toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author (down) Heyne, M.H.; de Marneffe, J.-F.; Nuytten, T.; Meersschaut, J.; Conard, T.; Caymax, M.; Radu, I.; Delabie, A.; Neyts, E.C.; De Gendt, S.
  Title The conversion mechanism of amorphous silicon to stoichiometric WS2 Type A1 Journal article
  Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
  Volume 6 Issue 15 Pages 4122-4130
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The deposition of ultra-thin tungsten films and their related 2D chalcogen compounds on large area dielectric substrates by gas phase reactions is challenging. The lack of nucleation sites complicates the adsorption of W-related precursors and subsequent sulfurization usually requires high temperatures. We propose here a technique in which a thin solid amorphous silicon film is used as reductant for the gas phase precursor WF6 leading to the conversion to metallic W. The selectivity of the W conversion towards the underlying dielectric surfaces is demonstrated. The role of the Si surface preparation, the conversion temperature, and Si thickness on the formation process is investigated. Further, the in situ conversion of the metallic tungsten into thin stoichiometric WS2 is achieved by a cyclic approach based on WF6 and H2S pulses at the moderate temperature of 450 1C, which is much lower than usual oxide sulfurization processes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000430538000036 Publication Date 2018-03-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.256 Times cited 4 Open Access OpenAccess
  Notes This work was supported throughout a strategic fundamental research grant for M. H. by the agency Flanders innovation & entrepreneurship (VLAIO). Approved Most recent IF: 5.256
  Call Number PLASMANT @ plasmant @c:irua:150968 Serial 4921
Permanent link to this record
 

 
Author (down) Hervieu, M.; Van Tendeloo, G.; Michel, C.; Martin, C.; Maignan, A.; Raveau, B.
  Title Synthesis and characterization of mercury based “1222” cuprates (Hg1-xMx)(Sr,Ba)2Pr2Cu2O9-\delta (M = Pr, Pb, Bi, Tl) Type A1 Journal article
  Year 1995 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 115 Issue Pages 525-531
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Five new layered cuprates, with a 1222-type structure, have been synthesized according to the formula (Hg(1-x)M(x))(Sr,Ba)(2) Pr2Cu2O9-delta with M = Pr, Pb, Pi, and Tl. They crystallize in a tetragonal cell with a approximate to a(p) and c approximate to 29.5 Angstrom; their structure consists in a triple intergrowth of oxygen-deficient perovskite, rock-salt-and fluorite-type layers. They are characterized by a mixed [Hg(1-x)M(x)O(1-delta)] layer in the rock-sail-type slice. The ED and HREM studies show that Tl, Bi, and Pb are statistically distributed in the mixed [Hg(1-x)M(x)O(1-delta)] layer, contrary to Pr which involves an ordering phenomenon along a. Different stacking defects are observed and discussed as well as the cleavage mode of the crystals. (C) 1995 Academic Press, Inc.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1995QN27700033 Publication Date 2002-10-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.133 Times cited 5 Open Access
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 135/271 Q2 # PHYSICS, APPLIED 70/145 Q2 # PHYSICS, CONDENSED MATTER 40/67 Q3 #
  Call Number UA @ lucian @ c:irua:13311 Serial 3412
Permanent link to this record
 

 
Author (down) Hervieu, M.; Pelloquin, D.; Michel, C.; Van Tendeloo, G.; Raveau, B.
  Title Structural characteristics of the 40K superconductor Bi2Sr5Cu3(CO3)2O10: a HREM study Type A1 Journal article
  Year 1994 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 112 Issue Pages 139-147
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1994PG30500024 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.133 Times cited 5 Open Access
  Notes Approved
  Call Number UA @ lucian @ c:irua:10034 Serial 3216
Permanent link to this record
 

 
Author (down) Hervieu, M.; Martin, C.; Maignan, A.; Van Tendeloo, G.; Jirak, Z.; Hejtmanek, J.; Barnabe, A.; Thopart, D.; Raveau, B.
  Title Structural and magnetotransport transitions in the electron-doped Pr1-xSrxMnO3(0.85\leq x\leq1) manganites Type A1 Journal article
  Year 2000 Publication Chemistry and materials Abbreviated Journal Chem Mater
  Volume 12 Issue 5 Pages 1456-1462
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The exploration of the Mn4+-rich side of the Pr1-xSrxMnO3 system has allowed the extension of the domain of the cubic perovskite, by using a two-step process, combining synthesis under Ar flow at high temperature and O-2 pressure annealing at lower temperature. We show that these Pr-doped cubic perovskites exhibit a coupled structural (cubic-tetragonal) and magnetic (para-antiferro) transition connected with a resistivity jump at the same temperature. The strong interplay between lattice, charges, and spins for these oxides results from the appearance at low temperature of the distorted C-type antiferromagnetic structure. The Pr1-xSrxMnO3 magnetic phase diagram shows, for 0.9 less than or equal to x less than or equal to 1 (i.e., on the Mn4+-rich side), the existence at low temperature of C- and G-type antiferromagnetism. The absence of ferromagnetic-antiferromagnetic competition explains that magnetoresistante properties are not observed in this system, in contrast to Mn4+-rich Ln(1-x)Ca(x)MnO(3) systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000087136800039 Publication Date 2002-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 24 Open Access
  Notes Approved Most recent IF: 9.466; 2000 IF: 3.580
  Call Number UA @ lucian @ c:irua:103454 Serial 3198
Permanent link to this record
 

 
Author (down) Hermans, I.; Breynaert, E.; Poelman, H.; de Gryse, R.; Liang, D.; Van Tendeloo, G.; Maes, A.; Peeters, J.; Jacobs, P.
  Title Silica-supported chromium oxide: colloids as building blocks Type A1 Journal article
  Year 2007 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 9 Issue 39 Pages 5382-5386
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000249925500022 Publication Date 2007-10-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 8 Open Access
  Notes Approved Most recent IF: 4.123; 2007 IF: 3.343
  Call Number UA @ lucian @ c:irua:66752 Serial 3000
Permanent link to this record
 

 
Author (down) Herkelrath, S.J.C.; Saratovsky, I.; Hadermann, J.; Clarke, S.J.
  Title Fragmentation of an infinite ZnO2 square plane into discrete [ZnO2]2- linear units in the oxyselenide Ba2ZnO2Ag2Se2 Type A1 Journal article
  Year 2008 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
  Volume 130 Issue 44 Pages 14426-14427
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Analysis of single crystal X-ray diffraction, neutron powder diffraction, electron diffraction and Zn−K-edge EXAFS data show that Ba2ZnO2Ag2Se2 contains unusual isolated [ZnO2]2− moieties resulting from fragmentation of a ZnO2 infinite plane placed under tension.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000260533400037 Publication Date 2008-10-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.858 Times cited 13 Open Access
  Notes Approved Most recent IF: 13.858; 2008 IF: 8.091
  Call Number UA @ lucian @ c:irua:72947 Serial 1273
Permanent link to this record
 

 
Author (down) Hendrickx, M.; Tang, Y.; Hunter, E.C.; Battle, P.D.; Hadermann, J.
  Title Structural and magnetic properties of the perovskites A₂LaFe₂SbO₉ (A = Ca, Sr, Ba) Type A1 Journal article
  Year 2021 Publication Journal Of Solid State Chemistry Abbreviated Journal J Solid State Chem
  Volume 295 Issue Pages 121914
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Polycrystalline samples of A(2)LaFe(2)SbO(9) (A = Ca, Sr, Ba) perovskites appeared monophasic to X-ray or neutron powder diffraction but a single-crystal study utilising transmission electron microscopy revealed a greater level of complexity. Although local charge balance is maintained, compositional and structural variations are present among and within the submicron-sized crystals. Despite the inhomogeneity, A = Ca is monophasic with a partially-ordered distribution of Fe3+ and Sb5+ cations across two crystallographically-distinct octahedral sites, i.e. Ca2La(Fe1.25Sb0.25)(2d) (Fe0.75Sb0.75)(2c)O-9. For A = Sr or Ba, the inhomogeneities result in differences in the filling patterns of the octahedra and the ordering of the B cations. Particles of A = Sr contain a phase (Fe:Sb similar to 2:1) without B cation ordering and one (Fe:Sb similar to 1:1) with B cation ordering. Monophasic A = Ba lacks long-range cation order although ordered nanodomains are present within the disordered phase. The temperature dependence of the magnetic properties of each sample is discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000615711800013 Publication Date 2020-12-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 2.299
  Call Number UA @ admin @ c:irua:176663 Serial 6739
Permanent link to this record
 

 
Author (down) Hendrickx, M.; Tang, Y.; Hunter, E.C.; Battle, P.D.; Cadogan, Jm.; Hadermann, J.
  Title CaLa2FeCoSbO9 and ALa2FeNiSbO9 (A = Ca, Sr, Ba): cation-ordered, inhomogeneous, ferrimagnetic perovskites Type A1 Journal article
  Year 2020 Publication Journal Of Solid State Chemistry Abbreviated Journal J Solid State Chem
  Volume 285 Issue Pages 121226
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Polycrystalline samples of CaLa2FeCoSbO9 and ALa2FeNiSbO9 (A=Ca, Sr, Ba) have been prepared in solid-state reactions and studied by a combination of transmission electron microscopy, magnetometry, X-ray diffraction, neutron diffraction and Mössbauer spectroscopy. Diffraction and TEM showed that each shows 1:1 B-site ordering in which Co2+/Ni2+ and Sb5+ tend to occupy two distinct crystallographic sites while Fe3+ is distributed over both sites. While X-ray and neutron diffraction agreed that all four compositions are monophasic with space group P21/n, TEM revealed different levels of compositional inhomogeneity at the subcrystal scale, which, in the case of BaLa2FeNiSbO9, leads to the occurrence of both a P21/n and an I2/m phase. Magnetometry and neutron diffraction show that these perovskites are ferrimagnets with a G-type magnetic structure. Their relatively low magnetisation can be attributed to their inhomogeneity. This work demonstrates the importance of studying the microstructure of complex compositions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000521107900017 Publication Date 2020-01-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.3 Times cited Open Access OpenAccess
  Notes PDB, ECH, and JH acknowledge support from EPSRC under grant EP/M0189954/1. We would also like to thank E. Suard at ILL and I. Da Silva at ISIS for the experimental assistance they provided. Approved Most recent IF: 3.3; 2020 IF: 2.299
  Call Number EMAT @ emat @c:irua:167137 Serial 6345
Permanent link to this record
 

 
Author (down) Heirman, P.; Van Boxem, W.; Bogaerts, A.
  Title Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered water solution: a computational study Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 21 Issue 24 Pages 12881-12894
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma-treated liquids have great potential for biomedical applications. However, insight into the underlying mechanisms and the exact chemistry is still scarce. In this study, we present the combination of a 0D chemical kinetics and a 2D fluid dynamics model to investigate the plasma treatment of a buffered water solution with the kINPen (R) plasma jet. Using this model, we calculated the gas and liquid flow profiles and the transport and chemistry of all species in the gas and the liquid phase. Moreover, we evaluated the stability of the reactive oxygen and nitrogen species after plasma treatment. We found that of all species, only H2O2, HNO2/NO2-, and HNO3/NO3- are stable in the buffered solution after plasma treatment. This is because both their production and loss processes in the liquid phase are dependent on short-lived radicals (e.g. OH, NO, and NO2). Apart from some discrepancy in the absolute values of the concentrations, which can be explained by the model, all general trends and observations in our model are in qualitative agreement with experimental data and literature.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000472214000012 Publication Date 2019-05-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 7 Open Access
  Notes Approved Most recent IF: 4.123
  Call Number UA @ admin @ c:irua:161314 Serial 6320
Permanent link to this record
 

 
Author (down) Heijkers, S.; Snoeckx, R.; Kozák, T.; Silva, T.; Godfroid, T.; Britun, N.; Snyders, R.; Bogaerts, A.
  Title CO2 conversion in a microwave plasma reactor in the presence of N2 : elucidating the role of vibrational levels Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 119 Issue 119 Pages 12815-12828
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract A chemical kinetics model is developed for a CO2/N2 microwave plasma, focusing especially on the vibrational levels of both CO2 and N2. The model is used to calculate the CO2 and N2 conversion as well as the energy efficiency of CO2 conversion for different power densities and for N2 fractions in the CO2/N2 gas mixture ranging from 0 to 90%. The calculation results are compared with measurements, and agreements within 23% and 33% are generally found for the CO2 conversion and N2 conversion, respectively. To explain the observed trends, the destruction and formation processes of both CO2 and N2 are analyzed, as well as the vibrational distribution functions of both CO2 and N2. The results indicate that N2 contributes in populating the lower asymmetric levels of CO2, leading to a higher absolute CO2 conversion upon increasing N2 fraction. However, the effective CO2 conversion drops because there is less CO2 initially present in the gas mixture; thus, the energy efficiency also drops with rising N2 fraction.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000356317500005 Publication Date 2015-05-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 56 Open Access
  Notes Approved Most recent IF: 4.536; 2015 IF: 4.772
  Call Number c:irua:126325 Serial 3523
Permanent link to this record
 

 
Author (down) Heijkers, S.; Martini, L.M.; Dilecce, G.; Tosi, P.; Bogaerts, A.
  Title Nanosecond Pulsed Discharge for CO2Conversion: Kinetic Modeling To Elucidate the Chemistry and Improve the Performance Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 123 Issue 19 Pages 12104-12116
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We study the mechanisms of CO2 conversion in a nanosecond repetitively pulsed (NRP) discharge, by means of a chemical kinetics model. The calculated conversions and energy efficiencies are in reasonable agreement with experimental results over a wide range of specific energy input values, and the same applies to the evolution of gas temperature and CO2 conversion as a function of time in the afterglow, indicating that our model provides a realistic picture of the underlying mechanisms in the NRP discharge and can be used to identify its limitations and thus to suggest further improvements. Our model predicts that vibrational excitation is very important in the NRP discharge, explaining why this type of plasma yields energy-efficient CO2 conversion. A significant part of the CO2 dissociation occurs by electronic excitation from the lower vibrational levels toward repulsive electronic states, thus resulting in dissociation. However, vibration−translation (VT) relaxation (depopulating the higher vibrational levels) and CO + O recombination (CO + O + M → CO2 + M), as well as mixing of the converted gas with fresh gas entering the plasma in between the pulses, are limiting factors for the conversion and energy efficiency. Our model predicts that extra cooling, slowing down the rate of VT relaxation and of the above recombination reaction, thus enhancing the contribution of the highest vibrational levels to the overall CO2 dissociation, can further improve the performance of the NRP discharge for energy-efficient CO2 conversion.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000468368800009 Publication Date 2019-05-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 4 Open Access Not_Open_Access: Available from 26.04.2020
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; The authors acknowledge financial support from the Fund for Scientific Research, Flanders (FWO; Grant no. G.0383.16N). Approved Most recent IF: 4.536
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159976 Serial 5174
Permanent link to this record
 

 
Author (down) Heijkers, S.; Bogaerts, A.
  Title CO2Conversion in a Gliding Arc Plasmatron: Elucidating the Chemistry through Kinetic Modeling Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 121 Issue 41 Pages 22644-22655
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract By means of chemical kinetics modeling, it is possible to elucidate the main dissociation mechanisms of CO2 in a gliding arc plasmatron (GAP). We obtain good agreement between the calculated and experimental conversions and energy efficiencies, indicating that the model can indeed be used to study the underlying mechanisms. The calculations predict that vibration-induced dissociation is the main dissociation mechanism of CO2, but it occurs mainly from the lowest vibrational levels because of fast thermalization of the vibrational distribution. Based on these findings, we propose ideas for improving the performance of the GAP, but testing of these ideas in the simulations reveals that they do not always lead to significant enhancement, because of other side effects, thus illustrating the complexity of the process. Nevertheless, the model allows more insight into the underlying mechanisms to be obtained and limitations to be identified.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000413617900007 Publication Date 2017-10-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 6 Open Access OpenAccess
  Notes Federaal Wetenschapsbeleid, IAP/7 ; Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Approved Most recent IF: 4.536
  Call Number PLASMANT @ plasmant @c:irua:147436 Serial 4801
Permanent link to this record
 

 
Author (down) Heijkers, S.; Aghaei, M.; Bogaerts, A.
  Title Plasma-Based CH4Conversion into Higher Hydrocarbons and H2: Modeling to Reveal the Reaction Mechanisms of Different Plasma Sources Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 124 Issue 13 Pages 7016-7030
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma is gaining interest for CH4 conversion into higher hydrocarbons and H2. However, the performance in terms of conversion and selectivity toward different hydrocarbons is different for different plasma types, and the underlying mechanisms are not yet fully understood. Therefore, we study here these mechanisms in different plasma sources, by means of a chemical kinetics model. The model is first validated by comparing the calculated conversions and hydrocarbon/H2 selectivities with experimental results in these different plasma types and over a wide range of specific energy input (SEI) values. Our model predicts that vibrational−translational nonequilibrium is negligible in all CH4 plasmas investigated, and instead, thermal conversion is important. Higher gas temperatures also lead to a more selective production of unsaturated hydrocarbons (mainly C2H2) due to neutral dissociation of CH4 and subsequent dehydrogenation processes, while three-body recombination reactions into saturated hydrocarbons (mainly C2H6, but also higher hydrocarbons) are dominant in low temperature plasmas.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000526328500007 Publication Date 2020-04-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.7 Times cited Open Access OpenAccess
  Notes Universiteit Antwerpen; Vlaamse regering; Fonds Wetenschappelijk Onderzoek, G.0383.16N ; H2020 European Research Council, 810182 ; We acknowledge financial support from the Fund for Scientific Research, Flanders (FWO; Grant No. G.0383.16N), the Methusalem Grant, and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182 − SCOPE ERC Synergy project). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 3.7; 2020 IF: 4.536
  Call Number PLASMANT @ plasmant @c:irua:168096 Serial 6358
Permanent link to this record
 

 
Author (down) He, Z.B.; Deng, G.; Tian, H.; Xu, Q.; Van Tendeloo, G.
  Title 90° Rotation of orbital stripes in bilayer manganite PrCa2Mn2O7 studied by in situ transmission electron microscopy Type A1 Journal article
  Year 2013 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 200 Issue Pages 287-293
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We present an in situ transmission electron microscopy study on the half-doped bilayer manganite PrCa2Mn2O7 to reveal the rotation process of the orbital stripes. Between the reported initial and final ordering phases, we identified an intermediate state with two sets of satellite spots to bridge the 90° rotation of the orbital stripes. Furthermore, we determined that the rotation of the orbital stripes does not always occur. Some restricted conditions for the orbital rotation to occur were found and reasons are discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000317158000043 Publication Date 2013-02-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 5 Open Access
  Notes Countatoms Approved Most recent IF: 2.299; 2013 IF: 2.200
  Call Number UA @ lucian @ c:irua:106183 Serial 20
Permanent link to this record
 

 
Author (down) He, Z.; Maurice, J.-L.; Gohier, A.; Lee, C.S.; Pribat, D.; Cojocaru, C.S.
  Title Iron catalysts for the growth of carbon nanofibers : Fe, Fe3C or both? Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 23 Issue 24 Pages 5379-5387
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Iron is a widely used catalyst for the growth of carbon nanotubes (CNTs) or carbon nanofibers (CNFs) by catalytic chemical vapor deposition. However, both Fe and FeC compounds (generally, Fe3C) have been found to catalyze the growth of CNTs/CNFs, and a comparison study of their respective catalytic activities is still missing. Furthermore, the control of the crystal structure of iron-based catalysts, that is α-Fe or Fe3C, is still a challenge, which not only obscures our understanding of the growth mechanisms of CNTs/CNFs, but also complicates subsequent procedures, such as the removal of catalysts for better industrial applications. Here, we show a partial control of the phase of iron catalysts (α-Fe or Fe3C), obtained by varying the growth temperatures during the synthesis of carbon-based nanofibers/nanotubes in a plasma-enhanced chemical vapor deposition reactor. We also show that the structure of CNFs originating from Fe3C is bamboo-type, while that of CNFs originating from Fe is not. Moreover, we directly compare the growth rates of carbon-based nanofibers/nanotubes during the same experiments and find that CNFs/CNTs grown by α-Fe nanoparticles are longer than CNFs grown from Fe3C nanoparticles. The influence of the type of catalyst on the growth of CNFs is analyzed and the corresponding possible growth mechanisms, based on the different phases of the catalysts, are discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000298197300014 Publication Date 2011-11-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 91 Open Access
  Notes Approved Most recent IF: 9.466; 2011 IF: 7.286
  Call Number UA @ lucian @ c:irua:94297 Serial 1748
Permanent link to this record
 

 
Author (down) Hao, Y.; Velpula, G.; Kaltenegger, M.; Bodlos, W.R.; Vibert, F.; Mali, K.S.; De Feyter, S.; Resel, R.; Geerts, Y.H.; Van Aert, S.; Beljonne, D.; Lazzaroni, R.
  Title From 2D to 3D : bridging self-assembled monolayers to a substrate-induced polymorph in a molecular semiconductor Type A1 Journal article
  Year 2022 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 34 Issue 5 Pages 2238-2248
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract In this study, a new bottom-up approach is proposed to predict the crystal structure of the substrate-induced polymorph (SIP) of an archetypal molecular semiconductor. In spite of intense efforts, the formation mechanism of SIPs is still not fully understood, and predicting their crystal structure is a very delicate task. Here, we selected lead phthalocyanine (PbPc) as a prototypical molecular material because it is a highly symmetrical yet nonplanar molecule and we demonstrate that the growth and crystal structure of the PbPc SIPs can be templated by the corresponding physisorbed self-assembled molecular networks (SAMNs). Starting from SAMNs of PbPc formed at the solution/graphite interface, the structural and energetic aspects of the assembly were studied by a combination of in situ scanning tunneling microscopy and multiscale computational chemistry approach. Then, the growth of a PbPc SIP on top of the physisorbed monolayer was modeled without prior experimental knowledge, from which the crystal structure of the SIP was predicted. The theoretical prediction of the SIP was verified by determining the crystal structure of PbPc thin films using X-ray diffraction techniques, revealing the formation of a new polymorph of PbPc on the graphite substrate. This study clearly illustrates the correlation between the SAMNs and SIPs, which are traditionally considered as two separate but conceptually connected research areas. This approach is applicable to molecular materials in general to predict the crystal structure of their SIPs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000812125800001 Publication Date 2022-02-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.6 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 8.6
  Call Number UA @ admin @ c:irua:189086 Serial 7084
Permanent link to this record
 

 
Author (down) Han, Y.; Zeng, Y.; Hendrickx, M.; Hadermann, J.; Stephens, P.W.; Zhu, C.; Grams, C.P.; Hemberger, J.; Frank, C.; Li, S.; Wu, M.X.; Retuerto, M.; Croft, M.; Walker, D.; Yao, D.-X.; Greenblatt, M.; Li, M.-R.
  Title Universal a-cation splitting in LiNbO₃-type structure driven by intrapositional multivalent coupling Type A1 Journal article
  Year 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc
  Volume 142 Issue 15 Pages 7168-7178
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Understanding the electric dipole switching in multiferroic materials requires deep insight of the atomic-scale local structure evolution to reveal the ferroelectric mechanism, which remains unclear and lacks a solid experimental indicator in high-pressure prepared LiNbO3-type polar magnets. Here, we report the discovery of Zn-ion splitting in LiNbO3-type Zn2FeNbO6 established by multiple diffraction techniques. The coexistence of a high-temperature paraelectric-like phase in the polar Zn2FeNbO6 lattice motivated us to revisit other high-pressure prepared LiNbO3-type A(2)BB'O-6 compounds. The A-site atomic splitting (similar to 1.0-1.2 angstrom between the split-atom pair) in B/B'-mixed Zn2FeTaO6 and O/N-mixed ZnTaO2N is verified by both powder X-ray diffraction structural refinements and high angle annular dark field scanning transmission electron microscopy images, but is absent in single-B-site ZnSnO3. Theoretical calculations are in good agreement with experimental results and suggest that this kind of A-site splitting also exists in the B-site mixed Mn-analogues, Mn2FeMO6 (M = Nb, Ta) and anion-mixed MnTaO2N, where the smaller A-site splitting (similar to 0.2 angstrom atomic displacement) is attributed to magnetic interactions and bonding between A and B cations. These findings reveal universal A-site splitting in LiNbO3-type structures with mixed multivalent B/B', or anionic sites, and the splitting-atomic displacement can be strongly suppressed by magnetic interactions and/or hybridization of valence bands between d electrons of the A- and B-site cations.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000526300600046 Publication Date 2020-03-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 15 Times cited 1 Open Access Not_Open_Access
  Notes ; This work was supported by the National Science Foundation of China (NSFC-21875287), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07C069), and an NSF-DMR-1507252 grant (U.S.). Use of the NSLS, Brookhaven National Laboratory, was supported by the DOE BES (DE-AC02-98CH10886). M.R. is thankful for the Spanish Juan de la Cierva grant FPDI-2013-17582. Y.Z. and D.-X.Y. are supported by NKRDPC-2018YFA0306001, NKRDPC-2017YFA0206203, NSFC-11974432, NSFG-2019A1515011337, the National Supercomputer Center in Guangzhou, and the Leading Talent Program of Guangdong Special Projects. Work on IOP, CAS, was supported by NSFC and MOST grants. A portion of this research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. J.H. and M.H. thank the FWO for support for the electron microscopy studies through grant G035619N. We thank beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing beam time and help during the experiments. ; Approved Most recent IF: 15; 2020 IF: 13.858
  Call Number UA @ admin @ c:irua:170294 Serial 6646
Permanent link to this record
 

 
Author (down) Hamon, A.-L.; Verbeeck, J.; Schryvers, D.; Benedikt, J.; van den Sanden, R.M.C.M.
  Title ELNES study of carbon K-edge spectra of plasma deposited carbon films Type A1 Journal article
  Year 2004 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
  Volume 14 Issue Pages 2030-2035
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Electron energy loss spectroscopy was used to investigate the bonding of plasma deposited carbon films. The experimental conditions include the use of a specific collection angle for which the shape of the spectra is free of the orientation dependency usually encountered in graphite due to its anisotropic structure. The first quantification process of the energy loss near-edge structure was performed by a standard fit of the collected spectrum, corrected for background and multiple scattering, with three Gaussian functions followed by a comparison with the graphite spectrum obtained under equivalent experimental conditions. In a second approach a fitting model directly incorporating the background subtraction and multiple scattering removal was applied. The final numerical results are interpreted in view of the deposition conditions of the films and the actual fitting procedure with the related choice of parameters.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000222312500017 Publication Date 2004-06-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.626 Times cited 61 Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:48782UA @ admin @ c:irua:48782 Serial 1025
Permanent link to this record
 

 
Author (down) Hamidi-Asl, E.; Daems, D.; De Wael, K.; Van Camp, G.; Nagels, L.J.
  Title Concentration related response potentiometric titrations to study the interaction of small molecules with large biomolecules Type A1 Journal article
  Year 2014 Publication Analytical chemistry Abbreviated Journal Anal Chem
  Volume 86 Issue 24 Pages 12243-12249
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract In the present article, the utility of a special potentiometric titration approach for recognition and calculation of biomolecule/small molecule interactions is reported. This approach is fast, sensitive, reproducible and inexpensive in comparison to the other methods for the determination of the association constant values (Ka) and the interaction energies (ΔG). The potentiometric titration measurement is based on the use of a classical polymeric membrane indicator electrode in a solution of the small molecule ligand. The biomolecule is used as a titrant. The potential is measured versus a reference electrode and transformed to a concentration related signal over the entire concentration interval, also at low concentrations, where the mV (y-axis) versus logcanalyte (x-axis) potentiometric calibration curve is not linear. In the procedure, the Ka is calculated for the interaction of cocaine with a cocaine binding aptamer and with an anti-cocaine antibody. To study the selectivity and cross-reactivity, other oligonucleotides and aptamers are tested, as well as other small ligand molecules such as tetrakis (4-chlorophenyl)borate, metergoline, lidocaine, and bromhexine. The calculated Ka compared favorably to the value reported in the literature using SPR. The potentiometric titration approach called Concentration related Response Potentiometry, is used to study molecular interaction for 7 macromolecular target molecules and 4 small molecule ligands.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000346683900048 Publication Date 2014-11-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.32 Times cited 10 Open Access
  Notes ; Financial support for this work was provided by the University of Antwerp by granting L.J.N., K.D.W, G.V.C., and Ronny Blust a POC interdisciplinary research project. ; Approved Most recent IF: 6.32; 2014 IF: 5.636
  Call Number UA @ admin @ c:irua:120164 Serial 5548
Permanent link to this record
 

 
Author (down) Hamid, I.; Jalali, H.; Peeters, F.M.; Neek-Amal, M.
  Title Abnormal in-plane permittivity and ferroelectricity of confined water : from sub-nanometer channels to bulk Type A1 Journal article
  Year 2021 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
  Volume 154 Issue 11 Pages 114503
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Dielectric properties of nano-confined water are important in several areas of science, i.e., it is relevant in the dielectric double layer that exists in practically all heterogeneous fluid-based systems. Molecular dynamics simulations are used to predict the in-plane dielectric properties of confined water in planar channels of width ranging from sub-nanometer to bulk. Because of suppressed rotational degrees of freedom near the confining walls, the dipole of the water molecules tends to be aligned parallel to the walls, which results in a strongly enhanced in-plane dielectric constant (epsilon (parallel to)) reaching values of about 120 for channels with height 8 angstrom < h < 10 angstrom. With the increase in the width of the channel, we predict that epsilon (parallel to) decreases nonlinearly and reaches the bulk value for h > 70 angstrom. A stratified continuum model is proposed that reproduces the h > 10 angstrom dependence of epsilon (parallel to). For sub-nanometer height channels, abnormal behavior of epsilon (parallel to) is found with two orders of magnitude reduction of epsilon (parallel to) around h similar to 7.5 angstrom, which is attributed to the formation of a particular ice phase that exhibits long-time (similar to mu s) stable ferroelectricity. This is of particular importance for the understanding of the influence of confined water on the functioning of biological systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000629831900001 Publication Date 2021-03-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.965 Times cited 13 Open Access OpenAccess
  Notes Approved Most recent IF: 2.965
  Call Number UA @ admin @ c:irua:177579 Serial 6967
Permanent link to this record
 

 
Author (down) Hamelet, S.; Casas-Cabanas, M.; Dupont, L.; Davoisne, C.; Tarascon, J.M.; Masquelier, C.
  Title Existence of superstructures due to large amounts of Fe vacancies in the LiFePO4-type framework Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 23 Issue 1 Pages 32-38
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract LiFePO4 has been under intense scrutiny over the past decade because it stands as an attractive positive electrode material for the next generation of Li-ion batteries to power electric vehicles and hybrid electric vehicles, hence the importance of its thermal behavior. The reactivity of LiFePO4 with air at moderate temperatures is shown to be dependent on its particle size. For nanosized materials, a progressive displacement of Fe from the core structure leading to a composite made of nanosize Fe2O3 and highly defective, oxidized LixFeyPO4 compositions, among which the “ideal” formula LiFe2/3PO4. Herein we report, from both temperature-controlled X-ray diffraction and electronic diffraction microscopy, that these off-stoichiometry olivine-type compounds show a defect ordering resulting in the formation of a superstructure. Such a finding shows striking similarities with the temperature-driven oxidation of fayalite Fe2SiO4 (another olivine) to structurally defective laihunite, reported in the literature three decades ago.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000285726900007 Publication Date 2010-12-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 30 Open Access
  Notes Approved Most recent IF: 9.466; 2011 IF: 7.286
  Call Number UA @ lucian @ c:irua:105605 Serial 1130
Permanent link to this record
 

 
Author (down) Hadermann, J.; Van Tendeloo, G.; Abakumov, A.M.; Rozova, M.G.; Antipov, E.V.
  Title HREM study of fluorinated Nd2CuO4 Type A1 Journal article
  Year 2001 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 157 Issue Pages 56-61
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000167634500008 Publication Date 2002-09-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 7 Open Access
  Notes Approved Most recent IF: 2.299; 2001 IF: 1.614
  Call Number UA @ lucian @ c:irua:36047 Serial 1510
Permanent link to this record
 

 
Author (down) Hadermann, J.; Pérez, O.; Créon, N.; Michel, C.; Hervieu, M.
  Title The (3 + 2)D structure of oxygen deficient LaSrCuO3.52 Type A1 Journal article
  Year 2007 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
  Volume 17 Issue 22 Pages 2344-2350
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000247349400020 Publication Date 2007-04-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 7 Open Access
  Notes Supergmr:Hprn-Ct-2000-0021 Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:64749 c:irua:64749 Serial 13
Permanent link to this record
 

 
Author (down) Hadermann, J.; Khasanova, N.R.; Van Tendeloo, G.; Abakumov, A.M.; Rozova, M.G.; Alekseeva, A.M.; Antipov, E.V.
  Title Suppression of modulations in fluorinated Bi-2201 phases Type A1 Journal article
  Year 2001 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 156 Issue Pages 445-451
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000167252000027 Publication Date 2002-09-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 8 Open Access
  Notes Approved Most recent IF: 2.299; 2001 IF: 1.614
  Call Number UA @ lucian @ c:irua:36046 Serial 3386
Permanent link to this record
 

 
Author (down) Hadermann, J.; Abakumov, A.M.; Van Rompaey, S.; Mankevich, A.S.; Korsakov, I.E.
  Title Comment on ALaMn2O6-y (A = K, Rb): novel ferromagnetic manganites exhibiting negative giant magnetoresistance Type Editorial
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 21 Issue 9 Pages 2000-2001
  Keywords Editorial; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000265781000036 Publication Date 2009-04-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 4 Open Access
  Notes Approved Most recent IF: 9.466; 2009 IF: 5.368
  Call Number UA @ lucian @ c:irua:77055 Serial 411
Permanent link to this record
 

 
Author (down) Hadermann, J.; Abakumov, A.M.; Turner, S.; Hafideddine, Z.; Khasanova, N.R.; Antipov, E.V.; Van Tendeloo, G.
  Title Solving the structure of Li ion battery materials with precession electron diffraction : application to Li2CoPo4F Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 23 Issue 15 Pages 3540-3545
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The crystal structure of the Li2CoPO4F high-voltage cathode for Li ion rechargeable batteries has been completely solved from precession electron diffraction (PED) data, including the location of the Li atoms. The crystal structure consists of infinite chains of CoO4F2 octahedra sharing common edges and linked into a 3D framework by PO4 tetrahedra. The chains and phosphate anions together delimit tunnels filled with the Li atoms. This investigation demonstrates that PED can be successfully applied for obtaining structural information on a variety of Li-containing electrode materials even from single micrometer-sized crystallites.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000293357100019 Publication Date 2011-07-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 46 Open Access
  Notes Fwo; Bof Approved Most recent IF: 9.466; 2011 IF: 7.286
  Call Number UA @ lucian @ c:irua:90357 Serial 3053
Permanent link to this record
 

 
Author (down) Hadermann, J.; Abakumov, A.M.; Tsirlin, A.A.; Rozova, M.G.; Sarakinou, E.; Antipov, E.V.
  Title Expanding the Ruddlesden-Popper manganite family : the n=3 La3.2Ba0.8Mn3O10 Member Type A1 Journal article
  Year 2012 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
  Volume 51 Issue 21 Pages 11487-11492
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract La3.2Ba0.8Mn3O10, a representative of the rare n = 3 members of the Ruddlesden-Popper manganites A(n+1)Mn(n)O(3n+1), was synthesized in an evacuated sealed silica tube. Its crystal structure was refined from a combination of powder X-ray diffraction (PXD) and precession electron diffraction (PED) data, with the rotations of the MnO6 octahedra described within the symmetry-adapted mode approach (space group Cccm, a = 29.068(1) angstrom, b = 5.5504(5) angstrom, c = 5.5412(5) angstrom; PXD RF = 0.053, RP = 0.026; PED RF = 0.248). The perovskite block in La3.2Ba0.8Mn3O10 features an octahedral tilting distortion with out-of-phase rotations of the Mn06 octahedra according to the (Phi,Phi,0)(Phi,Phi,0) mode, observed for the first time in the n = 3 Ruddlesden-Popper structures. The Mn06 octahedra demonstrate a noticeable deformation with the elongation of two apical Mn-O bonds due to the Jahn-Teller effect in the Mn3+ cations. The relationships between the octahedral tilting distortion, the ionic radii of the cations at the A- and B-positions, and the mismatch between the perovslcite and rock-salt blocks of the Ruddlesden-Popper structure are discussed. At low temperatures, La3.2Ba0.8Mn3O10 reveals a sizable remnant magnetization of about 1.3 mu(B)/Mn at 2K, and shows signatures of spin freezing below 150 K.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Easton, Pa Editor
  Language Wos 000313220200036 Publication Date 2012-10-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.857 Times cited 2 Open Access
  Notes Approved Most recent IF: 4.857; 2012 IF: 4.593
  Call Number UA @ lucian @ c:irua:110121 Serial 1133
Permanent link to this record
 

 
Author (down) Hadermann, J.; Abakumov, A.M.; Perkisas, T.; d' Hondt, H.; Tan, H.; Verbeeck, J.; Filonenko, V.P.; Antipov, E.V.; Van Tendeloo, G.
  Title New perovskite-based manganite Pb2Mn2O5 Type A1 Journal article
  Year 2010 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 183 Issue 183 Pages 2190-2195
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A new perovskite based compound Pb2Mn2O5 has been synthesized using a high pressure high temperature technique. The structure model of Pb2Mn2O5 is proposed based on electron diffraction, high angle annular dark field scanning transmission electron microscopy and high resolution transmission electron microscopy. The compound crystallizes in an orthorhombic unit cell with parameters a=5.736(1)Å≈√2a p p p (a p the parameter of the perovskite subcell) and space group Pnma. The Pb2Mn2O5 structure consists of quasi two-dimensional perovskite blocks separated by 1/2[110] p (1̄01) p crystallographic shear planes. The blocks are connected to each other by chains of edge-sharing MnO5 distorted tetragonal pyramids. The chains of MnO5 pyramids and the MnO6 octahedra of the perovskite blocks delimit six-sided tunnels accommodating double chains of Pb atoms. The tunnels and pyramidal chains adopt two mirror-related configurations (left L and right R) and layers consisting of chains and tunnels of the same configuration alternate in the structure according to an -LRLR-sequence. The sequence is sometimes locally violated by the appearance of -LL- or -RR-fragments. A scheme is proposed with a JahnTeller distortion of the MnO6 octahedra with two long and two short bonds lying in the ac plane, along two perpendicular orientations within this plane, forming a d-type pattern.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000282139600041 Publication Date 2010-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 8 Open Access
  Notes Fwo; Bof; Esteem 026019 Approved Most recent IF: 2.299; 2010 IF: 2.261
  Call Number UA @ lucian @ c:irua:85472UA @ admin @ c:irua:85472 Serial 2332
Permanent link to this record
 

 
Author (down) Hadermann, J.; Abakumov, A.M.; Lebedev, O.I.; Van Tendeloo, G.; Rozova, M.G.; Shpanchenko, R.V.; Pavljuk, B.P.; Kopnin, E.M.; Antipov, E.V.
  Title Structural transformations in the fluorinated T* phase Type A1 Journal article
  Year 1999 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 147 Issue Pages 647-656
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000083652600028 Publication Date 2002-10-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 8 Open Access
  Notes Approved Most recent IF: 2.299; 1999 IF: 1.547
  Call Number UA @ lucian @ c:irua:29279 Serial 3266
Permanent link to this record
 

 
Author (down) Hadermann, J.; Abakumov, A.M.; Gillie, L.J.; Martin, C.; Hervieu, M.
  Title Coupled cation and charge ordering in the CaMn306 tunnel structure Type A1 Journal article
  Year 2006 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 18 Issue 23 Pages 5530-5536
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000241808600021 Publication Date 2006-10-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 33 Open Access
  Notes Iap V-1 Approved Most recent IF: 9.466; 2006 IF: 5.104
  Call Number UA @ lucian @ c:irua:61374 Serial 534
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: