)4+\delta Type A1 Journal article
Year 1995 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 253 Issue 3/4 Pages 259-265
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Superconducting Cu mixed oxyfluoride, Sr,Cu(O, F)(4+delta), was Obtained via fluorination of Sr2CuO3 by XeF2 in the 100-250 degrees C temperature range in a closed Ni container. The prepared samples exhibited a lower T-c in comparison with earlier reported values. Different samples in the Sr-Cu-O-F system were prepared by a solid-state reaction at 220-400 degrees C, but no formation of the oxyfluoride was detected even with an addition of xenon difluoride. These data allow one to draw conclusions on the metastability of the oxyfluoride under the conditions used, Electron microscopy and X-ray powder diffraction studies revealed large amounts of badly crystallized SrF2; this could be a reason for the small superconducting volume fraction as well as for the inhomogeneous distribution of the anions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1995TE08400007 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.942 Times cited 29 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number (down) UA @ lucian @ c:irua:13322 Serial 2337
Permanent link to this record
 

 
Author Evans, T.; Kiflawi, I.; Luyten, W.; Van Tendeloo, G.; Woods, G.S.
Title Conversion of platelets into dislocation loops and voidite formation in type IaB diamonds Type A1 Journal article
Year 1995 Publication Proceedings of the Royal Society of London: series A: mathematical and physical sciences Abbreviated Journal P Roy Soc A-Math Phy
Volume 449 Issue Pages 295-313
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1995QY10100007 Publication Date 2006-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-5021;1471-2946; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.192 Times cited 32 Open Access
Notes Approved COMPUTER SCIENCE, INTERDISCIPLINARY 11/104 Q1 # PHYSICS, MATHEMATICAL 1/53 Q1 #
Call Number (down) UA @ lucian @ c:irua:13314 Serial 513
Permanent link to this record
 

 
Author Amelinckx, S.; Bernaerts, D.; Van Tendeloo, G.; van Landuyt, J.; Lucas, A.A.; Mathot, M.; Lambin, P.
Title The morphology, structure and texture of carbon nanotubes: an electron microscopy study Type P3 Proceeding
Year 1995 Publication Abbreviated Journal
Volume Issue Pages 515-541
Keywords P3 Proceeding; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher World Scientific Place of Publication Singapore Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number (down) UA @ lucian @ c:irua:13294 Serial 2207
Permanent link to this record
 

 
Author Bretos, I.; Schneller, T.; Falter, M.; Baecker, M.; Hollmann, E.; Woerdenweber, R.; Molina-Luna, L.; Van Tendeloo, G.; Eibl, O.
Title Solution-derived YBa2Cu3O7-\delta (YBCO) superconducting films with BaZrO3 (BZO) nanodots based on reverse micelle stabilized nanoparticles Type A1 Journal article
Year 2015 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 3 Issue 3 Pages 3971-3979
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Superconducting YBa2Cu3O7-delta (YBCO) films with artificial BaZrO3 (BZO) nanodots were prepared using a chemical solution deposition method involving hybrid solutions composed of trifluoroacetate-based YBCO precursors and reverse micelle stabilized BZO nanoparticle dispersions. Microemulsion-mediated synthesis was used to obtain nano-sized (similar to 12 nm) and mono-dispersed BZO nanoparticles that preserve their features once introduced into the YBCO solution, as revealed by dynamic light scattering. Phase pure, epitaxial YBCO films with randomly oriented BZO nanodots distributed over their whole microstructure were grown from the hybrid solutions on (100) LaAlO3 substrates. The morphology of the YBCO-BZO nanocomposite films was strongly influenced by the amount of nanoparticles incorporated into the system, with contents ranging from 5 to 40 mol%. Scanning electron microscopy showed a high density of isolated second-phase defects consisting of BZO nanodots in the nanocomposite film with 10 mol% of BZO. Furthermore, a direct observation and quantitative analysis of lattice defects in the form of interfacial edge dislocations directly induced by the BZO nanodots was evidenced by transmission electron microscopy. The superconducting properties (77 K) of the YBCO films improved considerably by the presence of such nanodots, which seem to enhance the morphology of the sample and therefore the intergranular critical properties. The incorporation of preformed second-phase defects (here, BZO) during the growth of the superconducting phase is the main innovation of this novel approach for the all-solution based low-cost fabrication of long-length coated conductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352870400018 Publication Date 2015-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 19 Open Access
Notes This work was supported by the German Federal Ministry of Economics and Technology (BMWi) contract no. 0327433A (project ELSA). L. Molina-Luna and G. Van Tendeloo acknowledge funding from the European Research Council (ERC grant no. 24691-COUNTATOMS). The authors gratefully acknowledge J. Dornseiffer for the support with preparation of the microemulsions for the BZO nanoparticles; G. Wasse for the SEM images; and T. Po¨ssinger for the preparation of the artwork. Eurotape Approved Most recent IF: 5.256; 2015 IF: 4.696
Call Number (down) UA @ lucian @ c:irua:132575 Serial 4245
Permanent link to this record
 

 
Author Suslu, A.; Wu, K.; Sahin, H.; Chen, B.; Yang, S.; Cai, H.; Aoki, T.; Horzum, S.; Kang, J.; Peeters, F.M.; Tongay, S.;
Title Unusual dimensionality effects and surface charge density in 2D Mg(OH)2 Type A1 Journal article
Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 6 Issue 6 Pages 20525
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We present two-dimensional Mg(OH)(2) sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)(2) sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)(2) have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)(2) is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)(2) sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)(2) sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)(2), naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)(2), but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000369510300001 Publication Date 2016-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 39 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus-short Marie Curie Fellowship. We acknowledge the use of John M. Cowley Center for High Resolution Electron Microscopy at Arizona State University. ; Approved Most recent IF: 4.259
Call Number (down) UA @ lucian @ c:irua:131615 Serial 4272
Permanent link to this record
 

 
Author Cai, H.; Kang, J.; Sahin, H.; Chen, B.; Suslu, A.; Wu, K.; Peeters, F.; Meng, X.; Tongay, S.
Title Exciton pumping across type-I gallium chalcogenide heterojunctions Type A1 Journal article
Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 27 Issue 27 Pages 065203
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Quasi-two-dimensional gallium chalcogenide heterostructures are created by transferring exfoliated few-layer GaSe onto bulk GaTe sheets. Luminescence spectroscopy measurements reveal that the light emission from underlying GaTe layers drastically increases on heterojunction regions where GaSe layers make contact with the GaTe. Density functional theory (DFT) and band offset calculations show that conduction band minimum (CBM) (valance band maximum (VBM)) values of GaSe are higher (lower) in energy compared to GaTe, forming type-I band alignment at the interface. Consequently, GaSe layers provide photo-excited electrons and holes to GaTe sheets through relatively large built-in potential at the interface, increasing overall exciton population and light emission from GaTe. Observed results are not specific to the GaSe/GaTe system but observed on GaS/GaSe heterolayers with type-I band alignment. Observed experimental findings and theoretical studies provide unique insights into interface effects across dissimilar gallium chalcogenides and offer new ways to boost optical performance by simple epitaxial coating.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000368897100008 Publication Date 2016-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 15 Open Access
Notes ; This work was supported by the Arizona State University seeding program, the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus-short Marie Curie Fellowship. We acknowledge the use of the John M Cowley Center for High Resolution Electron Microscopy at Arizona State University. The authors thank Anupum Pant for useful discussions. We gratefully acknowledge the use of the facilities at the LeRoy Eyring Center for Solid State Science at Arizona State University. S Tongay acknowledges support from DMR-1552220. ; Approved Most recent IF: 3.44
Call Number (down) UA @ lucian @ c:irua:131570 Serial 4179
Permanent link to this record
 

 
Author Meng, X.; Pant, A.; Cai, H.; Kang, J.; Sahin, H.; Chen, B.; Wu, K.; Yang, S.; Suslu, A.; Peeters, F.M.; Tongay, S.;
Title Engineering excitonic dynamics and environmental stability of post-transition metal chalcogenides by pyridine functionalization technique Type A1 Journal article
Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 7 Issue 7 Pages 17109-17115
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf Publication Date 2015-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 11 Open Access
Notes ; ; Approved Most recent IF: 7.367; 2015 IF: 7.394
Call Number (down) UA @ lucian @ c:irua:129434 Serial 4175
Permanent link to this record
 

 
Author Hacimustafaoglu, M.; Celebi, S.; Bozdemir, S.E.; Ozgur, T.; Ozcan, I.; Guray, A.; Çakir, D.
Title RSV frequency in children below 2 years hospitalized for lower respiratory tract infections Type A1 Journal article
Year 2013 Publication Turkish Journal Of Pediatrics Abbreviated Journal Turkish J Pediatr
Volume 55 Issue 2 Pages 130-139
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Respiratory syncytial virus (RSV) is the most frequent agent of acute lower respiratory diseases and creates a significant burden of disease in children under 5 years all over the world. RSV causes severe lower respiratory tract infections (LRTI) that require hospitalization, especially in children <= 2 years. The aim of this study was to determine the incidence of RSV in children <= 2 years of age hospitalized for LRTI. Children <= 2 years of age hospitalized for one year for LRTI in the three largest hospitals of Bursa City Center, Turkey were evaluated. These three hospitals comprise 67.5% of all child beds in central Bursa, so this study allows us to evaluate the total disease burden and hospitalization incidence in central Bursa. Nasal swabs of the children were evaluated with RSV RespiStrip (Coris Bioconcept Organization). A total of 671 children were hospitalized for LRTI, and 254 (37.9%) had at least one hospitalization that was positive for RSV. Of all patients with LRTI, 54.8% (368/671) were hospitalized for acute bronchiolitis, while 45.2% (303/671) were hospitalized for pneumonia. Of patients with acute bronchiolitis or pneumonia, 41% (151/368) and 34% (103/303) were RSV+, respectively. Of RSV+ hospitalized children, 59.5% (151/254) were diagnosed as acute bronchiolitis and 40.5% (103/254) as pneumonia. The annual incidences of hospitalization due to LRTI, acute bronchiolitis and pneumonia were 20.5/1000, 11.2/1000 and 9.3/1000, respectively, in children <= 2 years of age. The annual incidences of hospitalization due to RSV+ LRTI, acute bronchiolitis and pneumonia were found as 7.8/1000, 4.6/1000 and 3.2/1000, respectively, in children <= 2 years of age. More than one-third of all children hospitalized with LRTI (38.3%, n=257) were in the 0-3 months age group. Compared to other age groups, RSV positivity was highest in that age group for acute bronchiolitis (57%), pneumonia (39.5%) and also total children with LRTI (47.9%). RSV is a very important cause of lower respiratory infections in children <= 2 years of age and occurred most frequently in those 0-3 months of age in our study. Since there is no other study assessing the annual hospitalization incidence of RSV+ LRTIs in one city in Turkey, our study has unique importance for providing valuable statistical data about RSV+ LRTIs.
Address
Corporate Author Thesis
Publisher Place of Publication Ankara Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0041-4301 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.32 Times cited Open Access
Notes Approved Most recent IF: 0.32; 2013 IF: 0.339
Call Number (down) UA @ lucian @ c:irua:128325 Serial 4606
Permanent link to this record
 

 
Author Celebi, S.; Sezgin, M.E.; Çakir, D.; Baytan, B.; Demirkaya, M.; Sevinir, B.; Bozdemir, S.E.; Gunes, A.M.; Hacimustafaoglu, M.
Title Catheter-associated bloodstream infections in pediatric hematology-oncology patients Type A1 Journal article
Year 2013 Publication Pediatric Hematology And Oncology Abbreviated Journal Pediatr Hemat Oncol
Volume 30 Issue 3 Pages 187-194
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Catheter-associated bloodstream infections (CABSIs) are common complications encountered with cancer treatment. The aims of this study were to analyze the factors associated with recurrent infection and catheter removal in pediatric hematology-oncology patients. All cases of CABSIs in patients attending the Department of Pediatric Hematology-Oncology between January 2008 and December 2010 were reviewed. A total of 44 episodes of CABSIs, including multiple episodes involving the same catheter, were identified in 31 children with cancer. The overall CABSIs rate was 7.4 infections per 1000 central venous catheter (CVC) days. The most frequent organism isolated was coagulase-negative Staphylococcus (CONS). The CVC was removed in nine (20.4%) episodes. We found that hypotension, persistent bacteremia, Candida infection, exit-side infection, neutropenia, and prolonged duration of neutropenia were the factors for catheter removal. There were 23 (52.2%) episodes of recurrence or reinfection. Mortality rate was found to be 9.6% in children with CABSIs. In this study, we found that CABSIs rate was 7.4 infections per 1000 catheter-days. CABSIs rates in our hematology-oncology patients are comparable to prior reports. Because CONS is the most common isolated microorganism in CABSIs, vancomycin can be considered part of the initial empirical regimen.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos Publication Date 2013-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-0018 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.12 Times cited Open Access
Notes Approved Most recent IF: 1.12; 2013 IF: 0.963
Call Number (down) UA @ lucian @ c:irua:128324 Serial 4589
Permanent link to this record
 

 
Author Dendooven, J.; Devloo-Casier, K.; Ide, M.; Grandfield; Kurttepeli; Ludwig, K.F.; Bals, S.; Van der Voort, P.; Detavernier, C.
Title Atomic layer deposition-based tuning of the pore size in mesoporous thin films studied by in situ grazing incidence small angle X-ray scattering Type A1 Journal article
Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 6 Issue 24 Pages 14991-14998
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Atomic layer deposition (ALD) enables the conformal coating of porous materials, making the technique suitable for pore size tuning at the atomic level, e.g., for applications in catalysis, gas separation and sensing. It is, however, not straightforward to obtain information about the conformality of ALD coatings deposited in pores with diameters in the low mesoporous regime (<10 nm). In this work, it is demonstrated that in situ synchrotron based grazing incidence small angle X-ray scattering (GISAXS) can provide valuable information on the change in density and internal surface area during ALD of TiO2 in a porous titania film with small mesopores (3-8 nm). The results are shown to be in good agreement with in situ X-ray fluorescence data representing the evolution of the amount of Ti atoms deposited in the porous film. Analysis of both datasets indicates that the minimum pore diameter that can be achieved by ALD is determined by the size of the Ti-precursor molecule.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000345458200051 Publication Date 2014-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 41 Open Access OpenAccess
Notes 239865 Cocoon; 335078 Colouratom; Fwo; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367; 2014 IF: 7.394
Call Number (down) UA @ lucian @ c:irua:122227 Serial 169
Permanent link to this record
 

 
Author Toledano-Luque, M.; Matagne, P.; Sibaja-Hernandez, A.; Chiarella, T.; Ragnarsson, L.-A.; Sorée, B.; Cho, M.; Mocuta, A.; Thean, A.
Title Superior reliability of junctionless pFinFETs by reduced oxide electric field Type A1 Journal article
Year 2014 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L
Volume 35 Issue 12 Pages 1179-1181
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Superior reliability of junctionless (JL) compared with inversion-mode field-effect transistors (FETs) is experimentally demonstrated on bulk FinFET wafers. The reduced negative bias temperature instability (NBTI) of JL pFETs outperforms the previously reported best NBTI reliability data obtained with Si channel devices and guarantees 10-year lifetime at typical operating voltages and high temperature. This behavior is understood through the reduced oxide electric field and lessened interaction between charge carriers and oxide traps during device operation. These findings encourage the investigation of JL devices with alternative channels as a promising alternative for 7-nm technology nodes meeting reliability targets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000345575400006 Publication Date 2014-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0741-3106;1558-0563; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.048 Times cited 13 Open Access
Notes ; This work was supported by the imec's Core Partner Program. The review of this letter was arranged by Editor J. Schmitz. ; Approved Most recent IF: 3.048; 2014 IF: 2.754
Call Number (down) UA @ lucian @ c:irua:122192 Serial 3378
Permanent link to this record
 

 
Author Javon, E.; Lubk; Cours, R.; Reboh, S.; Cherkashin, N.; Houdellier, F.; Gatel, C.; Hytch, M.J.
Title Dynamical effects in strain measurements by dark-field electron holography Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 147 Issue Pages 70-85
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Here, we study the effect of dynamic scattering on the projected geometric phase and strain maps reconstructed using dark-field electron holography (DFEH) for non-uniformly strained crystals. The investigated structure consists of a {SiGe/Si} superlattice grown on a (001)-Si substrate. The three dimensional strain held within the thin TEM lamella is modelled by the finite element method. The observed projected strain is simulated in two ways by multiplying the strain at each depth in the crystal by a weighting function determined from a recently developed analytical two-beam dynamical theory, and by simply taking the average value. We demonstrate that the experimental results need to be understood in terms of the dynamical theory and good agreement is found between the experimental and simulated results. Discrepancies do remain for certain cases and are likely to be from an imprecision in the actual two-beam diffraction conditions, notably the deviation parameter, and points to limitations in the 2-beam approximation. Finally, a route towards a 3D reconstruction of strain fields is proposed. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000343157400009 Publication Date 2014-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 10 Open Access
Notes Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number (down) UA @ lucian @ c:irua:121108 Serial 769
Permanent link to this record
 

 
Author Lu, J.; Martinez, G.T.; Van Aert, S.; Schryvers, D.
Title Lattice deformations in quasi-dynamic strain glass visualised and quantified by aberration corrected electron microscopy Type A1 Journal article
Year 2014 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 251 Issue 10 Pages 2034-2040
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Advanced transmission electron microscopy and statistical parameter estimated quantification procedures were applied to study the room temperature quasi-dynamical strain glass state in NiTi alloys. Nanosized strain pockets are visualised and the displacements of the atom columns are quantified. A comparison is made with conventional high-resolution transmission electron microscopy images of point defect induced strains in NiAl alloys.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000344360000009 Publication Date 2014-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 2 Open Access
Notes Fwo Approved Most recent IF: 1.674; 2014 IF: 1.489
Call Number (down) UA @ lucian @ c:irua:120471 Serial 1801
Permanent link to this record
 

 
Author Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y.S.; Ho, C.H.; Yan, J.; Ogletree, D.F.; Aloni, S.; Ji, J.; Li, S.; Li, J.; Peeters, F.M.; Wu, J.;
Title Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling Type A1 Journal article
Year 2014 Publication Nature communications Abbreviated Journal Nat Commun
Volume 5 Issue Pages 3252
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Semiconducting transition metal dichalcogenides consist of monolayers held together by weak forces where the layers are electronically and vibrationally coupled. Isolated monolayers show changes in electronic structure and lattice vibration energies, including a transition from indirect to direct bandgap. Here we present a new member of the family, rhenium disulphide (ReS2), where such variation is absent and bulk behaves as electronically and vibrationally decoupled monolayers stacked together. From bulk to monolayers, ReS2 remains direct bandgap and its Raman spectrum shows no dependence on the number of layers. Interlayer decoupling is further demonstrated by the insensitivity of the optical absorption and Raman spectrum to interlayer distance modulated by hydrostatic pressure. Theoretical calculations attribute the decoupling to Peierls distortion of the 1T structure of ReS2, which prevents ordered stacking and minimizes the interlayer overlap of wavefunctions. Such vanishing interlayer coupling enables probing of two-dimensional-like systems without the need for monolayers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332666700010 Publication Date 2014-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 806 Open Access
Notes ; This work was supported by the United States Department of Energy Early Career Award DE-FG02-11ER46796. The high pressure part of this work was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences, under National Science Foundation Cooperative Agreement EAR 11-577758. The electron microscopy and nano-Auger measurements were supported by the user programme at the Molecular Foundry, which was supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract no. DE-AC02-05CH11231. S. A. gratefully acknowledges Dr Virginia Altoe of the Molecular Foundry for help with the TEM data acquisition and analysis. J.L. acknowledges support from the Natural Science Foundation of China for Distinguished Young Scholar (grant nos. 60925016 and 91233120). Y.-S.H. and C.-H. H. acknowledge support from the National Science Council of Taiwan under project nos. NSC 100-2112-M-011-001-MY3 and NSC 101-2221-E-011-052-MY3. H. S. was supported by the FWO Pegasus Marie Curie Long Fellowship programme. The DFT work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Centre. ; Approved Most recent IF: 12.124; 2014 IF: 11.470
Call Number (down) UA @ lucian @ c:irua:119247 Serial 2192
Permanent link to this record