toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Yan, Y.; Wang, L.-X.; Ke, X.; Van Tendeloo, G.; Wu, X.-S.; Yu, D.-P.; Liao, Z.-M. pdf  url
doi  openurl
  Title High-mobility Bi2Se3 nanoplates manifesting quantum oscillations of surface states in the sidewalls Type A1 Journal article
  Year 2014 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 4 Issue Pages 3817-7  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Magnetotransport measurements of topological insulators are very important to reveal the exotic topological surface states for spintronic applications. However, the novel properties related to the surface Dirac fermions are usually accompanied by a large linear magnetoresistance under perpendicular magnetic field, which makes the identification of the surface states obscure. Here, we report prominent Shubnikov-de Haas (SdH) oscillations under an in-plane magnetic field, which are identified to originate from the surface states in the sidewalls of topological insulator Bi2Se3 nanoplates. Importantly, the SdH oscillations appear with a dramatically weakened magnetoresistance background, offering an easy path to probe the surface states directly when the coexistence of surface states and bulk conduction is inevitable. Moreover, under a perpendicular magnetic field, the oscillations in Hall conductivity have peak-to-valley amplitudes of 2 e(2)/h, giving confidence to achieve a quantum Hall effect in this system. A cross-section view of the nanoplate shows that the sidewall is (015) facet dominant and therefore forms a 586 angle with regard to the top/ bottom surface instead of being perpendicular; this gives credit to the surface states' behavior as two-dimensional transport.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000330044700008 Publication Date 2014-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 31 Open Access  
  Notes ERC grant Nu246791 – COUNTATOMS Approved Most recent IF: 4.259; 2014 IF: 5.578  
  Call Number UA @ lucian @ c:irua:114815 Serial 1436  
Permanent link to this record
 

 
Author (up) Yan, Y.; Zhou, X.; Jin, H.; Li, C.-Z.; Ke, X.; Van Tendeloo, G.; Liu, K.; Yu, D.; Dressel, M.; Liao, Z.-M. url  doi
openurl 
  Title Surface-Facet-Dependent Phonon Deformation Potential in Individual Strained Topological Insulator Bi2Se3 Nanoribbons Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue 9 Pages 10244-10251  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Strain is an important method to tune the properties of topological insulators. For example, compressive strain can induce superconductivity in Bi2Se3 bulk material. Topological insulator nanostructures are the superior candidates to utilize the unique surface states due to the large surface to volume ratio. Therefore, it is highly desirable to monitor the local strain effects in individual topological insulator nanostructures. Here, we report the systematical micro-Raman spectra of single strained Bi2Se3 nanoribbons with different thicknesses and different surface facets, where four optical modes are resolved in both Stokes and anti-Stokes Raman spectral lines. A striking anisotropy of the strain dependence is observed in the phonon frequency of strained Bi2Se3 nanoribbons grown along the ⟨112̅0⟩ direction. The frequencies of the in-plane Eg2 and out-of-plane A1g1 modes exhibit a nearly linear blue-shift against bending strain when the nanoribbon is bent along the ⟨112̅0⟩ direction with the curved {0001} surface. In this case, the phonon deformation potential of the Eg2 phonon for 100 nm-thick Bi2Se3 nanoribbon is up to 0.94 cm–1/%, which is twice of that in Bi2Se3 bulk material (0.52 cm–1/%). Our results may be valuable for the strain modulation of individual topological insulator nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000363915300079 Publication Date 2015-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 14 Open Access  
  Notes Y.Y. would like to thank Xuewen Fu for helpful discussions. This work was supported by MOST (Nos. 2013CB934600, 2013CB932602) and NSFC (Nos. 11274014, 11234001). Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:129216 Serial 3963  
Permanent link to this record
 

