|   | 
Details
   web
Records
Author (up) Lebedev, O.I.; Van Tendeloo, G.; Collart, O.; Cool, P.; Vansant, E.F.
Title Structure and microstructure of nanoscale mesoporous silica spheres Type A1 Journal article
Year 2004 Publication Solid state sciences Abbreviated Journal Solid State Sci
Volume 6 Issue Pages 489-498
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000221604500011 Publication Date 2004-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.811 Times cited 42 Open Access
Notes Pai/Iuap P5/01 Approved Most recent IF: 1.811; 2004 IF: 1.598
Call Number UA @ lucian @ c:irua:46262 Serial 3289
Permanent link to this record
 

 
Author (up) Lebedev, O.I.; Van Tendeloo, G.; Cristiani, G.; Habermeier, H.-U.; Matveev, A.T.
Title Structure-properties relationship in ferromagnetic superconducting RuSr2GdCu2O8 Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 71 Issue Pages 134523,1-8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000228761800097 Publication Date 2005-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes Iap V-1 Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:54747 Serial 3316
Permanent link to this record
 

 
Author (up) Lebedev, O.I.; Van Tendeloo, G.; Licci, F.; Gilioli, E.; Gauzzi, A.; Prodi, A.; Marezio, M.
Title Superconductivity and microstructure of YSr2Cu3O6.875 Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 66 Issue Pages 132510,1-4
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000179067900042 Publication Date 2002-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:54742 Serial 3371
Permanent link to this record
 

 
Author (up) Lebedev, O.I.; Van Tendeloo, G.; Suvorova, A.A.; Usov, I.O.; Suvorov, A.V.
Title HREM study of ion implantation in 6H-SiC at high temperatures Type A1 Journal article
Year 1997 Publication Journal of electron microscopy Abbreviated Journal Microscopy-Jpn
Volume 46 Issue 4 Pages 271-279
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Tokyo Editor
Language Wos A1997XY94900002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0744; 1477-9986 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.9 Times cited 7 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:21444 Serial 1511
Permanent link to this record
 

 
Author (up) Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Amelinckx, S.; Ravazi, F.S.; Habermeier, H.-U.
Title Structure and microstructure of La1-xSrxMnO3 (x=0.16) films grown on a SrTiO3(110) substrate Type A1 Journal article
Year 2001 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal Philos Mag A
Volume 81 Issue 12 Pages 2865-2884
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000172348000008 Publication Date 2007-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-8610;1460-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.136 Times cited 12 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:57132 Serial 3290
Permanent link to this record
 

 
Author (up) Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Dubourdieu, C.; Rosina, M.; Chaudouët, P.
Title Structure and properties of artificial [(La0.7Sr0.3MnO3)m(SrTiO3)n]15 superlattices on (001)SrTiO3 Type A1 Journal article
Year 2003 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 94 Issue 12 Pages 7646-7656
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Complex [(La0.7Sr0.3MnO3)(m)(SrTiO3)(n)] [(LSMO)(m)/(STO)(8)](15) superlattices with different layer thicknesses (m=5, 8, 12, 16, 32) have been prepared using pulsed liquid injection metalorganic chemical vapor deposition. Transmission electron microscopy and electron diffraction reveal a very clear and well-separated layer sequence. The remarkable microstructure, as well as the ferromagnetic transition temperature, depends on the LSMO layer thickness. Apart from a very clear layer sequence, electron microscopy shows evidence of a self-assembled nanostructure formation: SrMnO3 nanoinclusions and associated SrTiO3-SrMnO3 thin walls. A formation model and growth mechanism for the self-assembled structure is proposed, based on high resolution and energy filtered elemental imaging. (C) 2003 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000186969900042 Publication Date 2003-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 22 Open Access
Notes Approved Most recent IF: 2.068; 2003 IF: 2.171
Call Number UA @ lucian @ c:irua:54822 Serial 3292
Permanent link to this record
 

 
Author (up) Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Hayashi, N.; Terashima, T.; Takano, M.
Title Structure and microstructure of epitaxial SrnFenO3n-1 films Type A1 Journal article
Year 2004 Publication Philosophical magazine Abbreviated Journal Philos Mag
Volume 84 Issue 36 Pages 3825-3841
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Thin films of SrFeO3-x (0 less than or equal to x less than or equal to 0.5) (SFO) grown on a (LaAlO3)(0.3) (SrAl0.5Ta0.5O3)(0.7) (LSAT) substrate by Pulsed laser deposition have been structurally investigated by electron diffraction and high resolution transmission electron microscopy for different post-deposition oxygen treatments. During the deposition and post-growth oxidation, the oxygen-reduced SFO films accept extra oxygen along the tetrahedral layers to minimize the elastic strain energy. The oxidation process stops at a concentration SFO2.875 and/or SFO2.75 because a zero misfit with the LSAT substrate is reached. A possible growth mechanism and phase transition mechanism are suggested. The non-oxidized films exhibit twin boundaries having a local perovskite-type structure with a nominal composition close to SFO3.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000225854700001 Publication Date 2005-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1478-6435;1478-6443; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.505 Times cited 4 Open Access
Notes reprint Approved Most recent IF: 1.505; 2004 IF: 1.167
Call Number UA @ lucian @ c:irua:54755 Serial 3287
Permanent link to this record
 

 
Author (up) Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Shapoval, O.; Belenchuk, A.; Moshnyaga, V.; Damaschke, B.; Samwer, K.
Title Structural phase transitions and stress accommodation in (La0.67Ca0.33MnO3)1.x:(MgO)x composite films Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 66 Issue 10 Pages 104421,1-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Composite (La0.67Ca0.33MnO3)(1-x):(MgO)(x) films were prepared by metalorganic aerosol deposition on a (100)MgO substrate for different concentrations of the (MgO) phase (0less than or equal toxless than or equal to0.8). At xapproximate to0.3 a percolation threshold in conductivity is reached, at which an infinite insulating MgO cluster forms around the La0.67Ca0.33MnO3 grains. This yields a drastic increase of the electrical resistance for films with x>0.3. The film structure is characterized by x-ray diffraction and transmission electron microscopy. The local structure of the La0.67Ca0.33MnO3 within the film depends on the MgO concentration which grows epitaxially along the domain boundaries. A different structural phase transition from the orthorhombic Pnma structure to an unusual rhombohedral R (3) over barc structure at the percolation threshold xapproximate to0.3 is found for La0.67Ca0.33MnO3. A three-dimensional stress accommodation in thick films through a phase transition is suggested.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000178460900060 Publication Date 2002-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 48 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:54740 Serial 3250
Permanent link to this record
 

 
Author (up) Leca, V.; Blank, D.H.A.; Rijnders, G.; Bals, S.; Van Tendeloo, G.
Title Superconducting single-phase Sr1-xLaxCuO2 thin films with improved crystallinity grown by pulsed laser deposition Type A1 Journal article
Year 2006 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 89 Issue 9 Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sr1-xLaxCuO2-delta (x=0.10-0.20) thin films exhibiting an oxygen-deficient 2 root 2a(p)x2 root a(p) x c structure (a(p) and c represent the cell parameters of the perovskite subcell) were epitaxially grown by means of pulsed laser deposition in low-pressure oxygen ambient. (001) KTaO3 and (001) SrTiO3 single crystals were used as substrates, with BaTiO3 as buffer layer. The Sr1-xLaxCuO2-delta films were oxidized during cooling down in order to yield the infinite-layer-type structure. By applying this method, high quality single-phase Sr1-xLaxCuO2 thin films could be obtained for 0.10 <= x <= 0.175 doping range. The films grown on BaTiO3/KTaO3 show superconductivity for 0.15 <= x <= 0.175 with optimum doping at x=0.15, in contrast with previously reported data. (c) 2006 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000240236600077 Publication Date 2006-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 32 Open Access
Notes Fom; Fwo Approved Most recent IF: 3.411; 2006 IF: 3.977
Call Number UA @ lucian @ c:irua:60817 Serial 3366
Permanent link to this record
 

 
Author (up) Lee, Y.; Forte, J.D.'arf S.; Chaves, A.; Kumar, A.; Tran, T.T.; Kim, Y.; Roy, S.; Taniguchi, T.; Watanabe, K.; Chernikov, A.; Jang, J.I.; Low, T.; Kim, J.
Title Boosting quantum yields in two-dimensional semiconductors via proximal metal plates Type A1 Journal article
Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun
Volume 12 Issue 1 Pages 7095
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The short exciton lifetime and strong exciton-exciton interaction in transition metal dichalcogenides limit the efficiency of exciton emission. Here, the authors show that exciton-exciton interaction in monolayer WS2 can be screened using proximal metal plates, leading to an improved quantum yield. Monolayer transition metal dichalcogenides (1L-TMDs) have tremendous potential as atomically thin, direct bandgap semiconductors that can be used as convenient building blocks for quantum photonic devices. However, the short exciton lifetime due to the defect traps and the strong exciton-exciton interaction in TMDs has significantly limited the efficiency of exciton emission from this class of materials. Here, we show that exciton-exciton interaction in 1L-WS2 can be effectively screened using an ultra-flat Au film substrate separated by multilayers of hexagonal boron nitride. Under this geometry, induced dipolar exciton-exciton interaction becomes quadrupole-quadrupole interaction because of effective image dipoles formed within the metal. The suppressed exciton-exciton interaction leads to a significantly improved quantum yield by an order of magnitude, which is also accompanied by a reduction in the exciton-exciton annihilation (EEA) rate, as confirmed by time-resolved optical measurements. A theoretical model accounting for the screening of the dipole-dipole interaction is in a good agreement with the dependence of EEA on exciton densities. Our results suggest that fundamental EEA processes in the TMD can be engineered through proximal metallic screening, which represents a practical approach towards high-efficiency 2D light emitters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000728559600014 Publication Date 2021-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 12.124
Call Number UA @ admin @ c:irua:184870 Serial 7566
Permanent link to this record
 

 
Author (up) Leemans, J.; Singh, S.; Li, C.; Ten Brinck, S.; Bals, S.; Infante, I.; Moreels, I.; Hens, Z.
Title Near-Edge Ligand Stripping and Robust Radiative Exciton Recombination in CdSe/CdS Core/Crown Nanoplatelets Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett
Volume 11 Issue 9 Pages 3339-3344
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We address the relation between surface chemistry and optoelectronic properties in semiconductor nanocrystals using core/crown CdSe/CdS nanoplatelets passivated by cadmium oleate (Cd(Ol)2) as model systems. We show that addition of butylamine to a nanoplatelet (NPL) dispersion maximally displaces ∼40% of the original Cd(Ol)2 capping. On the basis of density functional theory simulations, we argue that this behavior reflects the preferential displacement of Cd(Ol)2 from (near)-edge surface sites. Opposite from CdSe core NPLs, core/crown NPL dispersions can retain 45% of their initial photoluminescence efficiency after ligand displacement, while radiative exciton recombination keeps dominating the luminescent decay. Using electron microscopy observations, we assign this robust photoluminescence to NPLs with a complete CdS crown, which prevents charge carrier trapping in the near-edge surface sites created by ligand displacement. We conclude that Z-type ligands such as cadmium carboxylates can provide full electronic passivation of (100) facets yet are prone to displacement from (near)-edge surface sites.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000535177500024 Publication Date 2020-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.7 Times cited 24 Open Access OpenAccess
Notes Universiteit Gent, GOA 01G01019 ; Fonds Wetenschappelijk Onderzoek, 17006602 FWO17/PDO/184 ; H2020 European Research Council, 714876 Phocona 815128 Realnano ; SIM-Flanders, SBO-QDOCCO ; Z.H. and S.B. acknowledge support by SIM-Flanders (SBO-QDOCCO). Z.H. acknowledges support by FWO-Vlaanderen (research project 17006602). Z.H. and I.M. acknowledge support by Ghent University (GOA n◦ 01G01019). J.L. acknowledges FWO-vlaanderen for a fellowship (SB PhD fellow at FWO). Sh.S acknowledges FWO postdoctoral funding (FWO17/PDO/184). This project has further received funding from the European Research Counsil under the European Union’s Horizon 2020 research and innovation programme (ERC Consolidator grant no. 815128 REALNANO and starting grant no. 714876 PHOCONA).; sygma Approved Most recent IF: 5.7; 2020 IF: 9.353
Call Number EMAT @ emat @c:irua:173994 Serial 6657
Permanent link to this record
 

 
Author (up) Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Adsorption of small molecules on graphene Type A1 Journal article
Year 2009 Publication Microelectronics journal Abbreviated Journal Microelectron J
Volume 40 Issue 4/5 Pages 860-862
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the adsorption process of small molecules on graphene through first-principles calculations and show the presence of two main charge transfer mechanisms. Which mechanism is the dominant one depends on the magnetic properties of the adsorbing molecules. We explain these mechanisms through the density of states of the system and the molecular orbitals of the adsorbates, and demonstrate the possible difficulties in calculating the charge transfer from first principles between a graphene sheet and a molecule. Our results are in good agreement with experiment.
Address
Corporate Author Thesis
Publisher Place of Publication Luton Editor
Language Wos 000265870200058 Publication Date 2008-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.163 Times cited 116 Open Access
Notes Approved Most recent IF: 1.163; 2009 IF: 0.778
Call Number UA @ lucian @ c:irua:77030 Serial 65
Permanent link to this record
 

 
Author (up) Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 77 Issue Pages 125416,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by the recent realization of graphene sensors to detect individual gas molecules, we investigate the adsorption of H2O, NH3, CO, NO2, and NO on a graphene substrate using first-principles calculations. The optimal adsorption position and orientation of these molecules on the graphene surface is determined and the adsorption energies are calculated. Molecular doping, i.e., charge transfer between the molecules and the graphene surface, is discussed in light of the density of states and the molecular orbitals of the adsorbates. The efficiency of doping of the different molecules is determined and the influence of their magnetic moment is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000254543000133 Publication Date 2008-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1392 Open Access
Notes This work was supported by the Flemish Science Foundation FWO-Vl, by the NOI-BOF of the University of Antwerp, and by the Belgian Science Policy IAP. Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:69634 Serial 67
Permanent link to this record
 

 
Author (up) Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Graphene: a perfect nanoballoon Type A1 Journal article
Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 93 Issue 19 Pages 193107,1-193107,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We have performed a first-principles density functional theory investigation of the penetration of helium atoms through a graphene monolayer with defects. The relaxation of the graphene layer caused by the incoming helium atoms does not have a strong influence on the height of the energy barriers for penetration. For defective graphene layers, the penetration barriers decrease exponentially with the size of the defects but they are still sufficiently high that very large defects are needed to make the graphene sheet permeable for small atoms and molecules. This makes graphene a very promising material for the construction of nanocages and nanomembranes.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000260944100090 Publication Date 2008-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 295 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the NOI-BOF of the University of Antwerp, and the Belgian Science Policy (IAP). Approved Most recent IF: 3.411; 2008 IF: 3.726
Call Number UA @ lucian @ c:irua:73196 Serial 1368
Permanent link to this record
 

 
Author (up) Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Hydrogenation of bilayer graphene and the formation of bilayer graphane from first principles Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 24 Pages 245422,1-245422,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We performed ab initio density-functional theory calculations to investigate the process of hydrogenation of a bilayer of graphene. 50% hydrogen coverage is possible in case that the hydrogen atoms are allowed to adsorb on both sides of the bilayer. In this case interlayer chemical bonding occurs which stabilizes the structure. At maximum coverage, a bilayer of graphane is formed which has properties that are similar to those of a single layer of graphane.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000273229200126 Publication Date 2009-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 113 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:80578 Serial 1535
Permanent link to this record
 

 
Author (up) Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Paramagnetic adsorbates on graphene: a charge transfer analysis Type A1 Journal article
Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 92 Issue 24 Pages 243125,1-3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We introduce a modified version of the Hirshfeld charge analysis method and demonstrate its accurateness by calculating the charge transfer between the paramagnetic molecule NO2 and graphene. The charge transfer between paramagnetic molecules and a graphene layer as calculated with ab initio methods can crucially depend on the size of the supercell used in the calculation. This has important consequences for adsorption studies involving paramagnetic molecules such as NO2 physisorbed on graphene or on carbon nanotubes. © 2008 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000256934900099 Publication Date 2008-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 79 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the NOI-BOF of the University of Antwerp, and the Belgian Science Policy (IAP). Discussions with C. Van Alsenoy are gratefully acknowledged. Approved Most recent IF: 3.411; 2008 IF: 3.726
Call Number UA @ lucian @ c:irua:69619 Serial 2552
Permanent link to this record
 

 
Author (up) Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Tunable double Dirac cone spectrum in bilayer \alpha-graphyne Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 103 Issue 1 Pages 013105-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Monolayer alpha-graphyne was recently proposed as a new all-carbon material having an electronic spectrum consisting of Dirac cones. Based on a first-principles investigation of bilayer alpha-graphyne, we show that the electronic band structure is qualitatively different from its monolayer form and depends crucially on the stacking mode of the two layers. Two stable stacking modes are found: a configuration with a gapless parabolic band structure, similar to AB stacked bilayer graphene, and another one which exhibits a doubled Dirac-cone spectrum. The latter can be tuned by an electric field with a gap opening rate of 0.3 eA. (C) 2013 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000321497200032 Publication Date 2013-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 58 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the NOI-BOF of the University of Antwerp, and the ESF EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:109821 Serial 3740
Permanent link to this record
 

 
Author (up) Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Water on graphene: hydrophobicity and dipole moment using density functional theory Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 23 Pages 235440,1-235440,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We apply density-functional theory to study the adsorption of water clusters on the surface of a graphene sheet and find i) graphene is highly hydrophobic and ii) adsorbed water has very little effect on the electronic structure of graphene. A single water cluster on graphene has a very small average dipole moment which is in contrast with an ice layer that exhibits a strong dipole moment.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000267699500147 Publication Date 2009-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 292 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77693 Serial 3904
Permanent link to this record
 

 
Author (up) Leenaerts, O.; Partoens, B.; Peeters, F.M.; Volodin, A.; van Haesendonck, C.
Title The work function of few-layer graphene Type A1 Journal article
Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal
Volume 29 Issue 3 Pages 035003
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A theoretical and experimental study of the work function of few-layer graphene is reported. The influence of the number of layers on the work function is investigated in the presence of a substrate, a molecular dipole layer, and combinations of the two. The work function of few-layer graphene is almost independent of the number of layers with only a difference between monolayer and multilayer graphene of about 60 meV. In the presence of a charge-donating substrate the charge distribution is found to decay exponentially away from the substrate and this is directly reflected in the work function of few-layer graphene. A dipole layer changes the work function only when placed in between the substrate and few-layer graphene through a change of the charge transfer between the two.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000425250600002 Publication Date 2016-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 61 Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:164938 Serial 8760
Permanent link to this record
 

 
Author (up) Leenaerts, O.; Peelaers, H.; Hernández-Nieves, A.D.; Partoens, B.; Peeters, F.M.
Title First-principles investigation of graphene fluoride and graphane Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 19 Pages 195436,1-195436,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Different stoichiometric configurations of graphane and graphene fluoride are investigated within density-functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various configurations. Large differences between graphane and graphene fluoride are found that are caused by the presence of charges on the fluorine atoms. A configuration that is more stable than the boat configuration is predicted for graphene fluoride. We also perform GW calculations for the electronic band gap of both graphene derivatives. These band gaps and also the calculated Youngs moduli are at variance with available experimental data. This might indicate that the experimental samples contain a large number of defects or are only partially covered with H or F.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000284399200004 Publication Date 2010-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 367 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-V1), the NOI-BOF of the University of Antwerp, the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (Grant No. FW/08/01). A.D.H. also acknowledges support from ANPCyT (Grant No. PICT 2008-2236). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:86916 Serial 1212
Permanent link to this record
 

 
Author (up) Leenaerts, O.; Sahin, H.; Partoens, B.; Peeters, F.M.
Title First-principles investigation of B- and N-doped fluorographene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 3 Pages 035434-35435
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of substitutional doping of fluorographene with boron and nitrogen atoms on its electronic and magnetic properties is investigated using first-principles calculations. It is found that boron dopants can be readily incorporated in the fluorographene crystal where they act as shallow acceptors and cause hole doping, but no changes in the magnetic properties are observed. Nitrogen dopants act as deep donors and give rise to a magnetic moment, but the resulting system becomes chemically unstable. These results are opposite to what was found for substitutional doping of graphane, i.e., hydrogenated graphene, in which case B substituents induce magnetism and N dopants do not.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322083700002 Publication Date 2013-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109807 Serial 1210
Permanent link to this record
 

 
Author (up) Leenaerts, O.; Schoeters, B.; Partoens, B.
Title Stable kagome lattices from group IV elements Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 115202
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A thorough investigation of three-dimensional kagome lattices of group IV elements is performed with first-principles calculations. The investigated kagome lattices of silicon and germanium are found to be of similar stability as the recently proposed carbon kagome lattice. Carbon and silicon kagome lattices are both direct-gap semiconductors but they have qualitatively different electronic band structures. While direct optical transitions between the valence and conduction bands are allowed in the carbon case, no such transitions can be observed for silicon. The kagome lattice of germanium exhibits semimetallic behavior but can be transformed into a semiconductor after compression.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000351900700003 Publication Date 2015-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government – department EWI. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:125516 Serial 3144
Permanent link to this record
 

 
Author (up) Leenaerts, O.; Vercauteren, S.; Partoens, B.
Title Band alignment of lateral two-dimensional heterostructures with a transverse dipole Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 110 Issue 110 Pages 181602
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract It was recently shown that the electronic band alignment in lateral two-dimensional heterostructures is strongly dependent on the system geometry, such as heterostructure width and layer thickness. This is so even in the absence of polar edge terminations because of the appearance of an interface dipole between the two different materials. In this study, this work is expanded to include two-dimensional materials that possess an electronic dipole over their surface, i.e., in the direction transverse to the crystal plane. To this end, a heterostucture consisting of polar hydrofluorinated graphene and non-polar graphane layers is studied with first-principles calculations. As for nonpolar heterostructures, a significant geometry dependence is observed with two different limits for the band offset. For infinitely wide heterostructures, the potential step in the vacuum is equally divided over the two sides of the heterostructure, resulting in a finite potential step in the heterostructure. For infinitely thick heterostructure slabs, on the other hand, the band offset is reduced, similar to the three-dimensional case.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000400931900014 Publication Date 2017-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 4 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-VI). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI. ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:143755 Serial 4586
Permanent link to this record
 

 
Author (up) Leenaerts, O.; Vercauteren, S.; Schoeters, B.; Partoens, B.
Title System-size dependent band alignment in lateral two-dimensional heterostructures Type A1 Journal article
Year 2016 Publication 2D materials Abbreviated Journal 2D Mater
Volume 3 Issue 3 Pages 025012
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic band alignment in semiconductor heterostructures is a key factor for their use in electronic applications. The alignment problem has been intensively studied for bulk systems but is less well understood for low-dimensional heterostructures. In this work we investigate the alignment in two-dimensional lateral heterostructures. First-principles calculations are used to show that the electronic band offset depends crucially on the width and thickness of the heterostructure slab. The particular heterostructures under study consist of thin hydrogenated and fluorinated diamond slabs which are laterally joined together. Two different limits for the band offset are observed. For infinitely wide heterostructures the vacuum potential above the two materials is aligned leading to a large step potential within the heterostructure. For infinitely thick heterostructure slabs, on the other hand, there is no potential step in the heterostructure bulk, but a large potential step in the vacuum region above the heterojunction is observed. The band alignment in finite systems depends on the particular dimensions of the system. These observations are shown to result from an interface dipole at the heterojunction that tends to align the band structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000378571400032 Publication Date 2016-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 19 Open Access
Notes This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government— department EWI. Approved Most recent IF: 6.937
Call Number c:irua:132792 c:irua:132792 Serial 4055
Permanent link to this record
 

 
Author (up) Lefrancois, P.; Girard-Sahun, F.; Badets, V.; Clement, F.; Arbault, S.
Title Electroactivity of superoxide anion in aqueous phosphate buffers analyzed with platinized microelectrodes Type A1 Journal article
Year 2020 Publication Electroanalysis Abbreviated Journal Electroanal
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The reactivity of platinized ultramicroelectrodes (Pt-black UMEs) towards superoxide anion O-2(.-), an unstable Reactive Oxygen Species (ROS), and its relatives, H2O2 and O-2, was studied. Voltammetric studies in PBS demonstrate that Pt-black UMEs provide: i) a well-resolved reversible redox signature for O-2(.-) detected in both alkaline and physiological buffers (pH 12 and 7.4); ii) irreversible oxidation and reduction waves for H2O2 at pH 7.4. The oxygen reduction reaction (ORR) at Pt-black surfaces solely yields H2O2 (2 electrons/2 H+) at physiological pH. Consequently, Pt-black UMEs allow to sense different ROS including superoxide anion for future biomedical or physico-chemical investigations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000590291800001 Publication Date 2020-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1040-0397 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3 Times cited Open Access
Notes Approved Most recent IF: 3; 2020 IF: 2.851
Call Number UA @ admin @ c:irua:174264 Serial 6764
Permanent link to this record
 

 
Author (up) Legrand, S.; Alfeld, M.; Vanmeert, F.; de Nolf, W.; Janssens, K.
Title Macroscopic Fourier transform infrared scanning in reflection mode (MA-rFTIR), a new tool for chemical imaging of cultural heritage artefacts in the mid-infrared range Type A1 Journal article
Year 2014 Publication The analyst Abbreviated Journal Analyst
Volume 139 Issue 10 Pages 2489-2498
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In this paper we demonstrate that by means of scanning reflection FTIR spectroscopy, it is possible to record highly specific distribution maps of organic and inorganic compounds from flat, macroscopic objects with cultural heritage value in a non-invasive manner. Our previous work involved the recording of macroscopic distributions of chemical elements or crystal phases from painted works of art based on respectively macroscopic X-ray fluorescence or X-ray powder diffraction analysis. The use of infrared radiation instead of X-rays has the advantage that more specific information about the nature and distribution of the chemical compounds present can be gathered. This higher imaging specificity represents a clear advantage for the characterization of painting and artist materials. It allows the distribution of metallo-organic compounds to be visualized and permits distinguishing between pigmented materials containing the same key metal. The prototype instrument allows the recording of hyperspectral datacubes by scanning the surface of the artefact in a contactless and sequential single-point measuring mode, while recording the spectrum of reflected infrared radiation. After the acquisition, spectral line intensities of individual bands and chemical distribution maps can be extracted from the datacube to identify the compounds present and/or to highlight their spatial distribution. Not only is information gained on the surface of the investigated artefacts, but also images of overpainted paint layers and, if present, the underdrawing may be revealed in this manner. A current major limitation is the long scanning times required to record these maps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000334734200028 Publication Date 2014-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2654 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.885 Times cited 25 Open Access
Notes ; ; Approved Most recent IF: 3.885; 2014 IF: 4.107
Call Number UA @ admin @ c:irua:116595 Serial 5699
Permanent link to this record
 

 
Author (up) Legrand, S.; Ricciardi, P.; Nodari, L.; Janssens, K.
Title Non-invasive analysis of a 15th century illuminated manuscript fragment: point-based vs imaging spectroscopy Type A1 Journal article
Year 2018 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 138 Issue 138 Pages 162-172
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Illuminated manuscript fragments are some of the best preserved objects of Western cultural heritage. Therefore, scholars are limited to non-invasive – often point-based – methods, to answer questions on material usage, technique, origin and previous treatments. These powerful methods yield specific information; however, the information is limited to the number of points analyzed. Imaging spectroscopies such as MA-XRF and MA-rFTIR combine specificity with the power of imaging, resulting in distribution images that are interpretable by non-spectroscopists and the public at large. In this paper the possible added value of using imaging spectroscopy is discussed. Do these methods yield the same results as an extensive point-based spectroscopic campaign and can they bring novel information? As a case study, a 15th century illuminated manuscript fragment is employed in order to explore the differences between these approaches and present an inventory of their advantages and limitations. (C) 2018 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000428103000019 Publication Date 2018-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 12 Open Access
Notes ; The authors wish to thank Dr. Stella Panayotova, Keeper of Manuscripts and Printed Books at the Fitzwilliam Museum, for allowing technical analysis of the manuscript fragment, and Dr. Suzanne Reynolds, Assistant Keeper of Manuscripts and Printed Books, for crucial help in identifying the text on the reverse of the fragment and its significance. We also wish to thank Prof. Andrew Beeby and Dr. Catherine Nicholson for their complementary Raman analyses. The warm hospitality of the Hamilton Kerr Institute is also gratefully acknowledged. The Esmee Fairbairn Collections Fund and Cambridge University's Returning Carers Scheme provided funding for part of this research. SL and KJ acknowledge support from project METOX (contract BR/165/A6/MetOx), BELSPO, Brussels. ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:151563 Serial 5749
Permanent link to this record
 

 
Author (up) Legrand, S.; van der Snickt, G.; Cagno, S.; Caen, J.; Janssens, K.
Title MA-XRF imaging as a tool to characterize the 16th century heraldic stained-glass panels in Ghent Saint Bavo Cathedral Type A1 Journal article
Year 2019 Publication Journal of cultural heritage Abbreviated Journal
Volume 40 Issue Pages 163-168
Keywords A1 Journal article; Art; History; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract MA-XRF is a novel macroscopic imaging technique originally developed for easel paintings and recently made available to glass conservators. This paper discusses the first real-life contribution of MA-XRF imaging to a conservation intervention of stained-glass panels. The six panels under study belong to the cathedral building since their creation in 1555-1559 AD. MA-XRF appeared an outstanding tool for first-line screening of stained-glass windows, providing readily interpretable information on glass type, coloring and alteration processes. In particular, the chemical imaging technique allowed distinguishing unambiguously the surviving original glass panes from later additions, thereby ensuring a correct historical understanding. From a more practical point of view, the experiments supplied accurate schemes that can be directly incorporated in condition reports and assist designing the ensuing conservation approach. (C0 2019 Elsevier Masson SAS. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000491173800017 Publication Date 2019-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1296-2074 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:167564 Serial 8191
Permanent link to this record
 

 
Author (up) Legrand, S.; Vanmeert, F.; van der Snickt, G.; Alfeld, M.; de Nolf, W.; Dik, J.; Janssens, K.
Title Examination of historical paintings by state-of-the-art hyperspectral imaging methods : from scanning infra-red spectroscopy to computed X-ray laminography Type A1 Journal article
Year 2014 Publication Heritage science Abbreviated Journal
Volume 2 Issue Pages 13-11
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The development of advanced methods for non-destructive selective imaging of painted works of art at the macroscopic level based on radiation in the X-ray and infrared range of the electromagnetic spectrum are concisely reviewed. Such methods allow to either record depth-selective, element-selective or species-selective images of entire paintings. Camera-based full field methods (that record the image data in parallel) can be discerned next to scanning methods (that build up distributions in a sequential manner by scanning a beam of radiation over the surface of an artefact). Six methods are discussed: on the one hand, macroscopic X-ray fluorescence and X-ray diffraction imaging and X-ray laminography and on the other hand macroscopic Mid and Near Infrared hyper- and full spectral imaging and Optical Coherence Tomography. These methods can be considered to be improved versions of the well-established imaging methods employed worldwide for examination of paintings, i.e., X-ray radiography and Infrared reflectography. Possibilities and limitations of these new imaging techniques are outlined.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2014-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:124629 Serial 5619
Permanent link to this record
 

 
Author (up) Lei, C.H.; Amelinckx, S.; Van Tendeloo, G.
Title 'Disordered' Ba(Mg1/3Ta2/3)O3 and its ordering transition Type A1 Journal article
Year 2002 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal Philos Mag A
Volume 82 Issue 11 Pages 2321-2332
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000177061000007 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-8610; 1364-2804 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 5 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:54754 Serial 735
Permanent link to this record