|   | 
Details
   web
Records
Author (down) Clima, S.; Kaczer, B.; Govoreanu, B.; Popovici, M.; Swerts, J.; Verhulst, A.S.; Jurczak, M.; De Gendt, S.; Pourtois, G.
Title Determination of ultimate leakage through rutile TiO2 and tetragonal ZrO2 from ab initio complex band calculations Type A1 Journal article
Year 2013 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L
Volume 34 Issue 3 Pages 402-404
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract First-principle complex band structures have been computed for rutile TiO2 and tetragonal ZrO2 insulating materials that are of current technological relevance to dynamic random accessmemorymetal-insulator-metal (MIM) capacitors. From the magnitude of the complex wave vectors in different orientations, the most penetrating orientations have been identified. Tunneling effective masses m(tunnel) have been extracted, are shown to be a crucial parameter for the intrinsic leakage, and are identified to be an important parameter in further scaling of MIM capacitors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315723000024 Publication Date 2013-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0741-3106;1558-0563; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.048 Times cited 3 Open Access
Notes Approved Most recent IF: 3.048; 2013 IF: 3.023
Call Number UA @ lucian @ c:irua:108295 Serial 680
Permanent link to this record
 

 
Author (down) Clima, S.; Govoreanu, B.; Jurczak, M.; Pourtois, G.
Title HfOx as RRAM material : first principles insights on the working principles Type A1 Journal article
Year 2014 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng
Volume 120 Issue Pages 13-18
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract First-principles simulations were employed to gain atomistic insights on the working principles of amorphous HfO2 based Resistive Random Access Memory stack: the nature of the defect responsible for the switching between the High and Low Resistive States has been unambiguously identified to be the substoichiometric Hf sites (commonly called oxygen vacancy-V-O) and the kinetics of the process have been investigated through the study of O diffusion. Also the role of each material layer in the TiN/HfO2/Hf/TiN RRAM stack and the impact of the deposition techniques have been examined: metallic Hf sputtering is needed to provide an oxygen exchange layer that plays the role of defect buffer. TiN shall be a good defect barrier for O but a bad defect buffer layer. A possible scenario to explain the device degradation (switching failure) mechanism has been proposed – the relaxation of the metastable amorphous phase towards crystalline structure leads to denser, more structured cluster that can increase the defect migration barriers. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000336697300004 Publication Date 2013-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.806 Times cited 22 Open Access
Notes Approved Most recent IF: 1.806; 2014 IF: 1.197
Call Number UA @ lucian @ c:irua:117767 Serial 3535
Permanent link to this record
 

 
Author (down) Clima, S.; Garbin, D.; Opsomer, K.; Avasarala, N.S.; Devulder, W.; Shlyakhov, I.; Keukelier, J.; Donadio, G.L.; Witters, T.; Kundu, S.; Govoreanu, B.; Goux, L.; Detavernier, C.; Afanas'ev, V.; Kar, G.S.; Pourtois, G.
Title Ovonic threshold-switching GexSey chalcogenide materials : stoichiometry, trap nature, and material relaxation from first principles Type A1 Journal article
Year 2020 Publication Physica Status Solidi-Rapid Research Letters Abbreviated Journal Phys Status Solidi-R
Volume Issue Pages 1900672
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Density functional theory simulations are used to identify the structural factors that define the material properties of ovonic threshold switches (OTS). They show that the nature of mobility-gap trap states in amorphous Ge-rich Ge50Se50 is related to Ge-Ge bonds, whereas in Se-rich Ge30Se70 the Ge valence-alternating-pairs and Se lone-pairs dominate. To obtain a faithful description of the electronic structure and delocalization of states, it is required to combine hybrid exchange-correlation functionals with large unit-cell models. The extent of localization of electronic states depends on the applied external electric field. Hence, OTS materials undergo structural changes during electrical cycling of the device, with a decrease in the population of less exothermic Ge-Ge bonds in favor of more exothermic Ge-Se. This reduces the amount of charge traps, which translates into coordination changes, an increase in mobility-gap, and subsequently changes in the selector-device electrical parameters. The threshold voltage drift process can be explained by natural evolution of the nonpreferred Ge-Ge bonds (or “chains”/clusters thereof) in Ge-rich GexSe1-x. The effect of extrinsic doping is shown for Si and N, which introduce strong covalent bonds into the system, increase both mobility-gap and crystallization temperature, and decrease the leakage current.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000512431100001 Publication Date 2020-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 3 Open Access
Notes ; This work was carried out in the framework of the imec Core CMOS-Emerging Memory Program. Financial support from EU H2020-NMBPTO-IND-2018 project “INTERSECT” (Grant No. 814487) is acknowledged. ; Approved Most recent IF: 2.8; 2020 IF: 3.032
Call Number UA @ admin @ c:irua:166492 Serial 6575
Permanent link to this record
 

 
Author (down) Clima, S.; Garbin, D.; Devulder, W.; Keukelier, J.; Opsomer, K.; Goux, L.; Kar, G.S.; Pourtois, G.
Title Material relaxation in chalcogenide OTS SELECTOR materials Type A1 Journal article
Year 2019 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng
Volume 215 Issue 215 Pages 110996
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nature of the mobility-gap states in amorphous Ge-rich Ge50Se50 was found to be related to homopolar Ge bonds in the chains/clusters of Ge atoms. Threshold switching material suffers Ge-Ge bond concentration drift during material ageing, which can explain the observed reliability of the aGe(50)Se(50) selector devices. Strong Ge-N bonds were introduced to alleviate the observed instability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000480665600008 Publication Date 2019-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.806 Times cited 1 Open Access
Notes Approved Most recent IF: 1.806
Call Number UA @ admin @ c:irua:161905 Serial 6308
Permanent link to this record
 

 
Author (down) Clima, S.; Chen, Y.Y.; Fantini, A.; Goux, L.; Degraeve, R.; Govoreanu, B.; Pourtois, G.; Jurczak, M.
Title Intrinsic tailing of resistive states distributions in amorphous <tex>HfOx </tex> and TaOx based resistive random access memories Type A1 Journal article
Year 2015 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L
Volume 36 Issue 36 Pages 769-771
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We report on the ineffectiveness of programming oxide-based resistive random access memory (OxRAM) at low current with a program and verify algorithm due to intrinsic relaxation of the verified distribution to the natural state distribution obtained by single-pulse programming without verify process. Based on oxygen defect formation thermodynamics and on their diffusion barriers in amorphous HfOx and TaOx, we describe the intrinsic nature of tailing of the verified low resistive state and high resistive state distributions. We introduce different scenarios to explain fast distribution widening phenomenon, which is a fundamental limitation for OxRAM current scaling and device reliability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000358570300011 Publication Date 2015-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0741-3106 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.048 Times cited 33 Open Access
Notes Approved Most recent IF: 3.048; 2015 IF: 2.754
Call Number UA @ lucian @ c:irua:134412 Serial 4200
Permanent link to this record
 

 
Author (down) Clima, S.; Chen, Y.Y.; Degraeve, R.; Mees, M.; Sankaran, K.; Govoreanu, B.; Jurczak, M.; De Gendt, S.; Pourtois, G.
Title First-principles simulation of oxygen diffusion in HfOx : role in the resistive switching mechanism Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 100 Issue 13 Pages 133102-133102,4
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Transition metal oxide-based resistor random access memory (RRAM) takes advantage of oxygen-related defects in its principle of operation. Since the change in resistivity of the material is controlled by the oxygen deficiency level, it is of major importance to quantify the kinetics of the oxygen diffusion, key factor for oxide stoichiometry. Ab initio accelerated molecular dynamics techniques are employed to investigate the oxygen diffusivity in amorphous hafnia (HfOx, x = 1.97, 1.0, 0.5). The computed kinetics is in agreement with experimental measurements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697690]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000302230800060 Publication Date 2012-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 63 Open Access
Notes Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:97786 Serial 1214
Permanent link to this record
 

 
Author (down) Clima, S.; Chen, Y.Y.; Chen, C.Y.; Goux, L.; Govoreanu, B.; Degraeve, R.; Fantini, A.; Jurczak, M.; Pourtois, G.
Title First-principles thermodynamics and defect kinetics guidelines for engineering a tailored RRAM device Type A1 Journal article
Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 119 Issue 119 Pages 225107
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Resistive Random Access Memories are among the most promising candidates for the next generation of non-volatile memory. Transition metal oxides such as HfOx and TaOx attracted a lot of attention due to their CMOS compatibility. Furthermore, these materials do not require the inclusion of extrinsic conducting defects since their operation is based on intrinsic ones (oxygen vacancies). Using Density Functional Theory, we evaluated the thermodynamics of the defects formation and the kinetics of diffusion of the conducting species active in transition metal oxide RRAM materials. The gained insights based on the thermodynamics in the Top Electrode, Insulating Matrix and Bottom Electrode and at the interfaces are used to design a proper defect reservoir, which is needed for a low-energy reliable switching device. The defect reservoir has also a direct impact on the retention of the Low Resistance State due to the resulting thermodynamic driving forces. The kinetics of the diffusing conducting defects in the Insulating Matrix determine the switching dynamics and resistance retention. The interface at the Bottom Electrode has a significant impact on the low-current operation and long endurance of the memory cell. Our first-principles findings are confirmed by experimental measurements on fabricated RRAM devices. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000378925400035 Publication Date 2016-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 17 Open Access
Notes Approved Most recent IF: 2.068
Call Number UA @ lucian @ c:irua:134651 Serial 4181
Permanent link to this record
 

 
Author (down) Clima, S.; Belmonte, A.; Degraeve, R.; Fantini, A.; Goux, L.; Govoreanu, B.; Jurczak, M.; Ota, K.; Redolfi, A.; Kar, G.S.; Pourtois, G.
Title Kinetic and thermodynamic heterogeneity : an intrinsic source of variability in Cu-based RRAM memories Type A1 Journal article
Year 2017 Publication Journal of computational electronics Abbreviated Journal J Comput Electron
Volume 16 Issue 4 Pages 1011-1016
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract <script type='text/javascript'>document.write(unpmarked('The resistive random-access memory (RRAM) device concept is close to enabling the development of a new generation of non-volatile memories, provided that their reliability issues are properly understood. The design of a RRAM operating with extrinsic defects based on metallic inclusions, also called conductive bridge RAM, allows the use of a large spectrum of solid electrolytes. However, when scaled to device dimensions that meet the requirements of the latest technological nodes, the discrete nature of the atomic structure of the materials impacts the device operation. Using density functional theory simulations, we evaluated the migration kinetics of Cu conducting species in amorphous and solid electrolyte materials, and established that atomic disorder leads to a large variability in terms of defect stability and kinetic barriers. This variability has a significant impact on the filament resistance and its dynamics, as evidenced during the formation step of the resistive filament. Also, the atomic configuration of the formed filament can age/relax to another metastable atomic configuration, and lead to a modulation of the resistivity of the filament. All these observations are qualitatively explained on the basis of the computed statistical distributions of the defect stability and on the kinetic barriers encountered in RRAM materials.'));
Address
Corporate Author Thesis
Publisher Place of Publication Place of publication unknown Editor
Language Wos 000417598100004 Publication Date 2017-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-8025 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.526 Times cited 2 Open Access Not_Open_Access
Notes Approved Most recent IF: 1.526
Call Number UA @ lucian @ c:irua:148569 Serial 4883
Permanent link to this record
 

 
Author (down) Clemen, R.; Heirman, P.; Lin, A.; Bogaerts, A.; Bekeschus, S.
Title Physical Plasma-Treated Skin Cancer Cells Amplify Tumor Cytotoxicity of Human Natural Killer (NK) Cells Type A1 Journal article
Year 2020 Publication Cancers Abbreviated Journal Cancers
Volume 12 Issue 12 Pages 3575
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Skin cancers have the highest prevalence of all human cancers, with the most lethal forms being squamous cell carcinoma and malignant melanoma. Besides the conventional local treatment approaches like surgery and radiotherapy, cold physical plasmas are emerging anticancer tools. Plasma technology is used as a therapeutic agent by generating reactive oxygen species (ROS). Evidence shows that inflammation and adaptive immunity are involved in cancer-reducing effects of plasma treatment, but the role of innate immune cells is still unclear. Natural killer (NK)-cells interact with target cells via activating and inhibiting surface receptors and kill in case of dominating activating signals. In this study, we investigated the effect of cold physical plasma (kINPen) on two skin cancer cell lines (A375 and A431), with non-malignant HaCaT keratinocytes as control, and identified a plasma treatment time-dependent toxicity that was more pronounced in the cancer cells. Plasma treatment also modulated the expression of activating and inhibiting receptors more profoundly in skin cancer cells compared to HaCaT cells, leading to significantly higher NK-cell killing rates in the tumor cells. Together with increased pro-inflammatory mediators such as IL-6 and IL-8, we conclude that plasma treatment spurs stress responses in skin cancer cells, eventually augmenting NK-cell activity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000601901900001 Publication Date 2020-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes This work was funded by the German Federal Ministry of Education and Research (BMBF), grant numbers 03Z22DN11 and 03Z22Di1; The authors acknowledge the technical assistance of Eric Freund, Julia Berner, Sanjeev Kumar Sagwal, Christina Wolff, Felix Niessner, Walison Brito, and Lea Miebach. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:173863 Serial 6442
Permanent link to this record
 

 
Author (down) Clem, J.R.; Mawatari, Y.; Berdiyorov, G.R.; Peeters, F.M.
Title Predicted field-dependent increase of critical currents in asymmetric superconducting nanocircuits Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 14 Pages 144511-144511,16
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The critical current of a thin superconducting strip of width W much larger than the Ginzburg-Landau coherence length xi but much smaller than the Pearl length Lambda = 2 lambda(2)/d is maximized when the strip is straight with defect-free edges. When a perpendicular magnetic field is applied to a long straight strip, the critical current initially decreases linearly with H but then decreases more slowly with H when vortices or antivortices are forced into the strip. However, in a superconducting strip containing sharp 90 degrees or 180 degrees turns, the zero-field critical current at H = 0 is reduced because vortices or antivortices are preferentially nucleated at the inner corners of the turns, where current crowding occurs. Using both analytic London-model calculations and time-dependent Ginzburg-Landau simulations, we predict that in such asymmetric strips the resulting critical current can be increased by applying a perpendicular magnetic field that induces a current-density contribution opposing the applied current density at the inner corners. This effect should apply to all turns that bend in the same direction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000302611100004 Publication Date 2012-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 40 Open Access
Notes ; This research, supported in part by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering, was performed in part at the Ames Laboratory, which is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work also was supported in part by the Flemish Science Foundation (FWO-Vlaanderen) and the Belgian Science Policy (IAP). G.R.B. acknowledges individual support from FWO-Vlaanderen. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98263 Serial 2695
Permanent link to this record
 

 
Author (down) Cleiren, E.; Heijkers, S.; Ramakers, M.; Bogaerts, A.
Title Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry Type A1 Journal article
Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 10 Issue 20 Pages 4025-4036
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Dry reforming of methane (DRM) in a gliding arc plasmatron is studied for different CH4 fractions in the mixture. The CO2 and CH4 conversions reach their highest values of approximately 18 and 10%, respectively, at 25% CH4 in the gas mixture, corresponding to an overall energy cost of 10 kJ L@1 (or 2.5 eV per molecule) and an energy efficiency of 66%. CO and H2 are the major products, with the formation of smaller fractions of C2Hx (x=2, 4, or 6) compounds and H2O. A chemical kinetics model is used to investigate the underlying chemical processes. The calculated CO2 and CH4 conversion and the energy efficiency are in good agreement with the experimental data. The model calculations reveal that the reaction of CO2 (mainly at vibrationally excited levels) with H radicals is mainly responsible for

the CO2 conversion, especially at higher CH4 fractions in the mixture, which explains why the CO2 conversion increases with increasing CH4 fraction. The main process responsible for CH4 conversion is the reaction with OH radicals. The excellent energy efficiency can be explained by the non-equilibrium character of the plasma, in which the electrons mainly activate the gas molecules, and by the important role of the vibrational kinetics of CO2. The results demonstrate that a gliding arc plasmatron is very promising for DRM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413565100012 Publication Date 2017-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 23 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Federaal Wetenschapsbeleid; Approved Most recent IF: 7.226
Call Number PLASMANT @ plasmant @c:irua:146665 Serial 4759
Permanent link to this record
 

 
Author (down) Clavel, J.; Lembrechts, J.; Lenoir, J.; Haider, S.; McDougall, K.; Nunez, M.A.; Alexander, J.; Barros, A.; Milbau, A.; Seipel, T.; Pauchard, A.; Fuentes-Lillo, E.; Backes, A.R.; Dar, P.; Reshi, Z.A.; Aleksanyan, A.; Zong, S.; Sierra, J.R.A.; Aschero, V.; Verbruggen, E.; Nijs, I.
Title Roadside disturbance promotes plant communities with arbuscular mycorrhizal associations in mountain regions worldwide Type A1 Journal article
Year 2024 Publication Ecography Abbreviated Journal
Volume Issue Pages e07051-14
Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract We assessed the impact of road disturbances on the dominant mycorrhizal types in ecosystems at the global level and how this mechanism can potentially lead to lasting plant community changes. We used a database of coordinated plant community surveys following mountain roads from 894 plots in 11 mountain regions across the globe in combination with an existing database of mycorrhizal-plant associations in order to approximate the relative abundance of mycorrhizal types in natural and disturbed environments. Our findings show that roadside disturbance promotes the cover of plants associated with arbuscular mycorrhizal (AM) fungi. This effect is especially strong in colder mountain environments and in mountain regions where plant communities are dominated by ectomycorrhizal (EcM) or ericoid-mycorrhizal (ErM) associations. Furthermore, non-native plant species, which we confirmed to be mostly AM plants, are more successful in environments dominated by AM associations. These biogeographical patterns suggest that changes in mycorrhizal types could be a crucial factor in the worldwide impact of anthropogenic disturbances on mountain ecosystems. Indeed, roadsides foster AM-dominated systems, where AM-fungi might aid AM-associated plant species while potentially reducing the biotic resistance against invasive non-native species, often also associated with AM networks. Restoration efforts in mountain ecosystems will have to contend with changes in the fundamental make-up of EcM- and ErM plant communities induced by roadside disturbance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001198654900001 Publication Date 2024-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0906-7590 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.9 Times cited Open Access
Notes Approved Most recent IF: 5.9; 2024 IF: 4.902
Call Number UA @ admin @ c:irua:205605 Serial 9224
Permanent link to this record
 

 
Author (down) Clauwaert, P.; Muys, M.; Alloul, A.; De Paepe, J.; Luther, A.; Sun, X.; Ilgrande, C.; Christiaens, M.E.R.; Hu, X.; Zhang, D.; Lindeboom, R.E.F.; Sas, B.; Rabaey, K.; Boon, N.; Ronsse, F.; Geelen, D.; Vlaeminck, S.E.
Title Nitrogen cycling in bioregenerative life support systems : challenges for waste refinery and food production processes Type A1 Journal article
Year 2017 Publication Progress in aerospace sciences Abbreviated Journal
Volume 91 Issue Pages 87-98
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In order to sustain human life in an isolated environment, an efficient conversion of wasted nutrients to food might become mandatory. This is particularly the case for space missions where resupply from earth or in-situ resource utilization is not possible or desirable. A combination of different technologies is needed to allow full recycling of e.g. nitrogenous compounds in space. In this review, an overview is given of the different essential processes and technologies that enable closure of the nitrogen cycle in Bioregenerative Life Support Systems (BLSS). Firstly, a set of biological and physicochemical refinery stages ensures efficient conversion of waste products into the building blocks, followed by the production of food with a range of biological methods. For each technology, bottlenecks are identified. Furthermore, challenges and outlooks are presented at the integrated system level. Space adaptation and integration deserve key attention to enable the recovery of nitrogen for the production of nutritional food in space, but also in closed loop systems on earth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404699800005 Publication Date 2017-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0376-0421; 1873-1724 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:148996 Serial 8310
Permanent link to this record
 

 
Author (down) Clark, L.; Guzzinati, G.; Béché, A.; Lubk, A.; Verbeeck, J.
Title Symmetry-constrained electron vortex propagation Type A1 Journal article
Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A
Volume 93 Issue 93 Pages 063840
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron vortex beams hold great promise for development in transmission electron microscopy but have yet to be widely adopted. This is partly due to the complex set of interactions that occur between a beam carrying orbital angular momentum (OAM) and a sample. Herein, the system is simplified to focus on the interaction between geometrical symmetries, OAM, and topology. We present multiple simulations alongside experimental data to study the behavior of a variety of electron vortex beams after interacting with apertures of different symmetries and investigate the effect on their OAM and vortex structure, both in the far field and under free-space propagation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000378197200006 Publication Date 2016-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 7 Open Access
Notes L.C., A.B., G.G., and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510—VORTEX. J.V. and A.L. acknowledge financial support from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). The Qu-Ant-EM microscope was partly funded by the Hercules fund of the Flemish Government.; esteem2jra3; ECASJO; Approved Most recent IF: 2.925
Call Number c:irua:134086 c:irua:134086 Serial 4090
Permanent link to this record
 

 
Author (down) Clark, L.; Béché, A.; Guzzinati, G.; Verbeeck, J.
Title Quantitative measurement of orbital angular momentum in electron microscopy Type A1 Journal article
Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 89 Issue 5 Pages 053818
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron vortex beams have been predicted to enable atomic scale magnetic information measurement, via transfer of orbital angular momentum. Research so far has focused on developing production techniques and applications of these beams. However, methods to measure the outgoing orbital angular momentum distribution are also a crucial requirement towards this goal. Here, we use a method to obtain the orbital angular momentum decomposition of an electron beam, using a multipinhole interferometer. We demonstrate both its ability to accurately measure orbital angular momentum distribution, and its experimental limitations when used in a transmission electron microscope.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000335826300012 Publication Date 2014-05-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 23 Open Access
Notes 7th Framework Program (FP7); ERC Starting Grant No. 278510- VORTEX 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). 7th Framework Program (FP7), ERC Grant No. 246791- COUNTATOMS. SP – 053818-1; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808
Call Number UA @ lucian @ c:irua:117093UA @ admin @ c:irua:117093 Serial 2758
Permanent link to this record
 

 
Author (down) Clark, L.; Béché, A.; Guzzinati, G.; Lubk, A.; Mazilu, M.; Van Boxem, R.; Verbeeck, J.
Title Exploiting lens aberrations to create electron-vortex beams Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 6 Pages 064801-64805
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A model for a new electron-vortex beam production method is proposed and experimentally demonstrated. The technique calls on the controlled manipulation of the degrees of freedom of the lens aberrations to achieve a helical phase front. These degrees of freedom are accessible by using the corrector lenses of a transmission electron microscope. The vortex beam is produced through a particular alignment of these lenses into a specifically designed astigmatic state and applying an annular aperture in the condenser plane. Experimental results are found to be in good agreement with simulations.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000322921200009 Publication Date 2013-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 66 Open Access
Notes Vortex; Esteem2; Countatoms; FWO; Esteem2jra3 ECASJO; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:109340UA @ admin @ c:irua:109340 Serial 1148
Permanent link to this record
 

 
Author (down) Claes, N.; Asapu, R.; Blommaerts, N.; Verbruggen, S.W.; Lenaerts, S.; Bals, S.
Title Characterization of silver-polymer core–shell nanoparticles using electron microscopy Type A1 Journal article
Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 10 Issue 10 Pages 9186-9191
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Silver-polymer core–shell nanoparticles show interesting optical properties, making them widely applicable in the field of plasmonics. The uniformity, thickness and homogeneity of the polymer shell will affect the properties of the system which makes a thorough structural characterization of these core–shell silver-polymer nanoparticles of great importance. However, visualizing the shell and the particle simultaneously is far from straightforward due to the sensitivity of the polymer shell towards the electron beam. In this study, we use different 2D and 3D electron microscopy techniques to investigate different structural aspects of the polymer coating.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000437007700028 Publication Date 2018-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 11 Open Access OpenAccess
Notes N. C. and S. B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS) and from the FWO through project funding (G038116N). R. A. and S. L. acknowledge the Research Foundation Flanders (FWO) for financial support. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 7.367
Call Number EMAT @ emat @c:irua:151290UA @ admin @ c:irua:151290 Serial 4959
Permanent link to this record
 

 
Author (down) Claes, M.; van Dyck, K.; Deelstra, H.; Van Grieken, R.
Title Determination of silicon in organic matrices with grazing-emission X-ray fluorescence spectrometry Type A1 Journal article
Year 1999 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal
Volume 54 Issue 10 Pages 1517-1524
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The potential of a prototype grazing-emission X-ray fluorescence spectrometer for reliable analysis of sample solutions, obtained by pressurized microwave oven digestion of Si-spiked organic and biological materials, was investigated as part of an inter-laboratory study. The fact that this grazing-emission technique is based on the total reflection phenomenon and wavelength-dispersive detection, gives it the benefit to determine light elements in a sensitive way. Results of the determination of silicon in pork liver, cellulose, urine, serum, spinach, beer, mineral water and horsetail (dry plant extract) samples are presented. Some of the results are compared with those obtained with other analytical techniques. The study proved that determination of silicon traces in biological matrices represents an extremely difficult task, however, measurements of silicon are achieved with acceptable precision. The most important problems still arise when sample pre-treatment is needed prior to analysis. (C) 1999 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000083433600018 Publication Date 2002-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; 1873-3565 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:25943 Serial 7789
Permanent link to this record
 

 
Author (down) Claes, M.; de Bokx, P.; Willard, N.; Veny, P.; Van Grieken, R.
Title Optimization of sample preparation for grazing emission X-ray fluorescence in micro- and trace analysis applications Type A1 Journal article
Year 1997 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal
Volume 52 Issue Pages 1063-1070
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1997XH53500035 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; 1873-3565 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:18780 Serial 8340
Permanent link to this record
 

 
Author (down) Claes, M.; de Bokx, P.; Van Grieken, R.
Title Progress in laboratory grazing emission X-ray fluorescence spectrometry Type A1 Journal article
Year 1999 Publication X-ray spectrometry Abbreviated Journal
Volume 28 Issue Pages 224-229
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000081693400004 Publication Date 2005-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:24715 Serial 8423
Permanent link to this record
 

 
Author (down) Claes, J.; Partoens, B.; Lamoen, D.
Title Decoupled DFT-1/2 method for defect excitation energies Type A1 Journal Article
Year 2023 Publication Physical Review B Abbreviated Journal Phys. Rev. B
Volume 108 Issue 12 Pages 125306
Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;
Abstract The DFT-1/2 method is a band-gap correction with GW precision at a density functional theory (DFT) computational cost. The method was also extended to correct the gap between defect levels, allowing for the calculation of optical transitions. However, this method fails when the atomic character of the occupied and unoccupied defect levels is similar as we illustrate by two examples, the tetrahedral hydrogen interstitial and the negatively charged vacancy in diamond. We solve this problem by decoupling the effect of the occupied and unoccupied defect levels and call this the decoupled DFT-1/2 method for defects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001089302800003 Publication Date 2023-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access Not_Open_Access
Notes This work was supported by the FWO (Research Foundation-Flanders), Project No. G0D1721N. This work was performed in part using HPC resources from the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government department EWI (Economie, Wetenschap & Innovatie). Approved Most recent IF: 3.7; 2023 IF: 3.836
Call Number CMT @ cmt @c:irua:201287 Serial 8976
Permanent link to this record
 

 
Author (down) Claereboudt, J.; Claeys, M.; Geise, H.; Gijbels, R.; Vertes, A.
Title Laser microprobe mass spectrometry of quaternary phosphonium salts: direct versus matrix-assisted laser desorption Type A1 Journal article
Year 1993 Publication Journal of the American Society for Mass Spectrometry Abbreviated Journal J Am Soc Mass Spectr
Volume 4 Issue Pages 798-819
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1993LZ48800007 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-0305;1879-1123; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.945 Times cited 17 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:5424 Serial 1796
Permanent link to this record
 

 
Author (down) Civici, N.; Van Grieken, R.
Title Energy-dispersive X-ray fluorescence in geochemical mapping Type A1 Journal article
Year 1997 Publication X-ray spectrometry Abbreviated Journal
Volume 26 Issue Pages 147-152
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1997XM14500003 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:18782 Serial 7906
Permanent link to this record
 

 
Author (down) Cioni, M.; Delle Piane, M.; Polino, D.; Rapetti, D.; Crippa, M.; Arslan Irmak, E.; Van Aert, S.; Bals, S.; Pavan, G.M.
Title Sampling real-time atomic dynamics in metal nanoparticles by combining experiments, simulations, and machine learning Type A1 Journal article
Year 2024 Publication Advanced Science Abbreviated Journal
Volume Issue Pages 1-13
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Even at low temperatures, metal nanoparticles (NPs) possess atomic dynamics that are key for their properties but challenging to elucidate. Recent experimental advances allow obtaining atomic-resolution snapshots of the NPs in realistic regimes, but data acquisition limitations hinder the experimental reconstruction of the atomic dynamics present within them. Molecular simulations have the advantage that these allow directly tracking the motion of atoms over time. However, these typically start from ideal/perfect NP structures and, suffering from sampling limits, provide results that are often dependent on the initial/putative structure and remain purely indicative. Here, by combining state-of-the-art experimental and computational approaches, how it is possible to tackle the limitations of both approaches and resolve the atomistic dynamics present in metal NPs in realistic conditions is demonstrated. Annular dark-field scanning transmission electron microscopy enables the acquisition of ten high-resolution images of an Au NP at intervals of 0.6 s. These are used to reconstruct atomistic 3D models of the real NP used to run ten independent molecular dynamics simulations. Machine learning analyses of the simulation trajectories allow resolving the real-time atomic dynamics present within the NP. This provides a robust combined experimental/computational approach to characterize the structural dynamics of metal NPs in realistic conditions. Experimental and computational techniques are bridged to unveil atomic dynamics in gold nanoparticles (NPs), using annular dark-field scanning transmission electron microscopy and molecular dynamics simulations informed by machine learning. The approach provides unprecedented insights into the real-time structural behaviors of NPs, merging state-of-the-art techniques to accurately characterize their dynamics under realistic conditions. image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001206888000001 Publication Date 2024-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2198-3844 ISBN Additional Links UA library record; WoS full record
Impact Factor 15.1 Times cited Open Access
Notes This work was supported by the funding received by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 818776- DYNAPOL, no. 770887 PICOMETRICS and no. 815128 REALNANO). The authors also acknowledge the computational resources provided by the Swiss National Supercomputing Center (CSCS), by CINECA, and the Research Foundation Flanders (FWO, Belgium) G.0346.21N. Approved Most recent IF: 15.1; 2024 IF: 9.034
Call Number UA @ admin @ c:irua:205442 Serial 9171
Permanent link to this record
 

 
Author (down) Ciocarlan, R.-G.; Seftel, E.M.; Gavrila, R.; Suchea, M.; Batuk, M.; Mertens, M.; Hadermann, J.; Cool, P.
Title Spinel nanoparticles on stick-like Freudenbergite nanocomposites as effective smart-removal photocatalysts for the degradation of organic pollutants under visible light Type A1 Journal article
Year 2020 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd
Volume 820 Issue Pages 153403
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract A series of mixed nanocomposite materials was synthetized, containing a Ferrite phase type Zn1-xNixFe2O4 and a Freudenbergite phase type Na2Fe2Ti6O16, where x = 0; 0.2; 0.4; 0.6; 0.8; 1. The choice for this combination is based on the good adsorption properties of Freudenbergite for dye molecules, and the small bandgap energy of Ferrite spinel, allowing activation of the catalysts under visible light irradiation. A two steps synthesis protocol was used to obtain the smart-removal nanocomposites. Firstly, the spinel structure was obtained via the co-precipitation route followed by the addition of the Ti-source and formation of the Freudenbergite system. The role of cations on the formation mechanism and an interesting interchange of cations between spinel and Freudenbergite structures was clarified by a TEM study. Part of the Ti4+ penetrated the spinel structure and, at the same time, part of the Fe3+ formed the Freudenbergite system. The photocatalytic activity was studied under visible light, reaching for the best catalysts a 67% and 40% mineralization degree for methylene blue and rhodamine 6G respectively, after 6 h of irradiation. In the same conditions, the well-known commercial P25 (Degussa) managed to mineralize only 12% and 3% of methylene blue and rhodamine 6G, respectively. Due to the remarkable magnetic properties of Ferrites, a convenient recovery and reuse of the catalysts is possible after the photocatalytic tests. Based on the excellent catalytic performance of the nanocomposites under visible light and their ease of separation out of the solution after the catalytic reaction, the newly developed composite catalysts are considered very effective for wastewater treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000507854700130 Publication Date 2019-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.2 Times cited Open Access OpenAccess
Notes The authors acknowledge the FWO-Flanders (project nr. G038215N) for financial support. Approved Most recent IF: 6.2; 2020 IF: 3.133
Call Number EMAT @ emat @c:irua:166447 Serial 6342
Permanent link to this record
 

 
Author (down) Ciocarlan, R.-G.; Blommaerts, N.; Lenaerts, S.; Cool, P.; Verbruggen, S.W.
Title Recent trends in plasmon‐assisted photocatalytic CO₂ reduction Type A1 Journal article
Year 2023 Publication Chemsuschem Abbreviated Journal
Volume 16 Issue 5 Pages e202201647-25
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)
Abstract Direct photocatalytic reduction of CO2 has become an highly active field of research. It is thus of utmost importance to maintain an overview of the various materials used to sustain this process, find common trends, and, in this way, eventually improve the current conversions and selectivities. In particular, CO2 photoreduction using plasmonic photocatalysts under solar light has gained tremendous attention, and a wide variety of materials has been developed to reduce CO2 towards more practical gases or liquid fuels (CH4, CO, CH3OH/CH3CH2OH) in this manner. This Review therefore aims at providing insights in current developments of photocatalysts consisting of only plasmonic nanoparticles and semiconductor materials. By classifying recent studies based on product selectivity, this Review aims to unravel common trends that can provide effective information on ways to improve the photoreduction yield or possible means to shift the selectivity towards desired products, thus generating new ideas for the way forward.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000926901300001 Publication Date 2023-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.4; 2023 IF: 7.226
Call Number UA @ admin @ c:irua:193633 Serial 7335
Permanent link to this record
 

 
Author (down) Ciftci, S.; Cánovas, R.; Neumann, F.; Paulraj, T.; Nilsson, M.; Crespo, G.A.; Madaboosi, N.
Title The sweet detection of rolling circle amplification : glucose-based electrochemical genosensor for the detection of viral nucleic acid Type A1 Journal article
Year 2020 Publication Biosensors & Bioelectronics Abbreviated Journal Biosens Bioelectron
Volume 151 Issue Pages 112002-112008
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Herein, an isothermal padlock probe-based assay for the simple and portable detection of pathogens coupled with a glucose oxidase (GOx)-based electrochemical readout is reported. Infectious diseases remain a constant threat on a global scale, as in recurring pandemics. Rapid and portable diagnostics hold the promise to tackle the spreading of diseases and decentralising healthcare to point-of-care needs. Ebola, a hypervariable RNA virus causing fatalities of up to 90% for recent outbreaks in Africa, demands immediate attention for bedside diagnostics. The design of the demonstrated assay consists of a rolling circle amplification (RCA) technique, responsible for the generation of nucleic acid amplicons as RCA products (RCPs). The RCPs are generated on magnetic beads (MB) and subsequently, connected via streptavidin-biotin bonds to GOx. The enzymatic catalysis of glucose by the bound GOx allows for an indirect electrochemical measurement of the DNA target. The RCPs generated on the surface of the MB were confirmed by scanning electron microscopy, and among other experimental conditions such as the type of buffer, temperature, concentration of GOx, sampling and measurement time were evaluated for the optimum electrochemical detection. Accordingly, 125 μg mL−1 of GOx with 5 mM glucose using phosphate buffer saline (PBS), monitored for 1 min were selected as the ideal conditions. Finally, we assessed the analytical performance of the biosensing strategy by using clinical samples of Ebola virus from patients. Overall, this work provides a proof-of-concept bioassay for simple and portable molecular diagnostics of emerging pathogens using electrochemical detection, especially in resource-limited settings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-12-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-5663 ISBN Additional Links UA library record
Impact Factor 12.6 Times cited Open Access
Notes Approved Most recent IF: 12.6; 2020 IF: 7.78
Call Number UA @ admin @ c:irua:184379 Serial 8630
Permanent link to this record
 

 
Author (down) Cidu, R.; Fanfani, L.; Shaud, P.; Edmunds, W.M.; Van 't dack, L.; Gijbels, R.
Title Determination of gold at the ultratrace level in natural waters Type A1 Journal article
Year 1994 Publication Analytica chimica acta Abbreviated Journal Anal Chim Acta
Volume 296 Issue Pages 295-304
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1994PM14000010 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2670; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.513 Times cited 20 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:10252 Serial 668
Permanent link to this record
 

 
Author (down) Cidu, R.; Fanfani, L.; Shand, P.; Edmunds, W.M.; Van 't dack, L.; Gijbels, R.
Title Hydrogeochemical exploration for gold in the Osilo area, Sardinia, Italy Type A1 Journal article
Year 1995 Publication Applied geochemistry Abbreviated Journal Appl Geochem
Volume 10 Issue Pages 517-530
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos A1995TP12700003 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.268 Times cited 10 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12273 Serial 1536
Permanent link to this record
 

 
Author (down) Chwiej, T.; Bednarek, S.; Adamowski, J.; Szafran, B.; Peeters, F.M.
Title Coulomb-interaction driven anomaly in the Stark effect for an exciton in vertically coupled quantum dots Type A1 Journal article
Year 2005 Publication Journal of luminescence T2 – 6th International Conference on Excitonic Processes in Condensed Matter, (EXCON 04), JUL 06-09, 2004, Cracow, POLAND Abbreviated Journal J Lumin
Volume 112 Issue 1-4 Pages 122-126
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of the electric field on an exciton confined in a pair of vertically coupled quantum dots is studied. We use a single-band approximation and a parabolic model potential. As a result of these idealizations, we obtain a numerically solvable model, which is used to describe the influence of the electron-hole interaction on the Stark effect for the lowest-energy photo luminescence lines. We show that for intermediate tunnel coupling between the dots this interaction leads to an anomalous Stark effect with an essential deviation of the recombination energy from the usual quadratic dependence on the electric field. (c) 2004 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000228439600029 Publication Date 2004-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2313; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.686 Times cited 10 Open Access
Notes Approved Most recent IF: 2.686; 2005 IF: 1.518
Call Number UA @ lucian @ c:irua:103675 Serial 532
Permanent link to this record