 
Author (up) Yang, C.-Q.; Yin, Z.-W.; Li, W.; Cui, W.-J.; Zhou, X.-G.; Wang, L.-D.; Zhi, R.; Xu, Y.-Y.; Tao, Z.-W.; Sang, X.; Cheng, Y.-B.; Van Tendeloo, G.; Hu, Z.-Y.; Su, B.-L. pdf  doi
openurl 
  Title Atomically deciphering the phase segregation in mixed halide perovskite Type A1 Journal article
  Year 2024 Publication Advanced functional materials Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Mixed-halide perovskites show promising applications in tandem solar cells owing to their adjustable bandgap. One major obstacle to their commercialization is halide phase segregation, which results in large open-circuit voltage deficiency and J-V hysteresis. However, the ambiguous interplay between structural origin and phase segregation often results in aimless and unspecific optimization strategies for the device's performance and stability. An atomic scale is directly figured out the abundant Ruddlesden-Popper anti-phase boundaries (RP-APBs) within a CsPbIBr2 polycrystalline film and revealed that phase segregation predominantly occurs at RP-APB-enriched interfaces due to the defect-mediated lattice strain. By compensating their structural lead halide, such RP-APBs are eliminated, and the decreasing of strain can be observed, resulting in the suppression of halide phase segregation. The present work provides the deciphering to precisely regulate the perovskite atomic structure for achieving photo-stable mixed halide wide-bandgap perovskites of high-efficiency tandem solar cell commercial applications. The phase segregation in mixed halide perovskite film predominantly occurs at Ruddlesden-Popper anti-phase boundaries (RP-APBs)-enriched interfaces due to the defect-mediated lattice strain. The RP-APBs defects can be eliminated by compensating for their structural lead halide deficiency, resulting in the suppression of halide phase segregation. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001200673300001 Publication Date 2024-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 19 Times cited Open Access  
  Notes Approved Most recent IF: 19; 2024 IF: 12.124  
  Call Number UA @ admin @ c:irua:205509 Serial 9134  
Permanent link to this record
 

 
Author (up) Yu, R.; Zeng, W.; Zhou, L.; Van Tendeloo, G.; Mai, L.; Yao, Z.; Wu, J. url  doi
openurl 
  Title Layer-by-layer delithiation during lattice collapse as the origin of planar gliding and microcracking in Ni-rich cathodes Type A1 Journal article
  Year 2023 Publication Cell reports physical science Abbreviated Journal  
  Volume 4 Issue 7 Pages 101480-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract High-energy-density nickel (Ni)-rich cathode materials are used in commercial lithium (Li)-ion batteries for electric vehicles, but they suffer from severe structural degradation upon cycling. Planar gliding and microcracking are seeds for fatal mechanical fracture, but their origin remains unclear. Herein, we show that “layer-by -layer delithiation”is activated at high voltages during the charge process when the “lattice collapse”(a characteristic high-voltage lattice evolution in Ni-rich cathodes) occurs. Layer-by-layer deli-thiation is evidenced by direct observation of the consecutive lattice collapse using in situ scanning transmission electron micro-scopy (STEM). The collapsing of the lattice initiates in the expanded planes and consecutively extends to the whole crystal. Localized strain will be induced at lattice-collapsing interface where planar gliding and intragranular microcracks are generated to release this strain. Our study reveals that layer-by-layer delithia-tion during lattice collapse is the fundamental origin of the mechanical instability in single-crystalline Ni-rich cathodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001048074500001 Publication Date 2023-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198299 Serial 8893  
Permanent link to this record
 

 
Author (up) Zeng, C.Y.; Cao, S.; Li, Y.Y.; Zhao, Z.X.; Yao, X.Y.; Ma, X.; Zhang, X.P. pdf  doi
openurl 
  Title A hidden single-stage martensitic transformation from B2 parent phase to B19 ' martensite phase in an aged Ni51Ti49 alloy Type A1 Journal article
  Year 2019 Publication Materials letters Abbreviated Journal Mater Lett  
  Volume 253 Issue 253 Pages 99-101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The aged Ni-rich NiTi shape memory alloys (SMAs) exhibit the multi-stage martensitic transformation (MMT), which has important influences on functional properties and practical applications of the NiTi SMAs. A hidden single-stage martensitic transformation from B2 parent phase to B19' martensite phase is found in an aged Ni51Ti49 alloy, which happens concurrently with a commonly observed two-stage martensitic transformation B2-R-B19' (R: martensite phase) and actually composes one stage of a multi-stage martensitic transformation (MMT) together with the two-stage one. B2-B19' martensitic transformation occurs in the NiTi matrix containing Ni4Ti3 precipitates with relatively large inter-particle space, while B2-R-B19' transformation takes place in the NiTi matrix with Ni4Ti3 precipitates having relatively small inter-particle space. (C) 2019 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482629500025 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-577x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.572 Times cited Open Access  
  Notes ; This work was supported by the Natural Science Foundation of Guangdong Province under Grant Nos. 2018B0303110012 and 2017A030313323, and the National Natural Science Foundation of China under Grant Nos. 51401081 and 51571092. ; Approved Most recent IF: 2.572  
  Call Number UA @ admin @ c:irua:162764 Serial 5381  
Permanent link to this record
 

 
Author (up) Zhang, L.; Lin, B.-C.; Wu, Y.-F.; Wu, H.; Huang, T.-W.; Chang, C.-R.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Xu, J.; Yu, D.; Liao, Z.-M. url  doi
openurl 
  Title Electronic Coupling between Graphene and Topological Insulator Induced Anomalous Magnetotransport Properties Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 11 Issue 11 Pages 6277-6285  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It has been theoretically proposed that the spin textures of surface states in a topological insulator can be directly transferred to graphene by means of the proximity effect, which is very important for realizing the two-dimensional topological insulator based on graphene. Here we report the anomalous magnetotransport properties of graphene-topological insulator Bi2Se3 heterojunctions, which are sensitive to the electronic coupling between graphene and the topological surface state. The coupling between the p_z orbitals of graphene and the p orbitals of the surface states on the Bi2Se3 bottom surface can be enhanced by applying a perpendicular negative magnetic field, resulting in a giant negative magnetoresistance at the Dirac point up to about -91%. Obvious resistances dip in the transfer curve at the Dirac point is also observed in the hybrid devices, which is consistent with theoretical predictions of the distorted Dirac bands with nontrivial spin textures inherited from the Bi2Se3 surface states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404808000110 Publication Date 2017-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 12 Open Access OpenAccess  
  Notes ; This work was supported by National Key Research and Development Program of China (Nos. 2016YFA0300802, 2013CB934600) and NSFC (No. 11234001). ; Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @ c:irua:143192 Serial 4569  
Permanent link to this record
 

 
Author (up) Zhao, Z.X.; Ma, X.; Cao, S.; Li, Y.Y.; Zeng, C.Y.; Wang, D.X.; Yao, X.; Deng, Z.J.; Zhang, X.P. pdf  doi
openurl 
  Title Identification of nano-width variants in a fully monoclinic martensitic Ni50Ti50 alloy by scanning electron microscope-based transmission Kikuchi diffraction and improved groupoid structure approach Type A1 Journal article
  Year 2020 Publication Materials Letters Abbreviated Journal Mater Lett  
  Volume 281 Issue Pages 128624  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nano-width martensite plates in a fully martensitic Ni50Ti50 alloy are indexed successfully by using the off-axis transmission Kikuchi diffraction in scanning electron microscope (i.e., SEM-based TKD). The data obtained by SEM-TKD are effectively interpreted using an improved approach based on the framework of the theoretical groupoid structure method, where the equivalent variants transformed from the monoclinic variants are introduced to calculate all theoretical axis/angle pairs of rotation, and to formulate a complete list of source martensite to target martensite pairs. Consequently, B19' monoclinic martensite variants in NiTi alloys are identified unambiguously, by using numerical comparison between the experimental and theoretical rotation components, without the reference of retained parent phase. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000581134200033 Publication Date 2020-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-577x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3 Times cited Open Access Not_Open_Access  
  Notes ; This work was supported by National Natural Science Foundation of China under Grant Nos. 51571092 and 51401081, and Guangdong Provincial Natural Science Foundation under Grant Nos. 2018B0303110012 and 2017A030313323. ; Approved Most recent IF: 3; 2020 IF: 2.572  
  Call Number UA @ admin @ c:irua:173509 Serial 6540  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: