toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Van Hommes, M.E.; Lambour, R.; Du Mortier, B.M.; De Winkel, M.; Tauber, G.; Alfeld, M.; Janssens, K.; Dik, J. openurl 
  Title The hidden youth of Dirck Jacobsz leeuw : a portrait by Govert Flinck revealed Type A1 Journal article
  Year 2016 Publication The Rijksmuseum bulletin Abbreviated Journal  
  Volume 64 Issue 1 Pages 4-61  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1877-8127 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:133250 Serial 5873  
Permanent link to this record
 

 
Author (up) van Loon, A.; Noble, P.; de Man, D.; Alfeld, M.; Callewaert, T.; van der Snickt, G.; Janssens, K.; Dik, J. url  doi
openurl 
  Title The role of smalt in complex pigment mixtures in Rembrandt'sHomer1663: combining MA-XRF imaging, microanalysis, paint reconstructions and OCT Type A1 Journal article
  Year 2020 Publication Heritage science Abbreviated Journal  
  Volume 8 Issue 1 Pages 90-19  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract As part of the NWO Science4ArtsREVISRembrandtproject (2012-2018), novel chemical imaging techniques were developed and applied to the study of Rembrandt's late experimental painting technique (1651-1669). One of the unique features in his late paintings is his abundant use of smalt: a blue cobalt glass pigment that he often combined with organic lake pigments, earth pigments and blacks. Since most of these smalt-containing paints have discolored over time, we wanted to find out more about how these paintings may have originally looked, and what the role of smalt was in his paint. This paper reports on the use of smalt in complex pigment mixtures in Rembrandt'sHomer(1663), Mauritshuis, The Hague. Macroscopic X-ray fluorescence imaging (MA-XRF) assisted by computational analysis, in combination with SEM-EDX analysis of paint cross-sections, provides new information about the distribution and composition of the smalt paints in the painting. Paint reconstructions were carried out to investigate the effect of different percentages of smalt on the overall color, the drying properties, translucency and texture of the paint. Results show that the influence of (the originally blue) smalt on the intended color of the paint of theHomeris minimal. However, in mixtures with high percentages of smalt, or when combined with more transparent pigments, it was concluded that the smalt did produce a cooler and darker paint. It was also found that the admixture of opaque pigments reduced the translucent character of the smalt. The drying tests show that the paints with (cobalt-containing) smalt dried five times faster compared to those with glass (without cobalt). Most significantly, the texture of the paint was strongly influenced by adding smalt, creating a more irregular surface topography with clearly pronounced brushstrokes. Optical coherence tomography (OCT) was used as an additional tool to reveal differences in translucency and texture between the different paint reconstructions. In conclusion, this study confirmed earlier assumptions that Rembrandt used substantial amounts of smalt in his late paintings, not for its blue color, but to give volume and texture to his paints, to deepen their colors and to make them dry faster.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000565893700001 Publication Date 2020-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited Open Access  
  Notes Approved Most recent IF: 2.5; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:171995 Serial 8659  
Permanent link to this record
 

 
Author (up) Vanmeert, F.; De Meyer, S.; Gestels, A.; Clerici, E.A.; Deleu, N.; Legrand, S.; Van Espen, P.; Van der Snickt, G.; Alfeld, M.; Dik, J.; Monico, L.; De Nolf, W.; Cotte, M.; Gonzalez, V.; Saverwyns, S.; Depuydt-Elbaum, L.; Janssens, K. pdf  doi
isbn  openurl
  Title Non-invasive and non-destructive examination of artists’ pigments, paints and paintings by means of X-ray imaging methods Type H1 Book chapter
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 317-357  
  Keywords H1 Book chapter; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Recent studies in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples and/or entire paintings from fifteenth to twentieth century artists are discussed. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging as well as with the combined use with X-ray diffraction (XRD). Microscopic XRF (μ-XRF) is a variant of the XRF method able to visualize the elemental distribution of key elements, mostly metals, on the scale from 1 μm to 100 μm present inside multi-layered micro samples taken from paintings. In the context of the characterization of artists’ pigments subjected to natural degradation, in many cases the use of methods limited to elemental analysis or imaging does not suffice to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS (microscopic X-ray absorption spectroscopy) and μ-XRD have proven themselves to be very suitable for such studies. Since microscopic investigation of a relatively limited number of minute paint samples may not yield representative information about the complete artefact they were taken from, several methods for macroscopic, non-invasive imaging have recently been developed. Combined macroscopic XRF/XRD scanning is able to provide a fairly complete overview of the inorganic pigments employed to create a work of art, to answer questions about ongoing degradation phenomena and about its authenticity. As such these newly developed non-invasive and highly specific imaging methods are of interest for many cultural heritage stakeholders.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2022-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-86864-2 Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:190777 Serial 7183  
Permanent link to this record
 

 
Author (up) Zanin, L.; Tomasi, N.; Rizzardo, C.; Gottardi, S.; Terzano, R.; Alfeld, M.; Janssens, K.; De Nobili, M.; Mimmo, T.; Cesco, S. pdf  doi
openurl 
  Title Iron allocation in leaves of Fe-deficient cucumber plants fed with natural Fe complexes Type A1 Journal article
  Year 2015 Publication Physiologia plantarum Abbreviated Journal Physiol Plantarum  
  Volume 154 Issue 1 Pages 82-94  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Iron (Fe) sources available for plants in the rhizospheric solution are mainly a mixture of complexes between Fe and organic ligands, including phytosiderophores (PS) and water-extractable humic substances (WEHS). In comparison with the other Fe sources, Fe-WEHS are more efficiently used by plants, and experimental evidences show that Fe translocation contributes to this better response. On the other hand, very little is known on the mechanisms involved in Fe allocation in leaves. In this work, physiological and molecular processes involved in Fe distribution in leaves of Fe-deficient Cucumis sativus supplied with Fe-PS or Fe-WEHS up to 5days were studied combining different techniques, such as radiochemical experiments, synchrotron micro X-ray fluorescence, real-time reverse transcription polymerase chain reaction and in situ hybridization. In Fe-WEHS-fed plants, Fe was rapidly (1day) allocated into the leaf veins, and after 5days, Fe was completely transferred into interveinal cells; moreover, the amount of accumulated Fe was much higher than with Fe-PS. This redistribution in Fe-WEHS plants was associated with an upregulation of genes encoding a ferric(III)-chelate reductase (FRO), a Fe2+ transporter (IRT1) and a natural resistance-associated macrophage protein (NRAMP). The localization of FRO and IRT1 transcripts next to the midveins, beside that of NRAMP in the interveinal area, may suggest a rapid and efficient response induced by the presence of Fe-WEHS in the extra-radical solution for the allocation in leaves of high amounts of Fe. In conclusion, Fe is more efficiently used when chelated to WEHS than PS and seems to involve Fe distribution and gene regulation of Fe acquisition mechanisms operating in leaves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000353067500007 Publication Date 2014-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9317 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.33 Times cited 14 Open Access  
  Notes ; Research was supported by grants from Italian MIUR (FIRB-Programma 'Futuro in Ricerca') and Free University of Bolzano (TN5056). Synchrotron experiments at HASYLAB were financially supported by the European Community-Research Infrastructure Action under the FP6 'Structuring the European Research Area' Program I (Integrating Activity on Synchrotron and Free Electron Laser Science; project: contract RII3-CT-2004-506008). We thank Karen Appel for her scientific and technical support in obtaining the experimental data at Beamline L (HASYLAB, DESY, Hamburg, Germany). ; Approved Most recent IF: 3.33; 2015 IF: 3.138  
  Call Number UA @ admin @ c:irua:132500 Serial 5678  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: