|   | 
Details
   web
Records
Author (down) Esteban, D.A.; Vanrompay, H.; Skorikov, A.; Béché, A.; Verbeeck, J.; Freitag, B.; Bals, S.
Title Fast electron low dose tomography for beam sensitive materials Type A1 Journal article
Year 2021 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal
Volume 27 Issue S1 Pages 2116-2118
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.891
Call Number EMAT @ emat @c:irua:183278 Serial 6813
Permanent link to this record
 

 
Author (down) Esteban, D.A.; Chamocho, E.G.; Carretero González, J.; Urones Garrote, E.; Otero Díaz, L.C.; Brande, D.Á.
Title Enhancing Electrochemical Properties of Walnut Shell Activated Carbon with Embedded MnO Clusters for Supercapacitor Applications Type A1 Journal Article
Year 2024 Publication Batteries & Supercaps Abbreviated Journal Batteries & Supercaps
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Activated carbon (AC) materials from renewable sources are widely used in electrochemical applications due to their well‐known high surface area. However, their application as electrode material in double‐layer electrochemical devices may be limited due to their relatively low electrical conductivity and lightweight. To overcome these limitations, the incorporation of pseudocapacitance metal oxide nanoparticles is an optimum approach. These nanoparticles can provide a second energy storage mechanism to the composite, mitigating the loss of surface area associated with their incorporation. As a result, the composite material is endowed with increased conductivity and higher density, making it more suitable for practical implementation in real devices. In this study, we have incorporated a fine dispersion of 1 % of MnO clusters into a highly porous activated carbon synthesized from walnut shells (WAC). The high‐resolution electron microscopy studies, combined with their related analytical techniques, allow us to determine the presence of the cluster within the matrix carbon precisely. The resulting MnO@WAC composite demonstrated significantly improved capacitive behavior compared with the WAC material, with increased volumetric capacitance and higher charge retention at higher current densities. The composite‘s electrochemical performance suggests its potential as a promising electrode material for supercapacitors, addressing drawbacks associated with traditional AC materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001198179300001 Publication Date 2024-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2566-6223 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Grants PID2020-112848RB-C21 funded by MCIN/AEI/ 10.13039/501100011033 and by the European Union PRTR funding through projects are acknowledged. Access to the ICTS- CNME for TEM is also acknowledged. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:205463 Serial 9119
Permanent link to this record
 

 
Author (down) Esquivel, M.R.; Zelaya, E.
Title Synthesis and characterisation of lanthanide-based dioxide Type A1 Journal article
Year 2011 Publication Advances in applied ceramics Abbreviated Journal Adv Appl Ceram
Volume 110 Issue 4 Pages 219-224
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In the present work, the microstructure and structure of La(0.25)Ce(0.52)Nd(0.17)Pr(0.06)(OH)(3) and La(0.25)Ce(0.52)Nd(0.17)Pr(0.06)O(2) is obtained from transmission electron microscopy and X-ray diffraction measurements. Space group P6(3)/m is assigned to the structure of La(0.25)Ce(0.52)Nd(0.17)Pr(0.06)(OH)(3). Lanthanides are assigned to Wyckoff positions 2c. Cell parameters are a=6.375(5) angstrom and c=3.753(5) angstrom. The thermal decomposition of this compound was studied by differential scanning calorimetry. The process is exothermal with an enthalpy change Delta H degrees value of -254 +/- 10 kJ mol(-1). The decomposition kinetics is complex and two global processes with E(a) values of 98 +/- 4 and 61 +/- 2 kJ mol 21 were observed. The product is a lanthanide dioxide. Space group Fm3m is assigned to the La(0.25)Ce(0.52)Nd(0.17)Pr(0.06)O(2). Lanthanides are distributed in Wyckoff positions 4a. The cell parameter is a=5.479(5) angstrom. Nanopores in the oxide surface are obtained using this method and characterised by STEM measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Leeds Editor
Language Wos 000291206700006 Publication Date 2011-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1743-6753;1743-6761; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.325 Times cited 3 Open Access
Notes Approved Most recent IF: 1.325; 2011 IF: 0.871
Call Number UA @ lucian @ c:irua:105588 Serial 3410
Permanent link to this record
 

 
Author (down) Esquivel, D.; Ouwehand, J.; Meledina, M.; Turner, S.; Tendeloo, G.V.; Romero-Salguero, F.J.; Clercq, J.D.; Voort, P.V.D.
Title Thiol-ethylene bridged PMO: A high capacity regenerable mercury adsorbent via intrapore mercury thiolate crystal formation Type A1 Journal article
Year 2017 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater
Volume 339 Issue 339 Pages 368-377
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Highly ordered thiol-ethylene bridged Periodic Mesoporous Organosilicas were synthesized directly from a homemade thiol-functionalized bis-silane precursor. These high surface area materials contain up to 4.3 mmol/g sulfur functions in the walls and can adsorb up to 1183 mg/g mercury ions. Raman spectroscopy reveals the existence of thiol and disulfide moieties. These groups have been evaluated by a combination of Raman spectroscopy, Ellman’s reagent and elemental analysis. The adsorption of mercury ions was evidenced by different techniques, including Raman, XPS and porosimetry, which indicate that thiol groups are highly accessible to mercury. Scanning transmission electron microscopy combined with EDX showed an even homogenous distribution of the sulfur atoms throughout the structure, and have revealed for the first time that a fraction of the adsorbed mercury is forming thiolate nanocrystals in the pores. The adsorbent is highly selective for mercury and can be regenerated and reused multiple times, maintaining its structure and functionalities and showing only a marginal loss of adsorption capacity after several runs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000407188200040 Publication Date 2017-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.065 Times cited 12 Open Access OpenAccess
Notes D.E. thanks the F.W.O. Flanders (Fund Scientific Research) for a postdoctoral grant (3E10813W). J.O. acknowledges also F.W.O. Flanders, research project G006813N, and the research Board of Ghent University, UGent GOA (Concerted Research Actions) (grant 01G00710) for financial support. F. J. R.-S. acknowledges funding of this research by the Spanish Ministry of Economy and Competitiveness (Project MAT2013-44463-R), Andalusian Regional Government (FQM-346 group), and Feder Funds. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the Belgian IAP-PAI network. Approved Most recent IF: 6.065
Call Number EMAT @ emat @ c:irua:144433 Serial 4624
Permanent link to this record
 

 
Author (down) Espinoza Torres, C.; Condó, A.M.; Haberkorn, N.; Zelaya, E.; Schryvers, D.; Guimpel, J.; Lovey, F.C.
Title Structures in textured Cu-Al-Ni shape memory thin films grown by sputtering Type A1 Journal article
Year 2014 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 96 Issue Pages 256-262
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The structure and texture formation in CuAlNi thin films of different thicknesses (1 μm to 5 μm) grown by DC magnetron sputtering without any intentional heating of the substrate are reported. The as-grown films present grains with an average size of 20 nm. The films with thickness of 1 μm have a single metastable phase with a hexagonal structure and are textured with planes (0002) parallel to the plane of the films. It was observed that thicker films present phase coexistence between metastable hexagonal and body centered cubic structures with a gradual increment of the body centered cubic phase fraction. The films with thickness of 5 μm are textured with planes (0002) and View the MathML source101¯0 in the hexagonal structure, whereas in the body centered cubic structure the films are textured with {110} planes parallel to the plane of the films. This fact can be associated with self-heating of the substrate during the growth of the films and with the relative stability of the metastable phases. Free standing films annealed in a second step (1123 K for 1 h) present austenitic phase with L21 structure and sub-micrometric grains textured with {220}L21 planes parallel to the plane of the films. The martensitic transformation temperature was determined from the analysis of resistance against temperature measurements.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000343346400032 Publication Date 2014-08-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 9 Open Access
Notes (CONICET PIP 11220090100457) and MINCYT-FWO International Exchange Project FW/09/03 is also acknowledged Approved Most recent IF: 2.714; 2014 IF: 1.845
Call Number UA @ lucian @ c:irua:118931 Serial 3321
Permanent link to this record
 

 
Author (down) Espinosa, I.M.P.; Karaaslan, Y.; Sevik, C.; Martini, A.
Title Atomistic model of the anisotropic response of ortho-Mo₂C to indentation Type A1 Journal article
Year 2023 Publication AIP advances Abbreviated Journal
Volume 13 Issue 6 Pages 065125-65127
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Molybdenum carbide has various applications for which studying the material using classical molecular dynamics simulations would be valuable. Here, we develop an empirical potential within the Tersoff formalism using particle swarm optimization for the orthorhombic phase of Mo2C. The developed potential is shown to predict lattice constants, elastic properties, and equation of state results that are consistent with current and previously reported results from experiments and first principles calculations. We demonstrate the potential with simulations of indentation using multiple indenter sizes that load and unload in three different directions relative to the crystallographic lattice of orthorhombic Mo2C. Direction-dependent force-displacement trends are analyzed and explained in terms of the spatial distributions of stress and strain within the material during indentation. This study reveals the anisotropic elasticity of orthorhombic Mo2C and, more generally, provides researchers with a new empirical potential that can be used to explore the properties and behavior of the material going forward.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001016472500005 Publication Date 2023-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198333 Serial 8834
Permanent link to this record
 

 
Author (down) Espinosa, E.H.; Lonescu, R.; Bittencourt, C.; Felten, A.; Erni, R.; Van Tendeloo, G.; Pireaux, J.-J.; Llobet, E.
Title Metal-decorated multi-wall carbon nanotubes for low temperature gas sensing Type A1 Journal article
Year 2007 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 515 Issue 23 Pages 8322-8327
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam : Elsevier Editor
Language Wos 000250353700005 Publication Date 2007-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 86 Open Access
Notes Pai 5/1 Approved Most recent IF: 1.879; 2007 IF: 1.693
Call Number UA @ lucian @ c:irua:66631 Serial 2008
Permanent link to this record
 

 
Author (down) Esken, D.; Zhang, X.; Lebedev, O.I.; Schröder, F.; Fischer, R.A.
Title Pd@MOF-5: limitations of gas-phase infiltration and solution impregnation of [Zn4O(bdc)3] (MOF-5) with metalorganic palladium precursors for loading with Pd nanoparticles Type A1 Journal article
Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 19 Issue 9 Pages 1314-1319
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The limitations of the loading of the porous metalorganic framework [Zn4O(bdc)3] (bdc = benzene-1,4-dicarboxylate; MOF-5 or IRMOF-1) with Pd nanoparticles was investigated. First, the volatile organometallic precursor [Pd(5-C5H5)(3-C3H5)] was employed to get the inclusion compound [Pd(5-C5H5)(3-C3H5)]x@MOF-5 via gas-phase infiltration at 10-3 mbar. A loading of four molecules of [Pd(5-C5H5)(3-C3H5)] per formula unit of MOF-5 (x = 4) can be reached (35 wt.% Pd). Second, the metalorganic precursor [Pd(acac)2] (acac = 2,4-pentanedionate) was used and the inclusion materials [Pd(acac)2]x@MOF-5 of different Pd loadings were obtained by incipient wetness infiltration. However, the maximum loading was lower as compared with the former case with about two precursor molecules per formula unit of MOF-5. Both loading routes are suitable for the synthesis of Pd nanoparticles inside the porous host matrix. Homogeneously distributed nanoparticles with diameter of 2.4(±0.2) nm can be achieved by photolysis of the inclusion compounds [Pd(5-C5H5)(3-C3H5)]x@MOF-5 (x 4), while the hydrogenolysis of [Pd(acac)2]x@MOF-5 (x 2) leads to a mixture of small particles inside the network (< 3 nm) and large Pd agglomerates (40 nm) on the outer surface of the MOF-5 specimens. The pure Pdx@MOF-5 materials proved to be stable under hydrogen pressure (2 bar) at 150 °C over many hours. Neither hydrogenation of the bdc linkers nor particle growth was observed. The new composite materials were characterized by 1H/13C-MAS-NMR, powder XRD, ICP-AES, FT-IR, N2 sorption measurements and high resolution TEM. Raising the Pd loading of a representative sample Pd4@MOF-5 (35 wt.% Pd) by using [Pd(5-C5H5)(3-C3H5)] as precursor in a second cycle of gas-phase infiltration and photolysis was accompanied by the collapse of the long-range crystalline order of the MOF.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000263450300015 Publication Date 2009-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 100 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:76318 Serial 2565
Permanent link to this record
 

 
Author (down) Esken, D.; Turner, S.; Wiktor, C.; Kalidindi, S.B.; Van Tendeloo, G.; Fischer, R.A.
Title GaN@ZIF-8 : selective formation of gallium nitride quantum dots inside a zinc methylimidazolate framework Type A1 Journal article
Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 133 Issue 41 Pages 16370-16373
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microporous zeolitic imidazolate framework [Zn(MeIM)2; ZIF-8; MeIM = imidazolate-2-methyl] was quantitatively loaded with trimethylamine gallane [(CH3)3NGaH3]. The obtained inclusion compound [(CH3)3NGaH3]@ZIF-8 reveals three precursor molecules per host cavity. Treatment with ammonia selectively yields the caged cyclotrigallazane intermediate (H2GaNH2)3@ZIF-8, and further annealing gives GaN@ZIF-8. This new composite material was characterized with FT-IR spectroscopy, solid-state NMR spectroscopy, powder X-ray diffraction, elemental analysis, (scanning) transmission electron microscopy combined with electron energy-loss spectroscopy, photoluminescence (PL) spectroscopy, and N2 sorption measurements. The data give evidence for the presence of GaN nanoparticles (13 nm) embedded in the cavities of ZIF-8, including a blue-shift of the PL emission band caused by the quantum size effect.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000295997500014 Publication Date 2011-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 82 Open Access
Notes Hercules Approved Most recent IF: 13.858; 2011 IF: 9.907
Call Number UA @ lucian @ c:irua:93582 Serial 1315
Permanent link to this record
 

 
Author (down) Esken, D.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Fischer, R.A.
Title Au@ZIFs: stabilization and encapsulation of cavity-size matching gold clusters inside functionalized Zeolite Imidazolate Frameworks, ZIFs Type A1 Journal article
Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 22 Issue 23 Pages 6393-6401
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The selective formation and stabilization of very small, naked metal particles inside the cavities of metal organic frameworks (MOFs) and the simultaneous realization of an even distribution of the particles throughout the crystalline MOF host matrix over a wide range of metal loading are challenging goals. MOFs reveal high specific surface areas, tunable pore sizes, and organic linkers, which are able to interact with guests. The chemically very robust zeolite imidazolate frameworks (ZIFs) are a subclass of MOFs. We chose the microporous sodalite-like ZIF-8 (Zn(MelM)(2); IM = imidazolate) and ZIF-90 (Zn(ICA)(2); ICA = imidazolate-2-carboxyaldehyde) as host matrices to influence the dispersion of imbedded gold nanoparticles (Au NPs). The metal loading was achieved via gas phase infiltration of [Au(CO)Cl] followed by a thermal hydrogenation step to form the Au NPs. Low-dose high-resolution transmission electron microscopy ((HR)TEM) and electron tomography reveal a homogeneous distribution of Au NPs throughout the ZIF matrix. The functional groups of ZIF-90 direct the anchoring of intermediate Au species and stabilize drastically smaller and quite monodisperse Au NPs in contrast to the parent not functionalized ZIF-8. The particles can be very small, match the cavity size and approach defined molecular clusters of magic numbers, i.e., Au(55), independently from the level of loading. Post-synthetic oxidation of the aldehyde groups to yield alkyl esters by the adjacent, catalytically active metal NPs is presented as a new concept of encapsulating nanoparticles inside MOFs and allows multiple steps of metal loadings without decomposition of the MOF.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000284975100025 Publication Date 2010-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 194 Open Access
Notes Esteem 026019 Approved Most recent IF: 9.466; 2010 IF: 6.400
Call Number UA @ lucian @ c:irua:95530 Serial 208
Permanent link to this record
 

 
Author (down) Esken, D.; Noei, H.; Wang, Y.; Wiktor, C.; Turner, S.; Van Tendeloo, G.; Fischer, R.A.
Title ZnO@ZIF-8 : stabilization of quantum confined ZnO nanoparticles by a zinc methylimidazolate framework and their surface structural characterization probed by CO2 adsorption Type A1 Journal article
Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 21 Issue 16 Pages 5907-5915
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microporous and activated zeolitic imidazolate framework (Zn(MeIM)2; MeIM = imidazolate-2-methyl; ZIF-8) was loaded with the MOCVD precursor diethyl zinc [Zn(C2H5)2]. Exposure of ZIF-8 to the vapour of the volatile organometallic molecule resulted in the formation of the inclusion compound [Zn(C2H5)2]0.38@ZIF-8 revealing two precursor molecules per cavity. In a second step the obtained material was treated with oxygen (5 vol% in argon) at various temperatures (oxidative annealing) to achieve the composite material ZnO0.35@ZIF-8. The new material was characterized with powder XRD, FT-IR, UV-vis, solid state NMR, elemental analysis, N2 sorption measurements, and transmission electron microscopy. The data give evidence for the presence of nano-sized ZnO particles stabilized by ZIF-8 showing a blue-shift of the UV-vis absorption caused by quantum size effect (QSE). The surface structure and reactivity of embedded ZnO nanoparticles were characterized via carbon dioxide adsorption at different temperatures monitored by ultra-high vacuum FTIR techniques. It was found that the surface of ZnO nanoparticles is dominated by polar OZnO and ZnZnO facets as well as by defect sites, which all exhibit high reactivity towards CO2 activation forming various adsorbed carbonate and chemisorbed CO2δ− species.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000289260000012 Publication Date 2011-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 76 Open Access
Notes Esteem 026019 Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:88641 Serial 3936
Permanent link to this record
 

 
Author (down) Eshtehardi, H.A.; Van ‘t Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A.
Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
Volume 11 Issue 5 Pages 1720-1733
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is emerging for plasma-assisted gas conversion

processes. However, the underlying mechanisms of plasma catalysis are poorly

understood. In this work, we present a 1D heterogeneous catalysis model with axial

dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in

the process stream in the axial direction), for plasma-catalytic NO production from

N2/O2 mixtures. We investigate the concentration and reaction rates of each species

formed as a function of time and position across the catalyst, in order to determine the

underlying mechanisms. To obtain insights into how the performance of the process

can be further improved, we also study how changes in the postplasma gas flow

composition entering the catalyst bed and in the operation conditions of the catalytic

stage affect the performance of NO production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000926412800001 Publication Date 2023-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 810182 − SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 8.4; 2023 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7257
Permanent link to this record
 

 
Author (down) Eshtehardi, H.A.; Van ‘t Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A.
Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
Volume 11 Issue 5 Pages 1720-1733
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is emerging for plasma-assisted gas conversion

processes. However, the underlying mechanisms of plasma catalysis are poorly

understood. In this work, we present a 1D heterogeneous catalysis model with axial

dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in

the process stream in the axial direction), for plasma-catalytic NO production from

N2/O2 mixtures. We investigate the concentration and reaction rates of each species

formed as a function of time and position across the catalyst, in order to determine the

underlying mechanisms. To obtain insights into how the performance of the process

can be further improved, we also study how changes in the postplasma gas flow

composition entering the catalyst bed and in the operation conditions of the catalytic

stage affect the performance of NO production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000926412800001 Publication Date 2023-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique – FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7258
Permanent link to this record
 

 
Author (down) Eshtehardi, H.A.; van 't Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A.
Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
Volume 11 Issue 5 Pages 1720-1733
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is emerging for plasma-assisted gas conversion processes. However, the underlying mechanisms of plasma catalysis are poorly understood. In this work, we present a 1D heterogeneous catalysis model with axial dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in the process stream in the axial direction), for plasma-catalytic NO production from N2/O2 mixtures. We investigate the concentration and reaction rates of each species formed as a function of time and position across the catalyst, in order to determine the underlying mechanisms. To obtain insights into how the performance of the process can be further improved, we also study how changes in the postplasma gas flow composition entering the catalyst bed and in the operation conditions of the catalytic stage affect the performance of NO production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000926412800001 Publication Date 2023-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7241
Permanent link to this record
 

 
Author (down) Esguerra, J.L.; Krook, J.; Svensson, N.; Van Passel, S.
Title Assessing the economic potential of landfill mining : review and recommendations Type A1 Journal article
Year 2019 Publication Detritus Abbreviated Journal
Volume Volume 08 - December 2019 Issue Volume 08 - December 2019 Pages 1
Keywords A1 Journal article; Engineering Management (ENM)
Abstract As landfill mining (LFM) gains public attention, systematic assessment of its economic potential is deemed necessary. The aim of this review is to critically analyze the usefulness and validity of previous economic assessments of LFM. Following the life cycle costing (LCC) framework, (i) the employed methods based on goal and scope, technical parameters and data inventory, and modelling choices were contrasted with respect to (ii) the synthesized main findings based on net profitability and economic performance drivers. Results showed that the selected studies (n=15) are mostly case study-specific and concluded that LFM has a weak economic potential, hinting at the importance of favorable market and regulation settings. However, several method issues are apparent as costs and revenues are accounted at different levels of aggregation, scope and scale-from process to sub-process level, from private to societal economics, and from laboratory to pilot-scale, respectively. Moreover, despite the inherent large uncertainties, more than half of the studies did not perform any uncertainty or sensitivity analyses posing validity issues. Consequently, this also limits the usefulness of results as individual case studies and as a collective, towards a generic understanding of LFM economics. Irrespective of case study-specific or generic aims, this review recommends that future assessments should be learning-oriented. That is, uncovering granular information about what builds up the net profitability of LFM, to be able to systematically determine promising paths for the development of cost-efficient projects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000504065300011 Publication Date 2019-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This study has received funding from the European Training Network for Resource Recovery Through Enhanced Landfill Mining (NEW-MINE, Grant Agreement No 721185) under the European Union's EU Framework Programme for Research and Innovation Horizon 2020. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:165758 Serial 6153
Permanent link to this record
 

 
Author (down) Esguerra, J.L.
Title Developing strategies for improved economic performance and reduced climate impact of landfill mining in Europe Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages xiv, 99 p.
Keywords Doctoral thesis; Economics; Engineering Management (ENM)
Abstract Landfill mining refers to the re-circulation of resources from the previously deposited wastes–integrating resource recovery with traditional site remediation. Several resources that can be recovered include scrap metals, combustibles, and inert materials. In addition, land can be recovered or landfill void space can be liberated for future wastes. At present, landfill mining is still an emerging concept with few project implementations. Consequently, the assessments of its economic and climate implications are case study-specific, limiting the understanding of its potential in a wider geographical scope. This thesis aims to assess the economic performance and climate impact of landfill mining in Europe towards the development of sound strategies for implementation. Different project setups are assessed in relation to varying factors at the site level such as waste composition and landfill settings, and at the system level such as policy and market conditions and background material and energy. In doing so, a factor-based method is developed and applied to generate multiple scenarios (531, 441 scenarios per project setup) and determine the underlying important factors and their interrelations that drive the results. Such understanding is used to develop and discuss strategies for improvement by addressing relevant questions for specific stakeholders, including project investors (i.e., which landfill sites to prioritize?), landfill mining practitioners (i.e., how to set up such projects?), and policymakers (i.e., which policy instruments can effectively support such projects?). Results show that landfill mining is preferable in terms of climate than economy. Possible improvements are shown by internalizing thermal treatment of combustibles and extending fines residue utilization as construction aggregates. In relation to the choice of project setups, preferable site and system-level conditions are identified in general but it is also discussed that the plausibility of finding such conditions may be difficult at present. This steers the development of more tailored strategies on what can be done now by the landfill practitioners in terms of setting up projects under current policy and market conditions in specific regions, or what can be done by the policymakers in terms of implementing various policy instruments that can drive such changes at the system level. Through this thesis, the future of landfill mining research is guided towards addressing key challenges and potential solutions for improvement. Furthermore, this thesis highlights the role of assessment as a tool for learning and guiding the development of emerging concepts such as landfill mining.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-91-7929-056-6 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:183155 Serial 6920
Permanent link to this record
 

 
Author (down) Esfahani; Leenaerts, O.; Sahin, H.; Partoens, B.; Peeters, F.M.
Title Structural transitions in monolayer MOS2 by lithium adsorption Type A1 Journal article
Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 119 Issue 119 Pages 10602-10609
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Based on first-principles calculations, we study the structural stability of the H and T phases of monolayer MoS2 upon Li doping. Our calculations demonstrate that it is possible to stabilize a distorted T phase of MoS2 over the H phase through adsorption of Li atoms on the MoS2 surface. Through molecular dynamics and phonon calculations, we show that the T phase of MoS2 is dynamically unstable and undergoes considerable distortions. The type of distortion depends on the concentration of adsorbed Li atoms and changes from zigzag-like to diamond-like when increasing the Li doping. There exists a substantial energy barrier to transform the stable H phase to the distorted T phases, which is considerably reduced by increasing the concentration of Li atoms. We show that it is necessary that the Li atoms adsorb on both sides of the MoS2 monolayer to reduce the barrier sufficiently. Two processes are examined that allow for such two-sided adsorption, namely, penetration through the MoS2 layer and diffusion over the MoS2 surface. We show that while there is only a small barrier of 0.24 eV for surface diffusion, the amount of energy needed to pass through a pure MoS2 layer is of the order of similar or equal to 2 eV. However, when the MoS2 layer is covered with Li atoms the amount of energy that Li atoms should gain to penetrate the layer is drastically reduced and penetration becomes feasible.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000354912200051 Publication Date 2015-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 96 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl) and the Methusalem program of the Flemish government. H. S is supported by an FWO Pegasus-Long Marie Curie fellowship. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government department EWI. ; Approved Most recent IF: 4.536; 2015 IF: 4.772
Call Number c:irua:126409 Serial 3270
Permanent link to this record
 

 
Author (down) Esfahani, D.N.; Covaci, L.; Peeters, F.M.
Title Field effect on surface states in a doped Mott-insulator thin film Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 3 Pages 035131-35136
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Surface effects of a doped thin film made of a strongly correlated material are investigated both in the absence and presence of a perpendicular electric field. We use an inhomogeneous Gutzwiller approximation for a single-band Hubbard model in order to describe correlation effects. For low doping, the bulk value of the quasiparticle weight is recovered exponentially deep into the slab, but with increasing doping, additional Friedel oscillations appear near the surface. We show that the inverse correlation length has a power-law dependence on the doping level. In the presence of an electrical field, considerable changes in the quasiparticle weight can be realized throughout the system. We observe a large difference (as large as five orders of magnitude) in the quasiparticle weight near the opposite sides of the slab. This effect can be significant in switching devices that use the surface states for transport. DOI: 10.1103/PhysRevB.87.035131
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000313941000001 Publication Date 2013-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:110086 Serial 1190
Permanent link to this record
 

 
Author (down) Esfahani, D.N.; Covaci, L.; Peeters, F.M.
Title Nonlinear response to electric field in extended Hubbard models Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 20 Pages 205121
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electric-field response of a one-dimensional ring of interacting fermions, where the interactions are described by the extended Hubbard model, is investigated. By using an accurate real-time propagation scheme based on the Chebyshev expansion of the evolution operator, we uncover various nonlinear regimes for a range of interaction parameters that allows modeling of metallic and insulating (either charge density wave or spin density wave insulators) rings. The metallic regime appears at the phase boundary between the two insulating phases and provides the opportunity to describe either weakly or strongly correlated metals. We find that the fidelity susceptibility of the ground state as a function of magnetic flux piercing the ring provides a very good measure of the short-time response. Even completely different interacting regimes behave in a similar manner at short time scales as long as the ground-state fidelity susceptibility is the same. Depending on the strength of the electric field we find various types of responses: persistent currents in the insulating phase, a dissipative regime, or damped Bloch-like oscillations with varying frequencies or even irregular in nature. Furthermore, we also consider the dimerization of the ring and describe the response of a correlated band insulator. In this case the distribution of the energy levels is more clustered and the Bloch-like oscillations become even more irregular.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000345423300002 Publication Date 2014-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (Fonds Wetenschappelijk Onderzoek – FWO) and the Methusalem program of the Flemish government. One of us (L. C.) receives support as a postdoctoral fellow of the FWO. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:122204 Serial 2355
Permanent link to this record
 

 
Author (down) Escoffier, W.; Grigorieva, I.V.; Misko, V.R.; Baelus, B.J.; Peeters, F.M.; Vinnikov, L.Y.; Dubnos, S.
Title Formation of vortex clusters and giant vortices in mesoscopic superconducting disks with strong disorder Type A1 Journal article
Year 2008 Publication Journal of physics : conference series Abbreviated Journal
Volume 97 Issue Pages 012172,1-012172,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Merged, or giant, multi-quanta vortices (GVs) appear in very small superconductors near the superconducting transition due to strong confinement of magnetic flux. Here we present evidence for a new, pinning-related, mechanism for vortex merger. Using Bitter decoration to visualise vortices in small Nb disks, we show that confinement in combination with strong disorder causes individual vortices to merge into clusters/GVs well below Tc and Hc2, in contrast to well-defined shells of individual vortices found in the absence of pinning.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000276054100171 Publication Date 2008-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:82320 Serial 1266
Permanent link to this record
 

 
Author (down) Erni, R.; Abakumov, A.M.; Rossell, M.D.; Batuk, D.; Tsirlin, A.A.; Nénert, G.; Van Tendeloo, G.
Title Nanoscale phase separation in perovskites revisited Type L1 Letter to the editor
Year 2014 Publication Nature materials Abbreviated Journal Nat Mater
Volume 13 Issue 3 Pages 216-217
Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000331945200002 Publication Date 2014-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited 5 Open Access
Notes Approved Most recent IF: 39.737; 2014 IF: 36.503
Call Number UA @ lucian @ c:irua:114579 Serial 2270
Permanent link to this record
 

 
Author (down) Erfurt, D.; Koida, T.; Heinemann, M.D.; Li, C.; Bertram, T.; Nishinaga, J.; Szyszka, B.; Shibata, H.; Klenk, R.; Schlatmann, R.
Title Impact of rough substrates on hydrogen-doped indium oxides for the application in CIGS devices Type A1 Journal article
Year 2020 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C
Volume 206 Issue Pages 110300
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Indium oxide based transparent conductive oxides (TCOs) are promising contact layers in solar cells due to their outstanding electrical and optical properties. However, when applied in Cu(In,Ga)Se-2 or Si-hetero-junction solar cells the specific roughness of the material beneath can affect the growth and the properties of the TCO. We investigated the electrical properties of hydrogen doped and hydrogen-tungsten co-doped indium oxides grown on rough Cu(In,Ga)Se-2 samples as well as on textured and planar glass. At sharp ridges and V-shaped valleys crack-shaped voids form inside the indium oxide films, which limit the effective electron mobility of the In2O3:H and In2O3:H,W thin films. This was found for films deposited by magnetron sputtering and reactive plasma deposition at several deposition parameters, before as well as after annealing and solid phase crystallization. This suggests universal behavior that will have a wide impact on solar cell devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000519653800038 Publication Date 2019-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.9 Times cited 5 Open Access OpenAccess
Notes ; This work was supported by the German Federal Ministry for Economic Affairs and Energy under contract number 0325762G (TCO4CIGS). The authors thank M. Hartig, K. Mayer-Stillrich, I. Dorbandt, B. Bunn, M. Kirsch for technical support. C. Li is grateful for financial support from Max Planck Society, Germany and technical support from the MPI FKF StEM group members. ; Approved Most recent IF: 6.9; 2020 IF: 4.784
Call Number UA @ admin @ c:irua:168668 Serial 6544
Permanent link to this record
 

 
Author (down) Eren, I.; Ozen, S.; Sozen, Y.; Yagmurcukardes, M.; Sahin, H.
Title Vertical van der Waals heterostructure of single layer InSe and SiGe Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 51 Pages 31232-31237
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We present a first-principles investigation on the stability, electronic structure, and mechanical response of ultrathin heterostructures composed of single layers of InSe and SiGe. First, by performing total energy optimization and phonon calculations, we show that single layers of InSe and SiGe can form dynamically stable heterostructures in 12 different stacking types. Valence and conduction band edges of the heterobilayers form a type-I heterojunction having a tiny band gap ranging between 0.09 and 0.48 eV. Calculations on elastic-stiffness tensor reveal that two mechanically soft single layers form a heterostructure which is stiffer than the constituent layers because of relatively strong interlayer interaction. Moreover, phonon analysis shows that the bilayer heterostructure has highly Raman active modes at 205.3 and 43.7 cm(-1), stemming from the out-of-plane interlayer mode and layer breathing mode, respectively. Our results show that, as a stable type-I heterojunction, ultrathin heterobilayer of InSe/SiGe holds promise for nanoscale device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000505632900050 Publication Date 2019-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:165718 Serial 6332
Permanent link to this record
 

 
Author (down) Ercolani, G.; Gorle, C.; Garcia Sánchez, C.; Corbari, C.; Mancini, M.
Title RAMS and WRF sensitivity to grid spacing in large-eddy simulations of the dry convective boundary layer Type A1 Journal article
Year 2015 Publication Computers and fluids Abbreviated Journal Comput Fluids
Volume 123 Issue 123 Pages 54-71
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Large-eddy simulations (LESS) are frequently used to model the planetary boundary layer, and the choice of the grid cell size, numerical schemes and sub grid model can significantly influence the simulation results. In the present paper the impact of grid spacing on LES of an idealized atmospheric convective boundary layer (CBL), for which the statistics and flow structures are well understood, is assessed for two mesoscale models: the Regional Atmospheric Modeling System (RAMS) and the Weather Research and Forecasting model (WRF). Nine simulations are performed on a fixed computational domain (6 x 6 x 2 km), combining three different horizontal (120, 60, 30 m) and vertical (20, 10, 5 m) spacings. The impact of the cell size on the CBL is investigated by comparing turbulence statistics and velocity spectra. The results demonstrate that both WRF and RAMS can perform LES of the CBL under consideration without requiring extremely high computational loads, but they also indicate the importance of adopting a computational grid that is adequate for the numerical schemes and subgrid models used. In both RAMS and WRF a horizontal cell size of 30 m is required to obtain a suitable turbulence reproduction throughout the CBL height. Considering the vertical grid spacing, WRF produced similar results for all the three tested values, while in RAMS it should be ensured that the aspect ratio of the cells does not exceed a value of 3. The two models were found to behave differently in function of the grid resolution, and they have different shortcomings in their prediction of CBL turbulence. WRF exhibits enhanced damping at the smallest scales, while RAMS is prone to the appearance of spurious fluctuations in the flow when the grid aspect ratio is too high. (C) 2015 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000365367500006 Publication Date 2015-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-7930 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.313 Times cited 3 Open Access
Notes Approved Most recent IF: 2.313; 2015 IF: 1.619
Call Number UA @ lucian @ c:irua:130200 Serial 4236
Permanent link to this record
 

 
Author (down) Erbe, M.; Hänisch, J.; Hühne, R.; Freudenberg, T.; Kirchner, A.; Molina-Luna, L.; Damm, C.; Van Tendeloo, G.; Kaskel, S.; Schultz, L.; Holzapfel, B.
Title BaHfO3artificial pinning centres in TFA-MOD-derived YBCO and GdBCO thin films Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 114002
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Chemical solution deposition (CSD) is a promising way to realize REBa2Cu3O7−x (REBCO;RE = rare earth (here Y, Gd))-coated conductors with high performance in applied magnetic fields. However, the preparation process contains numerous parameters which need to be tuned to achieve high-quality films. Therefore, we investigated the growth of REBCO thin films containing nanometre-scale BaHfO3 (BHO) particles as pinning centres for magnetic flux lines, with emphasis on the influence of crystallization temperature and substrate on the microstructure and superconductivity. Conductivity, microscopy and x-ray investigations show an enhanced performance of BHO nano-composites in comparison to pristine REBCO. Further, those measurements reveal the superiority of GdBCO to YBCO—e.g. by inductive critical current densities, Jc, at self-field and 77 K. YBCO is outperformed by more than 1 MA cm−2 with Jc values of up to 5.0 MA cm−2 for 265 nm thick layers of GdBCO(BHO) on lanthanum aluminate. Transport in-field Jc measurements demonstrate high pinning force maxima of around 4 GN m−3 for YBCO(BHO) and GdBCO(BHO). However, the irreversibility fields are appreciably higher for GdBCO. The critical temperature was not significantly reduced upon BHO addition to both YBCO and GdBCO, indicating a low tendency for Hf diffusion into the REBCO matrix. Angular-dependent Jc measurements show a reduction of the anisotropy in the same order of magnitude for both REBCO compounds. Theoretical models suggest that more than one sort of pinning centre is active in all CSD films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366193000003 Publication Date 2015-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 36 Open Access
Notes Experimental work was mainly done at IFW Dresden. We thank Juliane Scheiter and Dr Jens Ingolf Mönch of IFW Dresden for technical assistance. The research leading to these results received funding from EUROTAPES, a collaborative project funded by the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. NMP-LA-2012-280 432. L Molina-Luna and G Van Tendeloo acknowledge funding from the European Research Council (ERC grant nr. 24 691-COUNTATOMS). Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:129200 Serial 3941
Permanent link to this record
 

 
Author (down) Epurescu, G.; Dinescu, G.; Moldovan, A.; Birjega, R.; Dipietrantonio, F.; Verona, E.; Verardi, P.; Nistor, L.C.; Ghica, C.; Van Tendeloo, G.; Dinescu, A.
Title P-type ZnO thin films grown by RF plasma beam assisted Pulsed Laser Deposition Type A1 Journal article
Year 2007 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst
Volume 42 Issue 1-6 Pages 79-84
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000250271200015 Publication Date 2007-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0749-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.123 Times cited 19 Open Access
Notes Approved Most recent IF: 2.123; 2007 IF: 1.344
Call Number UA @ lucian @ c:irua:66632 Serial 2549
Permanent link to this record
 

 
Author (down) Ennaert, T.; Geboers, J.; Gobechiya, E.; Courtin, C.M.; Kurttepeli, M.; Houthoofd, K.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Bals, S.; Jacobs, P.A.; Sels, B.F.
Title Conceptual frame rationalizing the self-stabilization of H-USY zeolites in hot liquid water Type A1 Journal article
Year 2015 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 5 Issue 5 Pages 754-768
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The wide range of liquid-phase reactions required for the catalytic conversion of biomass compounds into new bioplatform molecules defines a new set of challenges for the development of active, selective, and stable catalysts. The potential of bifunctional Ru/H-USY catalysts for conversions in hot liquid water (HLW) is assessed in terms of physicochemical stability and long-term catalytic performance of acid sites and noble metal functionality, as probed by hydrolytic hydrogenation of cellulose. It is shown that zeolite desilication is the main zeolite degradation mechanism in HLW. USY zeolite stability depends on two main parameters, viz., framework and extra-framework aluminum content. The former protects the zeolite lattice by counteracting hydrolysis of framework bonds, and the latter, when located at the external crystal surface, prevents solubilization of the zeolite framework which is the result of its low water-solubility. Hence, the hot liquid water stability of commercial H-USY zeolites, in contrast to their steam stability, increased with decreasing Si/AI ratio. As a result, mildly steamed USY zeolites containing a high amount of both Al species exhibit the highest resistance to HLW. During an initial period of transformations, Al-rich zeolites form additional protective extra-framework Al species at the outer surface, self-stabilizing the framework. A critical bulk Si/AI ratio of 3 was determined whereby USY zeolites with a lower Si/AI ratio will self-stabilize over time. Besides, due to the initial transformation period, the accessibility of the catalytic active sites is extensively enhanced resulting in a material that is more stable and drastically more accessible to large substrates than the original zeolite. When these findings are applied in the hydrolytic hydrogenation of cellulose, unprecedented nearly quantitative hexitol yields were obtained with a stable catalytic system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000349275300031 Publication Date 2014-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435;2155-5435; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.614 Times cited 65 Open Access OpenAccess
Notes 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 10.614; 2015 IF: 9.312
Call Number c:irua:125288 Serial 474
Permanent link to this record
 

 
Author (down) Enjalbert, R.; Galy, J.; Castro, A.; Lidin, S.; Withers, R.; Van Tendeloo, G.
Title Order and twining in Sb2W0.75Mo0.25O6 Type A1 Journal article
Year 2003 Publication Solid state sciences Abbreviated Journal Solid State Sci
Volume 5 Issue 5 Pages 721-724
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000183284700006 Publication Date 2003-05-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.811 Times cited 3 Open Access
Notes Approved Most recent IF: 1.811; 2003 IF: 1.327
Call Number UA @ lucian @ c:irua:54697 Serial 2500
Permanent link to this record
 

 
Author (down) Engelmann; Bogaerts, A.; Neyts, E.C.
Title Thermodynamics at the nanoscale: phase diagrams of nickel-carbon nanoclusters and equilibrium constants for phase transitions Type A1 Journal article
Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 6 Issue 20 Pages 11981-11987
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using reactive molecular dynamics simulations, the melting behavior of nickel-carbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickel-carbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000343000800049 Publication Date 2014-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 20 Open Access
Notes Approved Most recent IF: 7.367; 2014 IF: 7.394
Call Number UA @ lucian @ c:irua:121106 Serial 3637
Permanent link to this record
 

 
Author (down) Engelmann, Y.; van ’t Veer, K.; Gorbanev, Y.; Neyts, E.C.; Schneider, W.F.; Bogaerts, A.
Title Plasma Catalysis for Ammonia Synthesis: A Microkinetic Modeling Study on the Contributions of Eley–Rideal Reactions Type A1 Journal Article;Plasma catalysis
Year 2021 Publication Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng
Volume 9 Issue 39 Pages 13151-13163
Keywords A1 Journal Article;Plasma catalysis; Eley−Rideal reactions; Volcano plots; Vibrational excitation; Radical reactions; Dielectric barrier discharge; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma catalysis is an emerging new technology for the electrification and downscaling of NH3 synthesis. Increasing attention is being paid to the optimization of plasma catalysis with respect to the plasma conditions, the catalyst material, and their mutual interaction. In this work we use microkinetic models to study how the total conversion process is impacted by the combination of different plasma conditions and transition metal catalysts. We study how plasma-generated radicals and vibrationally excited N2 (present in a dielectric barrier discharge plasma) interact with the catalyst and impact the NH3 turnover frequencies (TOFs). Both filamentary and uniform plasmas are studied, based on plasma chemistry models that provided plasma phase speciation and vibrational distribution functions. The Langmuir−Hinshelwood reaction rate coefficients (i.e., adsorption reactions and subsequent reactions among adsorbates) are determined using conventional scaling relations. An additional set of Eley−Rideal reactions (i.e., direct reactions of plasma radicals with adsorbates) was added and a sensitivity analysis on the assumed reaction rate coefficients was performed. We first show the impact of different vibrational distribution functions on the catalytic dissociation of N2 and subsequent production of NH3, and we gradually include more radical reactions, to illustrate the contribution of these species and their corresponding reaction pathways. Analysis over a large range of catalysts indicates that different transition metals (metals such as Rh, Ni, Pt, and Pd) optimize the NH3TOFs depending on the population of the vibrational levels of N2. At higher concentrations of plasma-generated radicals, the NH3 TOFs become less dependent on the catalyst material, due to radical adsorptions on the more noble catalysts and Eley−Rideal reactions on the less noble catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000705367800004 Publication Date 2021-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.951 Times cited Open Access OpenAccess
Notes Basic Energy Sciences, DE-SC0021107 ; Vlaamse regering, HBC.2019.0108 ; H2020 European Research Council, 810182 ; Methusalem project – University of Antwerp; Excellence of science FWO-FNRS, GoF9618n ; TOP-BOF – University of Antwerp; DOCPRO3 – University of Antwerp; We acknowledge the financial support from the DOC-PRO3, the TOP-BOF, and the Methusalem project of the University of Antwerp, as well as from the European Research Council (ERC) (grant agreement No, 810182−SCOPE ERC Synergy project), under the European Union’s Horizon 2020 research and innovation programme, the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108), and the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). Calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), 13162 Approved Most recent IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:182482 Serial 6811
Permanent link to this record