|   | 
Details
   web
Records
Author (up) Van Alphen, S.; Ahmadi Eshtehardi, H.; O'Modhrain, C.; Bogaerts, J.; Van Poyer, H.; Creel, J.; Delplancke, M.-P.; Snyders, R.; Bogaerts, A.
Title Effusion nozzle for energy-efficient NOx production in a rotating gliding arc plasma reactor Type A1 Journal article
Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 443 Issue Pages 136529
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-based NOx production is of interest for sustainable N2 fixation, but more research is needed to improve its performance. One of the current limitations is recombination of NO back into N2 and O2 molecules immediately after the plasma reactor. Therefore, we developed a novel so-called “effusion nozzle”, to improve the perfor­mance of a rotating gliding arc plasma reactor for NOx production, but the same principle can also be applied to other plasma types. Experiments in a wide range of applied power, gas flow rates and N2/O2 ratios demonstrate an enhancement in NOx concentration by about 8%, and a reduction in energy cost by 22.5%. In absolute terms, we obtain NOx concentrations up to 5.9%, at an energy cost down to 2.1 MJ/mol, which are the best values reported to date in literature. In addition, we developed four complementary models to describe the gas flow, plasma temperature and plasma chemistry, aiming to reveal why the effusion nozzle yields better performance. Our simulations reveal that the effusion nozzle acts as very efficient heat sink, causing a fast drop in gas tem­perature when the gas molecules leave the plasma, hence limiting the recombination of NO back into N2 and O2. This yields an overall higher NOx concentration than without the effusion nozzle. This immediate quenching right at the end of the plasma makes our effusion nozzle superior to more conventional cooling options, like water cooling In addition, this higher NOx concentration can be obtained at a slightly lower power, because the effusion nozzle allows for the ignition and sustainment of the plasma at somewhat lower power. Hence, this also explains the lower energy cost. Overall, our experimental results and detailed modeling analysis will be useful to improve plasma-based NOx production in other plasma reactors as well.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000800010600003 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (depart­ment EWI) and the UAntwerpen. Approved Most recent IF: 15.1
Call Number PLASMANT @ plasmant @c:irua:188283 Serial 7057
Permanent link to this record
 

 
Author (up) Van Alphen, S.; Hecimovic, A.; Kiefer, C.K.; Fantz, U.; Snyders, R.; Bogaerts, A.
Title Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas Type A1 Journal article
Year 2023 Publication Chemical engineering journal Abbreviated Journal
Volume 462 Issue Pages 142217
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Given the ecological problems associated to the CO2 emissions of fossil fuels, plasma technology has gained

interest for conversion of CO2 into value-added products. Microwave plasmas operating at atmospheric pressure

have proven to be especially interesting, due to the high gas temperatures inside the reactor (i.e. up to 6000 K)

allowing for efficient thermal dissociation of CO2 into CO and O2. However, the performance of these high

temperature plasmas is limited by recombination of CO back into CO2 once the gas cools down in the afterglow.

In this work, we computationally investigated several quenching nozzles, developed and experimentally tested

by Hecimovic et al., [1] for their ability to quickly cool the gas after the plasma, thereby quenching the CO

recombination reactions. Using a 3D computational fluid dynamics model and a quasi-1D chemical kinetics

model, we reveal that a reactor without nozzle lacks gas mixing between hot gas in the center and cold gas near

the reactor walls. Especially at low flow rates, where there is an inherent lack of convective cooling due to the

low gas flow velocity, the temperature in the afterglow remains high (between 2000 and 3000 K) for a relatively

long time (in the 0.1 s range). As shown by our quasi-1D chemical kinetics model, this results in a important loss

of CO due to recombination reactions. Attaching a nozzle in the effluent of the reactor induces fast gas quenching

right after the plasma. Indeed, it introduces (i) more convective cooling by forcing cool gas near the walls to mix

with hot gas in the center of the reactor, as well as (ii) more conductive cooling through the water-cooled walls of

the nozzle. Our model shows that gas quenching and the suppression of recombination reactions have more

impact at low flow rates, where recombination is the most limiting factor in the conversion process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000962382600001 Publication Date 2023-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 15.1; 2023 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:195889 Serial 7250
Permanent link to this record
 

 
Author (up) Van Alphen, S.; Hecimovic, A.; Kiefer, C.K.; Fantz, U.; Snyders, R.; Bogaerts, A.
Title Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas Type A1 Journal article
Year 2023 Publication Chemical engineering journal Abbreviated Journal
Volume 462 Issue Pages 142217
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Given the ecological problems associated to the CO2 emissions of fossil fuels, plasma technology has gained

interest for conversion of CO2 into value-added products. Microwave plasmas operating at atmospheric pressure

have proven to be especially interesting, due to the high gas temperatures inside the reactor (i.e. up to 6000 K)

allowing for efficient thermal dissociation of CO2 into CO and O2. However, the performance of these high

temperature plasmas is limited by recombination of CO back into CO2 once the gas cools down in the afterglow.

In this work, we computationally investigated several quenching nozzles, developed and experimentally tested

by Hecimovic et al., [1] for their ability to quickly cool the gas after the plasma, thereby quenching the CO

recombination reactions. Using a 3D computational fluid dynamics model and a quasi-1D chemical kinetics

model, we reveal that a reactor without nozzle lacks gas mixing between hot gas in the center and cold gas near

the reactor walls. Especially at low flow rates, where there is an inherent lack of convective cooling due to the

low gas flow velocity, the temperature in the afterglow remains high (between 2000 and 3000 K) for a relatively

long time (in the 0.1 s range). As shown by our quasi-1D chemical kinetics model, this results in a important loss

of CO due to recombination reactions. Attaching a nozzle in the effluent of the reactor induces fast gas quenching

right after the plasma. Indeed, it introduces (i) more convective cooling by forcing cool gas near the walls to mix

with hot gas in the center of the reactor, as well as (ii) more conductive cooling through the water-cooled walls of

the nozzle. Our model shows that gas quenching and the suppression of recombination reactions have more

impact at low flow rates, where recombination is the most limiting factor in the conversion process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000962382600001 Publication Date 2023-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 15.1; 2023 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:195889 Serial 7259
Permanent link to this record
 

 
Author (up) Van Alphen, S.; Jardali, F.; Creel, J.; Trenchev, G.; Snyders, R.; Bogaerts, A.
Title Sustainable gas conversion by gliding arc plasmas: a new modelling approach for reactor design improvement Type A1 Journal article
Year 2021 Publication Sustainable energy & fuels Abbreviated Journal Sustainable Energy Fuels
Volume 5 Issue 6 Pages 1786-1800
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Research in plasma reactor designs is developing rapidly as plasma technology is gaining increasing interest for sustainable gas conversion applications, like the conversion of greenhouse gases into value-added chemicals and renewable fuels, and fixation of N<sub>2</sub>from air into precursors of mineral fertilizer. As plasma is generated by electric power and can easily be switched on/off, these applications allows for efficient conversion and energy storage of intermittent renewable electricity. In this paper, we present a new comprehensive modelling approach for the design and development of gliding arc plasma reactors, which reveals the fluid dynamics, the arc behaviour and the plasma chemistry by solving a unique combination of five complementary models. This results in a complete description of the plasma process, which allows one to efficiently evaluate the performance of a reactor and indicate possible design improvements before actually building it. We demonstrate the capabilities of this method for an experimentally validated study of plasma-based NO<sub>x</sub>formation in a rotating gliding arc reactor, which is gaining increasing interest as a flexible, electricity-driven alternative for the Haber–Bosch process. The model demonstrates the importance of the vortex flow and the presence of a recirculation zone in the reactor, as well as the formation of hot spots in the plasma near the cathode pin and the anode wall that are responsible for most of the NO<sub>x</sub>formation. The model also reveals the underlying plasma chemistry and the vibrational non-equilibrium that exists due to the fast cooling during each arc rotation. Good agreement with experimental measurements on the studied reactor design proves the predictive capabilities of our modelling approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000631643300013 Publication Date 2021-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2398-4902 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, GoF9618n ; Vlaamse regering, HBC.2019.0107 ; European Research Council, 810182 ; This research was supported by the Excellence of Science FWOFNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 810182 – SCOPE ERC Synergy project), the 1798 | Sustainable Energy Fuels, 2021, 5, 1786–1800 Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:177540 Serial 6745
Permanent link to this record
 

 
Author (up) Van Alphen, S.; Slaets, J.; Ceulemans, S.; Aghaei, M.; Snyders, R.; Bogaerts, A.
Title Effect of N2 on CO2-CH4 conversion in a gliding arc plasmatron: Can this major component in industrial emissions improve the energy efficiency? Type A1 Journal Article;Plasma-based CO2-CH4 conversion
Year 2021 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util
Volume 54 Issue Pages 101767
Keywords A1 Journal Article;Plasma-based CO2-CH4 conversion; Effect of N2; Plasma chemistry; Computational modelling; Gliding arc plasmatron; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma-based CO2 and CH4 conversion is gaining increasing interest, and a great portion of research is dedicated to adapting the process to actual industrial conditions. In an industrial context, the process needs to be able to process N2 admixtures, since most industrial gas emissions contain significant amounts of N2, and gas separations are financially costly. In this paper we therefore investigate the effect of N2 on the CO2 and CH4 conversion in a gliding arc plasmatron reactor. The addition of 20 % N2 reduces the energy cost of the conversion process by 21 % compared to a pure CO2/CH4 mixture, from 2.9 down to 2.2 eV/molec (or from 11.5 to 8.7 kJ/L), yielding a CO2 and CH4 (absolute) conversion of 28.6 and 35.9 % and an energy efficiency of 58 %. These results are among the best reported in literature for plasma-based DRM, demonstrating the benefits of N2 present in the mix. Compared to DRM results in different plasma reactor types, a low energy cost was achieved. To understand the underlying mechanisms of N2 addition, we developed a combination of four different computational models, which reveal that the beneficial effect of N2 addition is attributed to (i) a rise in the electron density (increasing the plasma conductivity, and therefore reducing the plasma power needed to sustain the plasma, which reduces the energy cost), as well as (ii) a rise in the gas temperature, which accelerates the CO2 and CH4 conversion reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000715057300005 Publication Date 2021-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.292 Times cited Open Access OpenAccess
Notes This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innova­ tion programme (grant agreement No 810182 – SCOPE ERC Synergy project), the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and through long-term structural fund­ing (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Ant­werpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 4.292
Call Number PLASMANT @ plasmant @c:irua:184044 Serial 6827
Permanent link to this record
 

 
Author (up) Van Alphen, S.; Vermeiren, V.; Butterworth, T.; van den Bekerom, D.C.M.; van Rooij, G.J.; Bogaerts, A.
Title Power Pulsing To Maximize Vibrational Excitation Efficiency in N2Microwave Plasma: A Combined Experimental and Computational Study Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 3 Pages 1765-1779
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma is gaining increasing interest for N2 fixation, being a flexible, electricity-driven alternative for the current conventional fossil fuel-based N2 fixation processes. As the vibrational-induced dissociation of N2 is found to be an energy-efficient pathway to acquire atomic N for the fixation processes, plasmas that are in vibrational nonequilibrium seem promising for this application. However, an important challenge in using nonequilibrium plasmas lies in preventing vibrational−translational (VT) relaxation processes, in which vibrational energy crucial for N2 dissociation is lost to gas heating. We present here both experimental and modeling results for the vibrational and gas temperature in a microsecond-pulsed microwave (MW) N2 plasma, showing how power pulsing can suppress this unfavorable VT relaxation and achieve a maximal vibrational nonequilibrium. By means of our kinetic model, we demonstrate that pulsed plasmas take advantage of the long time scale on which VT processes occur, yielding a very pronounced nonequilibrium over the whole N2 vibrational ladder. Additionally, the effect of pulse parameters like the pulse frequency and pulse width are investigated, demonstrating that the advantage of pulsing to inhibit VT relaxation diminishes for high pulse frequencies (around 7000 kHz) and long power pulses (above 400 μs). Nevertheless, all regimes studied here demonstrate a clear vibrational nonequilibrium while only requiring a limited power-on time, and thus, we may conclude that a pulsed plasma seems very interesting for energyefficient vibrational excitation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000509438600001 Publication Date 2020-01-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access
Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; This research was supported by the Excellence of Science FWO-FNRS project (FWO Grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:165586 Serial 5443
Permanent link to this record
 

 
Author (up) van Alsenoy, V.; Bernard, P.; Van Grieken, R.
Title Elemental concentrations and heavy metal pollution in sediments and suspended matter from the Belgian North Sea and the Scheldt estuary Type A1 Journal article
Year 1993 Publication The science of the total environment Abbreviated Journal
Volume 133 Issue Pages 153-181
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1993LA92200010 Publication Date 2003-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:6253 Serial 7892
Permanent link to this record
 

 
Author (up) Van Alsenoy, W.; Bernard, P.; Van Grieken, R.
Title Zware metalen in Noordzee- en Schelde-sedimenten Type A3 Journal article
Year 1990 Publication Wtare Abbreviated Journal
Volume 5 Issue Pages 113-121
Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116829 Serial 8787
Permanent link to this record
 

 
Author (up) van Bockstal, L.; Mahy, M.; de Keyser, A.; Hoeks, W.; Herlach, F.; Peeters, F.M.; van de Graaf, W.; Borghs, G.
Title Cyclotron-resonance of 2D electrons at Si-δ-doped InSb layers grown on GaAs Type A1 Journal article
Year 1995 Publication Physica: B : condensed matter Abbreviated Journal Physica B
Volume 211 Issue Pages 455-457
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1995RD54400118 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.319 Times cited 2 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:13038 Serial 600
Permanent link to this record
 

 
Author (up) Van Bockstal, L.; Mahy, M.; de Keyser, A.; Hoeks, W.; Herlach, F.; Peeters, F.M.; Van de Graaf, W.; Borghs, G.
Title Cyclotron-resonance of 2d electrons at Si-\delta-doped InSb layers grown on GaAs Type A1 Journal article
Year 1995 Publication Physica: B : condensed matter Abbreviated Journal Physica B
Volume 211 Issue 1-4 Pages 466-469
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Cyclotron resonance (CR) of the electrons accumulated at sheets with heavy Si doping in InSb were observed using far infrared radiation. The angular dependence of the CR follows closely the 1/cos theta behaviour with some small deviations at high angles attributed to coupling between subbands. From the effective mass of the lowest subband, which is found to be 0.027m(o), the bottom of the lowest subband was determined to lie 125 meV below the Fermi level.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Amsterdam Editor
Language Wos A1995RD54400121 Publication Date 2003-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.319 Times cited 2 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:95914 Serial 601
Permanent link to this record
 

 
Author (up) Van Borman, W.; Wouters, L.; Van Grieken, R.; Adams, F.
Title Lead particles in an urban atmosphere : an individual particle approach Type A1 Journal article
Year 1990 Publication The science of the total environment Abbreviated Journal
Volume 90 Issue Pages 55-66
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In air particulate matter, sampled at a suburban site near the city of Antwerp, Belgium, more than 1500 individual Pb-containing aerosol particles with projected diameters between 0.2 and 15 μm were analyzed by automated electron probe X-ray micro analysis (EPXMA) for 26 elements and morphological features. Laser microprobe mass analysis (LAMMA) was used to detect elements with Z < 11, particularly ammonium compounds. The Pb-containing particles were classified into five main classes: Pb-sulfates, Pb-halides, soil related Pb, Pb associated with medium atomic number elements and Pb associated with high atomic number elements. Each class was divided into several distinct particle types, of which the abundance (in number and mass %), the mean projected particle diameter, and the chemical composition were determined. Auto exhaust products are responsible for Pb-sulfates and Pb-halides, making up respectively 66.7 and 27.8% by mass of the Pb-containing particles. Ammonium sulfate coatings were found to be present on nearly all Pb particles. The observations were correlated with daily concentrations of Pb and Br, obtained by particle induced X-ray emission analysis (PIXE).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1990CJ43500005 Publication Date 2003-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116651 Serial 8169
Permanent link to this record
 

 
Author (up) Van Boxem, R.
Title Electron vortex beams : an in-depth theoretical study Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:132968 Serial 4168
Permanent link to this record
 

 
Author (up) Van Boxem, R.; Partoens, B.; Verbeeck, J.
Title Inelastic electron-vortex-beam scattering Type A1 Journal article
Year 2015 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 91 Issue 91 Pages 032703
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Recent theoretical and experimental developments in the field of electron-vortex-beam physics have raised questions about what exactly this novelty in the field of electron microscopy (and other fields, such as particle physics) really provides. An important part of the answer to these questions lies in scattering theory. The present investigation explores various aspects of inelastic quantum scattering theory for cylindrically symmetric beams with orbital angular momentum. The model system of Coulomb scattering on a hydrogen atom provides the setting to address various open questions: How is momentum transferred? Do vortex beams selectively excite atoms, and how can one employ vortex beams to detect magnetic transitions? The analytical approach presented here provides answers to these questions. OAM transfer is possible, but not through selective excitation; rather, by pre- and postselection one can filter out the relevant contributions to a specific signal.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000351035000004 Publication Date 2015-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 31 Open Access
Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2015 IF: 2.808
Call Number c:irua:123925 c:irua:123925UA @ admin @ c:irua:123925 Serial 1607
Permanent link to this record
 

 
Author (up) Van Boxem, R.; Partoens, B.; Verbeeck, J.
Title Rutherford scattering of electron vortices Type A1 Journal article
Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 89 Issue 3 Pages 032715-32719
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract By considering a cylindrically symmetric generalization of a plane wave, the first-order Born approximation of screened Coulomb scattering unfolds two new dimensions in the scattering problem: transverse momentum and orbital angular momentum of the incoming beam. In this paper, the elastic Coulomb scattering amplitude is calculated analytically for incoming Bessel beams. This reveals novel features occurring for wide-angle scattering and quantitative insights for small-angle vortex scattering. The result successfully generalizes the well-known Rutherford formula, incorporating transverse and orbital angular momentum into the formalism.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000333690500008 Publication Date 2014-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 34 Open Access
Notes 312483-Esteem2; N246791 – Countatoms; 278510 Vortex; esteem2jra1; esteem2jra3 ECASJO_; Approved Most recent IF: 2.925; 2014 IF: 2.808
Call Number UA @ lucian @ c:irua:115562UA @ admin @ c:irua:115562 Serial 2936
Permanent link to this record
 

 
Author (up) Van Boxem, R.; Verbeeck, J.; Partoens, B.
Title Spin effects in electron vortex states Type A1 Journal article
Year 2013 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 102 Issue 4 Pages 40010-40016
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract The recent experimental realization of electron vortex beams opens up a wide research domain previously unexplored. The present paper explores the relativistic properties of these electron vortex beams, and quantifies deviations from the scalar wave theory. It is common in electron optics to use the Schrodinger equation neglecting spin. The present paper investigates the role of spin and the total angular momentum J(z) and how it pertains to the vortex states. As an application, we also investigate if it is possible to use holographic reconstruction to create novel total angular momentum eigenstates in a transmission electron microscope. It is demonstrated that relativistic spin coupling effects disappear in the paraxial limit, and spin effects in holographically created electron vortex beams can only be exploited by using specialized magnetic apertures.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000321118600011 Publication Date 2013-06-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 11 Open Access
Notes 312483 Esteem2; N246791 Countatoms; 278510 Vortex; esteem2jra1; esteem2jra3 ECASJO_; Approved Most recent IF: 1.957; 2013 IF: 2.269
Call Number UA @ lucian @ c:irua:109852 Serial 3087
Permanent link to this record
 

 
Author (up) Van Boxem, W.; Van der Paal, J.; Gorbanev, Y.; Vanuytsel, S.; Smits, E.; Dewilde, S.; Bogaerts, A.
Title Anti-cancer capacity of plasma-treated PBS: effect of chemical composition on cancer cell cytotoxicity Type A1 Journal article
Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 7 Issue 1 Pages 16478
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We evaluate the anti-cancer capacity of plasma-treated PBS (pPBS), by measuring the concentrations of NO2 − and H2O2 in pPBS, treated with a plasma jet, for different values of gas flow rate, gap and plasma treatment time, as well as the effect of pPBS on cancer cell cytotoxicity, for three different glioblastoma cancer cell lines, at exactly the same plasma treatment conditions. Our experiments reveal that pPBS is cytotoxic for all conditions investigated. A small variation in gap between plasma jet and liquid surface (10 mm vs 15 mm) significantly affects the chemical composition of pPBS and its anti-cancer capacity, attributed to the occurrence of discharges onto the liquid. By correlating the effect of gap, gas flow rate and plasma treatment time on the chemical composition and anti-cancer capacity of pPBS, we may conclude that H2O2 is a more important species for the anti-cancer capacity of pPBS than NO2 −. We also used a 0D model, developed for plasma-liquid interactions, to elucidate the most important mechanisms for the generation of H2O2 and NO2 −. Finally, we found that pPBS might be more suitable for practical applications in a clinical setting than (commonly used) plasma-activated media (PAM), because of its higher stability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000416398100028 Publication Date 2017-11-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 40 Open Access OpenAccess
Notes We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant No. 11U5416N), the Research Council of the University of Antwerp and the European Marie Skłodowska-Curie Individual Fellowship “LTPAM” within Horizon2020 (Grant No. 743151). Finally, we would like to thank P. Attri and A. Privat Maldonado for the valuable discussions. Approved Most recent IF: 4.259
Call Number PLASMANT @ plasmant @c:irua:147192 Serial 4766
Permanent link to this record
 

 
Author (up) Van Cauwenbergh, P.; Samaee, V.; Thijs, L.; Nejezchlebova, J.; Sedlak, P.; Ivekovic, A.; Schryvers, D.; Van Hooreweder, B.; Vanmeensel, K.
Title Unravelling the multi-scale structure-property relationship of laser powder bed fusion processed and heat-treated AlSi10Mg Type A1 Journal article
Year 2021 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk
Volume 11 Issue 1 Pages 6423
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Tailoring heat treatments for Laser Powder Bed Fusion (LPBF) processed materials is critical to ensure superior and repeatable material properties for high-end applications. This tailoring requires in-depth understanding of the LPBF-processed material. Therefore, the current study aims at unravelling the threefold interrelationship between the process (LPBF and heat treatment), the microstructure at different scales (macro-, meso-, micro-, and nano-scale), and the macroscopic material properties of AlSi10Mg. A similar solidification trajectory applies at different length scales when comparing the solidification of AlSi10Mg, ranging from mould-casting to rapid solidification (LPBF). The similarity in solidification trajectories triggers the reason why the Brody-Flemings cellular microsegregation solidification model could predict the cellular morphology of the LPBF as-printed microstructure. Where rapid solidification occurs at a much finer scale, the LPBF microstructure exhibits a significant grain refinement and a high degree of silicon (Si) supersaturation. This study has identified the grain refinement and Si supersaturation as critical assets of the as-printed microstructure, playing a vital role in achieving superior mechanical and thermal properties during heat treatment. Next, an electrical conductivity model could accurately predict the Si solute concentration in LPBF-processed and heat-treated AlSi10Mg and allows understanding the microstructural evolution during heat treatment. The LPBF-processed and heat-treated AlSi10Mg conditions (as-built (AB), direct-aged (DA), stress-relieved (SR), preheated (PH)) show an interesting range of superior mechanical properties (tensile strength: 300-450 MPa, elongation: 4-13%) compared to the mould-cast T6 reference condition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000632047000003 Publication Date 2021-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.259
Call Number UA @ admin @ c:irua:177634 Serial 6791
Permanent link to this record
 

 
Author (up) van Cleempoel, A.; Gijbels, R.; Claeys, M.; van den Heuvel, H.
Title Characterization of ozonated C60 and C70 by high performance liquid chromatography and low- and high-energy collision-induced dissociation tandem mass spectrometry Type A1 Journal article
Year 1996 Publication Rapid communications in mass spectrometry Abbreviated Journal Rapid Commun Mass Sp
Volume 10 Issue Pages 1579-1584
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1996VN92200003 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0951-4198 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.253 Times cited 10 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:15613 Serial 331
Permanent link to this record
 

 
Author (up) van Cleempoel, A.; Gijbels, R.; van den Heuvel, H.; Claeys, M.
Title Analysis of C60 and C70 oxides by HPLC and low- and high-energy collision-induced dissocation tandem mass spectrometry Type P1 Proceeding
Year 1997 Publication Proceedings Symposium on Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, 191th Meeting of the Electrochemical Society, Montreal, Canada, 4-9 May 1997 Abbreviated Journal
Volume 4 Issue Pages 783-800
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1997BJ44R00081 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:19150 Serial 99
Permanent link to this record
 

 
Author (up) van Cleempoel, A.; Gijbels, R.; Zhu, D.; Claeys, M.; Richter, H.; Fonseca, A.
Title Quantitative determination of C60 and C70 in soot extracts by high performance liquid chromatography and mass spectrometric characterization Type A1 Journal article
Year 1996 Publication Fullerene science and technology Abbreviated Journal Fuller Nanotub Car N
Volume 4 Issue Pages 1001-1017
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A quantitative HPLC method was applied to determine the amounts of C-60 and C-70 present in extracts of soot produced in the electric arc reactor and in flames. The combustion method was found to yield a higher C-70/C-60 ratio (0.67) compared with the evaporation experiment where the C-70/C-60 ratio amounts to 0.27.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos A1996VK45000015 Publication Date 2007-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1536-383X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.836 Times cited 6 Open Access
Notes Approved COMPUTER SCIENCE, INTERDISCIPLINARY 11/104 Q1 # PHYSICS, MATHEMATICAL 1/53 Q1 #
Call Number UA @ lucian @ c:irua:15612 Serial 2751
Permanent link to this record
 

 
Author (up) van Cleempoel, A.; Joutsensaari, J.; Kauppinen, E.; Gijbels, R.; Claeys, M.
Title Aerosol synthesis and characterization of ultrafine fullerene particles Type A1 Journal article
Year 1998 Publication Fullerene science and technology Abbreviated Journal Fullerene Sci Techn
Volume 6 Issue 4 Pages 599-627
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000074859200001 Publication Date 2008-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1064-122X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:24038 Serial 78
Permanent link to this record
 

 
Author (up) Van Dael, M.; Lizin, S.; Swinnen, G.; Van Passel, S.
Title Young people's acceptance of bioenergy and the influence of attitude strength on information provision Type A1 Journal article
Year 2017 Publication Renewable Energy Abbreviated Journal Renew Energ
Volume 107 Issue Pages 417-430
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This study investigated the effects of using a standardized PowerPoint lecture to provide young people with nuanced information about bioenergy. The studys aim was to understand the relationship between knowledge and participants perception of bioenergy, and the relationship of the latter to participants attitude strength and intention to use and learn about bioenergy. Data were collected from 715 participants using a survey instrument that contained mainly Likert-scale questions. Data were then processed using partial least squares structural equation modelling. Results show that providing such information increases knowledge about bioenergy, but does relatively little to create a more positive perception of bioenergy. In turn, having a more positive view about bioenergy would lead to a higher intention to use bioenergy. Attitude strength was found to mediate the previous relationship and decreases the strength of the relationship between perception and intention to use. Results also show that the lecture weakly contributed to building attitude strength, rendering opinion change less likely in the future. We conclude that listening to a lecture on bioenergy slightly improves peoples perception of bioenergy, makes it more likely that people maintain such a disposition, and translates into a slightly higher intention to use bioenergy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000396946900036 Publication Date 2017-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-1481 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 4.357 Times cited 10 Open Access
Notes ; This work was supported by the Research Foundation Flanders (FWO; grant number 12G5415N). The authors gratefully acknowledge Sara Leroi-Werelds (Hasselt University) for her valuable comments. ; Approved Most recent IF: 4.357
Call Number UA @ admin @ c:irua:140683 Serial 6280
Permanent link to this record
 

 
Author (up) Van Dael, M.; Marquez, N.; Reumerman, P.; Pelkmans, L.; Kuppens, T.; Van Passel, S.
Title Development and techno-economic evaluation of a biorefinery based on biomass (waste) streams : case study in the Netherlands Type A1 Journal article
Year 2014 Publication Biofuels Bioproducts & Biorefining-Biofpr Abbreviated Journal Biofuel Bioprod Bior
Volume 8 Issue 5 Pages 635-644
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract In this paper, the technical and economic advantages of combining conversion technologies into a multi-dimensional plant primarily using regional biomass residues are investigated. The main objective is to show how locally available biomass can be used more efficiently as a source for renewable energy and bio-based products. Therefore, not only is the theoretical perspective considered, but also a reality check for the local situation is taken into account. Although industrial attitude toward biorefineries is positive, the efficient production of a portfolio of bio-based products has not yet been implemented. A biorefinery concept for Moerdijk (the Netherlands) was developed, focusing on grass refining, production of pyrolysis oil, biodiesel production, and bio-LNG production. Grass refining is the most experimental technique of all proposed conversion techniques. In terms of development, pyrolysis oil and bio-LNG production are in the demonstration phase. Anaerobic digestion and biodiesel production are proven techniques. It is shown that this concept allows for synergies with regard to the utilization of residue flows from internal processes. Furthermore, it is demonstrated that by integrating different conversion technologies, an economically feasible concept can be developed in which technologies, currently residing in a demonstration phase, can also be brought to the market. (c) 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342662200015 Publication Date 2013-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-104x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.694 Times cited 18 Open Access
Notes ; We would like to thank the editor and the anonymous referees for their helpful suggestions and insightful comments that have significantly improved the paper. The Energy Conversion Parks (ECP) project is funded by the Interreg IVa – Flanders-Netherlands program from the European Fund for Regional Development that stimulates cross-border projects. Also the Dutch Ministry of Economic Affairs, the Flemish Government, the Provinces of Noord-Brabant (NL), Zeeland (NL), Limburg (BE) and the partners (VITO, Avans University of Applied Sciences, Wageningen University and Research, Hasselt University, and Zeeland University of Applied Sciences) themselves are co-financing the project. We also would like to express our gratitude toward the organization of the 2nd Iberoamerican Congress on Biorefineries in Jaen (Spain) for giving us the opportunity to present and thereby fine-tune our work. ; Approved Most recent IF: 3.694; 2014 IF: 4.214
Call Number UA @ admin @ c:irua:127541 Serial 6180
Permanent link to this record
 

 
Author (up) Van Dael, M.; Van Passel, S.; Pelkmans, L.; Guisson, R.; Reumermann, P.; Luzardo, N.M.; Witters, N.; Broeze, J.
Title A techno-economic evaluation of a biomass energy conversion park Type A1 Journal article
Year 2013 Publication Applied Energy Abbreviated Journal Appl Energ
Volume 104 Issue Pages 611-622
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Biomass as a renewable energy source has many advantages and is therefore recognized as one of the main renewable energy sources to be deployed in order to attain the target of 20% renewable energy use of final energy consumption by 2020 in Europe. In this paper the concept of a biomass Energy Conversion Park (ECP) is introduced. A biomass ECP can be defined as a synergetic, multi-dimensional biomass conversion site with a highly integrated set of conversion technologies in which a multitude of regionally available biomass (residue) sources are converted into energy and materials. A techno-economic assessment is performed on a case study in the Netherlands to illustrate the concept and to comparatively assess the highly integrated system with two mono-dimensional models. The three evaluated models consist of (1) digestion of the organic fraction of municipal solid waste, (2) co-digestion of manure and co-substrates, and (3) integration. From a socio-economic point of view it can be concluded that it is economically and energetically more interesting to invest in the integrated model than in two separate models. The integration is economically feasible and environmental benefits can be realized. For example, the integrated model allows the implementation of a co-digester. Unmanaged manure would otherwise represent a constant pollution risk. However, from an investor's standpoint one should firstly invest in the municipal solid waste digester since the net present value (NPV) of this mono-dimensional model is higher than that of the multi-dimensional model. A sensitivity analysis is performed to identify the most influencing parameters. Our results are of interest for companies involved in the conversion of biomass. The conclusions are useful for policy makers when deciding on policy instruments concerning manure processing or biogas production. (C) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316152700062 Publication Date 2012-12-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-2619 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.182 Times cited 45 Open Access
Notes ; We would like to thank the editor and the anonymous referees for their helpful suggestions and insightful comments that have significantly improved the paper. Furthermore, the authors gratefully acknowledge the financial support from INTERREG and the province of Limburg (Belgium). Also, we would like to thank all remaining partners of the ECP project (Eloi Schreurs, Dries Maes, Kristian Coppoolse, Han ten Berge, Bert Annevelink, Nathalie Devriendt, Erwin Cornelissen, Hannes Pieper, Pieter Vollaard, Jan Venselaar, and Hessel Abbink Spaink) for their support and contributions. Finally, we would like to express our gratitude towards the organization of the eighth International Conference on Renewable Resources and Biorefineries in Toulouse (France) for giving us the opportunity to present and thereby fine-tune our work. ; Approved Most recent IF: 7.182; 2013 IF: 5.261
Call Number UA @ admin @ c:irua:127552 Serial 6145
Permanent link to this record
 

 
Author (up) Van Dael, M.; Van Passel, S.; Pelkmans, L.; Guisson, R.; Swinnen, G.; Schreurs, E.
Title Determining potential locations for biomass valorization using a macro screening approach Type A1 Journal article
Year 2012 Publication Biomass & Bioenergy Abbreviated Journal Biomass Bioenerg
Volume 45 Issue Pages 175-186
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract European policy states that by 2020 at least 20% of final energy consumption should come from renewable energy sources. Biomass as a renewable energy source cannot be disregarded in order to attain this target. In this study a macro screening approach is developed to determine potential locations for biomass valorization in a specified region. The approach consists of five steps: (1) criteria determination, (2) data gathering, (3) weight assignment, (4) final score, (5) spatial representation. The resulting outcome provides a first well balanced scan of the possibilities for energy production using regional biomass. This way policy makers and investors can be supported and motivated to study the possibilities of building energy production plants at specific locations in more detail, which can be described as a 'micro-screening'. In our case study the approach is applied to determine the potentially interesting locations to establish a biomass project. The region has been limited to the forty-four communities in the province of Limburg (Belgium). The macro screening approach has shown to be very effective since the amount of interesting locations has been reduced drastically. (c) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000308384500019 Publication Date 2012-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.219 Times cited 23 Open Access
Notes ; The authors gratefully acknowledge the financial support from INTERREG and the province of Limburg. Special thanks to our colleague Thomas Voets for his effort in making the GIS maps. Moreover, the authors would like to thank the two anonymous reviewers for their valuable comments. ; Approved Most recent IF: 3.219; 2012 IF: 2.975
Call Number UA @ admin @ c:irua:127554 Serial 6178
Permanent link to this record
 

 
Author (up) van Daele, B.; Van Tendeloo, G.; Germain, M.; Leys, M.; Bougrioua, Z.; Moerman, I.
Title Relation between microstructure and 2DEG properties of AlGaN/GaN structures Type A1 Journal article
Year 2002 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 234 Issue 3 Pages 830-834
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000180038200031 Publication Date 2002-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972;1521-3951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 1 Open Access
Notes Approved Most recent IF: 1.674; 2002 IF: 0.930
Call Number UA @ lucian @ c:irua:54847 Serial 2857
Permanent link to this record
 

 
Author (up) van Daele, B.; Van Tendeloo, G.; Jacobs, K.; Moerman, I.; Leys, M.
Title Formation of metallic In in InGaN/GaN multiquantum wells Type A1 Journal article
Year 2004 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 85 Issue 19 Pages 4379-4381
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000224962800038 Publication Date 2004-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 32 Open Access
Notes IAP V-1; IWT-Project No.980319 Approved Most recent IF: 3.411; 2004 IF: 4.308
Call Number UA @ lucian @ c:irua:54804 Serial 1261
Permanent link to this record
 

 
Author (up) van Daele, B.; Van Tendeloo, G.; Ruythooren, W.; Derluyn, J.; Leys, M.; Germain, M.
Title The role of Al on Ohmic contact formation on n-type GaN and AlGaN/GaN Type A1 Journal article
Year 2005 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 87 Issue 6 Pages 061905,1-3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000231016900019 Publication Date 2005-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 57 Open Access
Notes Approved Most recent IF: 3.411; 2005 IF: 4.127
Call Number UA @ lucian @ c:irua:54808 Serial 2910
Permanent link to this record
 

 
Author (up) van Daele, B.; Van Tendeloo, G.; Ruythooren, W.; Derluyn, J.; Leys, M.R.; Germain, M.
Title Transmission electron microscopy characterisation of Ti and Al/Ti contacts on GaN and AlGaN/GaN Type A1 Journal article
Year 2005 Publication Springer proceedings in physics Abbreviated Journal
Volume 107 Issue Pages 389-392
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Transmission electron microscopy has been applied to study Ti and Al/Ti contacts on GaN and AlGaN/GaN as a function of annealing temperature. This has lead to a profound understanding of the role of Al, both in the contact formation on n-GaN and on AlGaN/GaN. Al in the AlGaN decreases the N-extraction by Ti out of the nitride, because of the strong Al-N bond. Al in the metal bilayer also reduces the N-extraction by Ti due to a preferential alloy mixing.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-8989 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94775 Serial 3707
Permanent link to this record
 

 
Author (up) Van Daele, S.; Hintjens, L.; Hoekx, S.; Bohlen, B.; Neukermans, S.; Daems, N.; Hereijgers, J.; Breugelmans, T.
Title How flue gas impurities affect the electrochemical reduction of CO₂ to CO and formate Type A1 Journal article
Year 2024 Publication Applied catalysis : B : environmental Abbreviated Journal
Volume 341 Issue Pages 123345-10
Keywords A1 Journal article; Engineering sciences. Technology; Applied Electrochemistry & Catalysis (ELCAT); Electron microscopy for materials research (EMAT)
Abstract The electrochemical CO2 reduction offers a promising solution to convert waste CO2 into valuable products like CO and formate. However, CO2 capture and purification remains an energy intensive process and therefore the direct usage of industrially available waste CO2 streams containing SO2, NO and O2 impurities becomes more interesting. This work demonstrates an efficient (Faradaic efficiency > 90 %) and stable performance over 20 h with 200 ppm SO2 or NO in the feed gas stream. However, the addition of 1 % O2 to the CO2 feed causes a significant drop in Faradaic efficiency to C-products due to the competitive oxygen reduction reaction. A potential mitigation strategy is to operate at higher total current density to firstly reduce most O2 and achieve sufficient product output from CO2 reduction. These results aid in understanding the impact of flue gas impurities during CO2 electrolysis which is crucial for potentially bypassing the CO2 purification step.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001102999000001 Publication Date 2023-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 22.1 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 22.1; 2024 IF: 9.446
Call Number UA @ admin @ c:irua:199490 Serial 9044
Permanent link to this record