|   | 
Details
   web
Records
Author (up) Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Vortex lattice in effective type-I superconducting films with periodic arrays of submicron holes Type A1 Journal article
Year 2006 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 437/438 Issue Pages 25-28
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000238395700008 Publication Date 2006-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 8 Open Access
Notes Approved Most recent IF: 1.404; 2006 IF: 0.792
Call Number UA @ lucian @ c:irua:58358 Serial 3867
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Vortices induced in a superconducting loop by asymmetric kinetic inductance and their detection in transport measurements Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 14 Pages 144511,1-144511,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using time-dependent Ginzburg-Landau theory, we study the dynamic properties of a rectangular superconducting loop, which are found to depend on the position of the current leads. For asymmetric positioning of the leads, different kinetic inductance of the two paths for injected electric current leads to different critical conditions in the two branches. System self-regulates by allowing vortex entry, as vortex currents bring equilibration between the two current flows and the conventional resistive state can be realized. We also demonstrate that individual vortex entry in the loop can be detected by measuring the voltage between normal-metal leads, for applied currents comparable in magnitude to the screening currents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000277210200107 Publication Date 2010-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the ESF-NES program, and the ESF-AQDJJ network. G.R.B. acknowledges support from FWO-Vlaanderen. The authors thank S. Michotte for useful discussions. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:82804 Serial 3901
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.; van Duin, A.T.
Title Stability of CH3 molecules trapped on hydrogenated sites of graphene Type A1 Journal article
Year 2014 Publication Physica: B : condensed matter Abbreviated Journal Physica B
Volume 455 Issue Pages 60-65
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the effect of a hydrogen atom on the thermal stability of a trapped CH3 molecule on graphene using ReaxFF molecular dynamics simulations. Due to the hydrogen-molecule interaction, enhanced pinning of the CH3 molecule is observed when it is positioned adjacent to the graphene site with the hydrogen atom. We discuss the formation process of such a stable configuration, which originates from different adhesion and migration energies of the hydrogen atom and the CH3 molecule. We also studied the effect of the CH3-H configuration on the electronic transport properties of graphene nanoribbons using first principles density-functional calculations. We found that the formation of the CH3-H structure results in extra features in the transmission spectrum due to the formation of strongly localized states, which are absent when the CH3 molecule is trapped on pristine graphene. Our findings will be useful in exploiting gas sensing properties of graphene, especially for selective detection of individual molecules. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000344239200016 Publication Date 2014-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.386 Times cited 5 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN and the Flemish Science Foundation (FWO-VI). A. van Duin acknowledges funding from the Air Force Office of Scientific Research (AFOSR) under Grant no. FA9550-10-1-0563 G. R. Berdiyorov acknowledges support from King Fahd University of Petroleum and Minerals, Saudi Arabia, under the RG1329-1 and RG1329-2 DSR projects. ; Approved Most recent IF: 1.386; 2014 IF: 1.319
Call Number UA @ lucian @ c:irua:121193 Serial 3124
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Milošević, M.V.; Savel'ev, S.; Kusmartsev, F.; Peeters, F.M.
Title Parametric amplification of vortex-antivortex pair generation in a Josephson junction Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 13 Pages 134505
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using advanced three-dimensional simulations, we show that an Abrikosov vortex, trapped inside a cavity perpendicular to an artificial Josephson junction, can serve as a very efficient source for generation of Josephson vortex-antivortex pairs in the presence of the applied electric current. In such a case, the nucleation rate of the pairs can be tuned in a broad range by an out-of-plane ac magnetic field in a broad range of frequencies. This parametrically amplified vortex-antivortex nucleation can be considered as a macroscopic analog of the dynamic Casimir effect, where fluxon pairs mimic the photons and the ac magnetic field plays the role of the oscillating mirrors. The emerging vortex pairs in our system can be detected by the pronounced features in the measured voltage characteristics, or through the emitted electromagnetic radiation, and exhibit resonant dynamics with respect to the frequency of the applied magnetic field. Reported tunability of the Josephson oscillations can be useful for developing high-frequency emission devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344025100003 Publication Date 2014-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 22 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Leverhulme Trust. G.R.B. acknowledges support from a EU-Marie Curie individual grant (Grant No. 253057) ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:121176 Serial 2553
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Misko, V.R.; Milošević, M.V.; Escoffier, W.; Grigorieva, I.V.; Peeters, F.M.
Title Pillars as antipinning centers in superconducting films Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 77 Issue 2 Pages 024526,1-14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000252862600100 Publication Date 2008-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 35 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:67818 Serial 2623
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Mortazavi, B.; Ahzi, S.; Peeters, F.M.; Khraisheh, M.K.
Title Effect of straining graphene on nanopore creation using Si cluster bombardment: A reactive atomistic investigation Type A1 Journal article
Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 120 Issue 120 Pages 225108
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Graphene nanosheets have recently received a revival of interest as a new class of ultrathin, high-flux, and energy-efficient sieving membranes because of their unique two-dimensional and atomically thin structure, good flexibility, and outstanding mechanical properties. However, for practical applications of graphene for advanced water purification and desalination technologies, the creation of well controlled, high-density, and subnanometer diameter pores becomes a key factor. Here, we conduct reactive force-field molecular dynamics simulations to study the effect of external strain on nanopore creation in the suspended graphene by bombardment with Si clusters. Depending on the size and energy of the clusters, different kinds of topography were observed in the graphene sheet. In all the considered conditions, tensile strain results in the creation of nanopores with regular shape and smooth edges. On the contrary, compressive strain increases the elastic response of graphene to irradiation that leads to the formation of net-like defective structures with predominantly carbon atom chains. Our findings show the possibility of creating controlled nanopores in strained graphene by bombardment with Si clusters. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000391535900022 Publication Date 2016-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 10 Open Access
Notes ; ; Approved Most recent IF: 2.068
Call Number UA @ lucian @ c:irua:141451 Serial 4554
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Neek-Amal, M.; Hussein, I.A.; Madjet, M.E.; Peeters, F.M.
Title Large CO2 uptake on a monolayer of CaO Type A1 Journal article
Year 2017 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 5 Issue 5 Pages 2110-2114
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Density functional theory calculations are used to study gas adsorption properties of a recently synthesized CaO monolayer, which is found to be thermodynamically stable in its buckled form. Due to its topology and strong interaction with the CO2 molecules, this material possesses a remarkably high CO2 uptake capacity (similar to 0.4 g CO2 per g adsorbent). The CaO + CO2 system shows excellent thermal stability (up to 1000 K). Moreover, the material is highly selective towards CO2 against other major greenhouse gases such as CH4 and N2O. These advantages make this material a very promising candidate for CO2 capture and storage applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000395074300035 Publication Date 2016-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:142034 Serial 4556
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Neek-Amal, M.; Peeters, F.M.; van Duin, A.C.T.
Title Stabilized silicene within bilayer graphene : a proposal based on molecular dynamics and density-functional tight-binding calculations Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 2 Pages 024107-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Freestanding silicene is predicted to display comparable electronic properties as graphene. However, the yet synthesized silicenelike structures have been only realized on different substrates which turned out to exhibit versatile crystallographic structures that are very different from the theoretically predicted buckled phase of freestanding silicene. This calls for a different approach where silicene is stabilized using very weakly interacting surfaces. We propose here a route by using graphene bilayer as a scaffold. The confinement between the flat graphene layers results in a planar clustering of Si atoms with small buckling, which is energetically unfavorable in vacuum. Buckled hexagonal arrangement of Si atoms similar to freestanding silicene is observed for large clusters, which, in contrast to Si atoms on metallic surfaces, is only very weakly van der Waals coupled to the graphene layers. These clusters are found to be stable well above room temperature. Our findings, which are supported by density-functional tight-binding calculations, show that intercalating bilayer graphene with Si is a favorable route to realize silicene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332226200002 Publication Date 2014-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 43 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship/299855. One of us (F. M. P.) acknowledges discussions with Professor Hongjun Gao. G. R. B acknowledges the support of the King Fahd University of Petroleum and Minerals, Saudi Arabia, under the TPRG131-CS-15 DSR project. A.C.T.vD acknowledges funding from AFOSR Grants No. FA9550-10-1-0563 and No. FA9550-11-1-0158. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:115829 Serial 3140
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Peeters, F.M.
Title Influence of vacancy defects on the thermal stability of silicene: a reactive molecular dynamics study Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue 3 Pages 1133-1137
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of vacancy defects on the structural properties and the thermal stability of free standing silicene – a buckled structure of hexagonally arranged silicon atoms – is studied using reactive molecular dynamics simulations. Pristine silicene is found to be stable up to 1500 K, above which the system transits to a three-dimensional amorphous configuration. Vacancy defects result in local structural changes in the system and considerably reduce the thermal stability of silicene: depending on the size of the vacancy defect, the critical temperature decreases by more than 30%. However, the system is still found to be stable well above room temperature within our simulation time of 500 ps. We found that the, stability of silicene can be increased by saturating the dangling bonds at the defect edges by foreign atoms (e.g., hydrogen).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000327868400015 Publication Date 2013-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 62 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. The authors are grateful to Prof. Adri van Duin for his support with the ReaxFF force field. ; Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:112829 Serial 1658
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Peeters, F.M.; Hamoudi, H.
Title Effect of edge groups on the electronic transport properties of tetrapodal diazatriptycene molecule Type A1 Journal article
Year 2022 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 141 Issue Pages 115212-115216
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We conduct ballistic transport calculations to study the electronic transport properties of diazatriptycene molecule which can be self-assembled on metallic surfaces with uniform coverage and upright orientation of the functional head group. Due to its structural asymmetry, the molecule shows a clear current rectification, where the level of the rectification depends on the nature of the head group. For example, current rectification can be increased by more than a factor of 2 by anchoring the molecules to the electrode by CN functional group or introducing insulating CH2 group between the thiol end group and the adjacent phenyl ring. Our findings show the possibility of creating self-assembled monolayer of DAT molecules with controlled electronic transport properties through functionalization of the head group.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000806548600006 Publication Date 2022-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited 1 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.3
Call Number UA @ admin @ c:irua:189041 Serial 7147
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Peeters, F.M.; Hamoudi, H.
Title Effect of halogenation on the electronic transport properties of aromatic and alkanethiolate molecules Type A1 Journal article
Year 2022 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 144 Issue Pages 115428-6
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Quantum transport calculations are conducted using nonequilibrium Green's functional formalism to study the effect of halogenation on the electronic transport properties of aromatic S-(C6H5)(2)X and alkanethiolate S-(CH2)(11)X molecules (with X = H, F, Cl, Br, or I) sandwiched between gold electrodes. In terms of conductance, both molecules show the same dependence on the halogen terminal groups despite their different electronic nature. For example, fluorination results in a reduction of the current by almost an order of magnitude, whereas iodine substitution leads to larger current as compared to the reference system (i.e. hydrogen termination). Regarding the asymmetry in the current-voltage characteristics, halogenation reduces the rectification level for the aromatic molecule with the smallest asymmetry for iodine termination. However, in the case of alkanethiolate molecule, halogen substitution increases the current rectification except for fluorination. A physical explanation of these results is obtained from the analysis of the behavior of the density of states, transmission spectra and transmission eigenstates. These findings are of practical importance in exploring the potential of halogenation for creating functional molecular self-assemblies on metallic substrates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000857051700007 Publication Date 2022-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited 1 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.3
Call Number UA @ admin @ c:irua:191500 Serial 7148
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Savel'ev, S.; Kusmartsev, F.V.; Peeters, F.M.
Title Effect of ordered array of magnetic dots on the dynamics of Josephson vortices in stacked SNS Josephson junctions under DC and AC current Type A1 Journal article
Year 2015 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 88 Issue 88 Pages 286
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We use the anisotropic time-dependent Ginzburg-Landau theory to investigate the effect of a square array of out-of-plane magnetic dots on the dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting (SNS) Josephson junctions in the presence of external DC and AC currents. Periodic pinning due to the magnetic dots distorts the triangular lattice of fluxons and results in the appearance of commensurability features in the current-voltage characteristics of the system. For the larger values of the magnetization, additional peaks appear in the voltage-time characteristics of the system due to the creation and annihilation of vortex-antivortex pairs. Peculiar changes in the response of the system to the applied current is found resulting in a “superradiant” vortex-flow state at large current values, where a rectangular lattice of moving vortices is formed. Synchronizing the motion of fluxons by adding a small ac component to the biasing dc current is realized. However, we found that synchronization becomes difficult for large magnetization of the dots due to the formation of vortex-antivortex pairs.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000363960900002 Publication Date 2015-10-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 1 Open Access
Notes ; This work was supported by EU Marie Curie (Project No. 253057). ; Approved Most recent IF: 1.461; 2015 IF: 1.345
Call Number UA @ lucian @ c:irua:129509 Serial 4166
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Savel'ev, S.E.; Kusmartsev, F.V.; Peeters, F.M.
Title In-phase motion of Josephson vortices in stacked SNS Josephson junctions : effect of ordered pinning Type A1 Journal article
Year 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 26 Issue 12 Pages 125010-125016
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting Josephson junctions is investigated using the anisotropic time-dependent Ginzburg-Landau theory in the presence of a square/rectangular array of pinning centers (holes). For small values of the applied drive, fluxons in different junctions move out of phase, forming a periodic triangular lattice. A rectangular lattice of moving fluxons is observed at larger currents, which is in agreement with previous theoretical predictions (Koshelev and Aranson 2000 Phys. Rev. Lett. 85 3938). This 'superradiant' flux-flow state is found to be stable in a wide region of applied current. The stability range of this ordered state is considerably larger than the one obtained for the pinning-free sample. Clear commensurability features are observed in the current-voltage characteristics of the system with pronounced peaks in the critical current at (fractional) matching fields. The effect of density and strength of the pinning centers on the stability of the rectangular fluxon lattice is discussed. Predicted synchronized motion of fluxons in the presence of ordered pinning can be detected experimentally using the rf response of the system, where enhancement of the Shapiro-like steps is expected due to the synchronization.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000327447200013 Publication Date 2013-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 5 Open Access
Notes ; This work was supported by EU Marie Curie (Project No: 253057) and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.878; 2013 IF: 2.796
Call Number UA @ lucian @ c:irua:112834 Serial 1573
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Savel'ev, S.E.; Milošević, M.V.; Kusmartsev, F.V.; Peeters, F.M.
Title Synchronized dynamics of Josephson vortices in artificial stacks of SNS Josephson junctions under both dc and ac bias currents Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 18 Pages 184510-184519
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nonlinear dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting Josephson junctions under simultaneously applied time-periodic ac and constant biasing dc currents is studied using the time dependent Ginzburg-Landau formalism with a Lawrence-Doniach extension. At zero external magnetic field and dc biasing current the resistive state of the system is characterized by periodic nucleation and annihilation of fluxon-antifluxon pairs, relative positions of which are determined by the state of neighboring junctions. Due to the mutual repulsive interaction, fluxons in different junctions move out of phase. Their collective motion can be synchronized by adding a small ac component to the biasing dc current. Coherent motion of fluxons is observed for a broad frequency range of the applied drive. In the coherent state the maximal output voltage, which is proportional to the number of junctions in the stack, is observed near the characteristic frequency of the system determined by the crossing of the fluxons across the sample. However, in this frequency range the dynamically synchronized state has an alternative-a less ordered state with smaller amplitude of the output voltage. Collective behavior of the junctions is strongly affected by the sloped sidewalls of the stack. Synchronization is observed only for weakly trapezoidal cross sections, whereas irregular motion of fluxons is observed for larger slopes of the sample edge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319653400007 Publication Date 2013-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and by EU Marie Curie (Project No. 253057). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109643 Serial 3406
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Yu, S.H.; Xiao, Z.L.; Peeters, F.M.; Hua, J.; Imre, A.; Kwok, W.K.
Title Effect of sample geometry on the phase boundary of a mesoscopic superconducting loop Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 6 Pages 064511,1-064511,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We studied the effect of sample geometry on the evolution of the superconducting state in nanoscale Nb circular and square loops by transport measurements. A multistage resistive transition with temperature is found for both samples, which is related to the effect of contact leads made from the same superconducting material. The H-T phase diagrams close to Tc0 show clear periodic oscillations on top of a parabolic background, i.e., Little-Parks effect. However, the amplitude of the oscillations decreases faster in the circular loop compared to the one in the square sample. Numerical simulations are conducted within the nonlinear Ginzburg-Landau theory to show the effect of sample geometry on the nucleation of superconductivity in superconducting loop structures.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000269638800067 Publication Date 2009-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 21 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:78292 Serial 833
Permanent link to this record
 

 
Author (up) Berger, J.; Milošević, M.V.
Title Fluctuations in superconducting rings with two order parameters Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 21 Pages 214515-214515,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by two-band superconductivity in, e.g., borides and pnictides, starting from the two-band Ginzburg-Landau energy functional, we discuss how the presence of two order parameters and the coupling between them influence a superconducting ring in the fluctuative regime. Our method is an extension of the von OppenRiedel formalism for rings; it is exact, but requires numerical implementation. We also study approximations for which analytic expressions can be obtained, and check their ranges of validity. We provide estimates for the temperature ranges where fluctuations are important, calculate the persistent current in MgB2 rings as a function of temperature and enclosed flux, and point out its additional dependence on the cross-section area of the wire from which the ring is made. We find temperature regions in which fluctuations enhance the persistent currents and regions where they inhibit the persistent current. The presence of two order parameters that can fluctuate independently always leads to larger averages of the order parameters at Tc, but yields larger persistent current only for appropriate parameters. In cases of very different material parameters for the two coupled condensates, the persistent current is inhibited.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297932500004 Publication Date 2011-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This research was supported by the Israel Science Foundation, Grant No. 249/10, the Flemish Science Foundation (FWO-Vl), and the ESF network INSTANS. We are grateful to Andrei Varlamov and Felix von Oppen for their answers to our enquiries. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:93957 Serial 1226
Permanent link to this record
 

 
Author (up) Betouras, J.J.; Ivanov, V.A.; Peeters, F.M.
Title Ginzburg-Landau theory and effects of pressure on a two-band superconductor : application to MgB2 Type A1 Journal article
Year 2003 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 31 Issue 3 Pages 349-354
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a model of pressure effects of a two-band superconductor based on a Ginzburg-Landau free energy with two order parameters. The parameters of the theory are pressure as well as temperature dependent. New pressure effects emerge as a result of the competition between the two bands. The theory then is applied to MgB2. We identify two possible scenaria regarding the fate of the two Q subbands under pressure, depending on whether or not both subbands are above the Fermi energy at ambient pressure. The splitting of the two subbands is probably caused by the E-2g, distortion. If only one subband is above the Fermi energy at ambient pressure (scenario I), application of pressure diminishes the splitting and it is possible that the lower subband participates in the superconductivity. The corresponding crossover pressure and Gruneisen parameter are estimated. In the second scenario both bands start above the Fermi energy and they move below it, either by pressure or via the substitution of Mg by Al. In both scenaria, the possibility of electronical topological transition is emphasized. Experimental signatures of both scenaria are presented and existing experiments are discussed in the light of the different physical pictures.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000181614300008 Publication Date 2004-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 10 Open Access
Notes Approved Most recent IF: 1.461; 2003 IF: 1.457
Call Number UA @ lucian @ c:irua:94859 Serial 1343
Permanent link to this record
 

 
Author (up) Bizindavyi, J.; Verhulst, A.S.; Smets, Q.; Verreck, D.; Sorée, B.; Groeseneken, G.
Title Band-Tails Tunneling Resolving the Theory-Experiment Discrepancy in Esaki Diodes Type A1 Journal article
Year 2018 Publication IEEE journal of the Electron Devices Society Abbreviated Journal Ieee J Electron Devi
Volume 6 Issue 1 Pages 633-641
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Discrepancies exist between the theoretically predicted and experimentally measured performance of band-to-band tunneling devices, such as Esaki diodes and tunnel field-effect transistors (TFETs). We resolve this discrepancy for highly-doped, direct-bandgap Esaki diodes by successfully calibrating a semi-classical model for high-doping-induced ballistic band-tails tunneling currents at multiple temperatures with two In0.53Ga0.47As Esaki diodes using their SIMS doping profiles, C-V characteristics and their forward-bias current density in the negative differential resistance (NDR) regime. The current swing in the NDR regime is shown not to be linked to the band-tails Urbach energy. We further demonstrate theoretically that the calibrated band-tails contribution is also the dominant band-tails contribution to the subthreshold swing of the corresponding TFETs. Lastly, we verify that the presented procedure is applicable to all direct-bandgap semiconductors by successfully applying it to InAs Esaki diodes in literature.
Address
Corporate Author Thesis
Publisher IEEE, Electron Devices Society Place of Publication New York, N.Y. Editor
Language Wos 000435505000013 Publication Date 2018-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-6734 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.141 Times cited 5 Open Access
Notes ; J. Bizindavyi gratefully acknowledges FWO-Vlaanderen for a Strategic Basic Research PhD fellowship. ; Approved Most recent IF: 3.141
Call Number UA @ lucian @ c:irua:152097UA @ admin @ c:irua:152097 Serial 5014
Permanent link to this record
 

 
Author (up) Bizindavyi, J.; Verhulst, A.S.; Sorée, B.; Groeseneken, G.
Title Impact of calibrated band-tails on the subthreshold swing of pocketed TFETs Type P1 Proceeding
Year 2018 Publication Conference digest T2 – 76th Device Research Conference (DRC), JUN 24-27, 2018, Santa Barbara, CA Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-5386-3028-0 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:153780 Serial 5106
Permanent link to this record
 

 
Author (up) Bizindavyi, J.; Verhulst, A.S.; Sorée, B.; Groeseneken, G.
Title Impact of calibrated band-tails on the subthreshold swing of pocketed TFETs Type P1 Proceeding
Year 2018 Publication Conference digest T2 – 76th Device Research Conference (DRC), JUN 24-27, 2018, Santa Barbara, CA Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000444728400086 Publication Date 2018-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-5386-3028-0 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:153780 Serial 5217
Permanent link to this record
 

 
Author (up) Bizindavyi, J.; Verhulst, A.S.; Sorée, B.; Groeseneken, G.
Title Signature of ballistic band-tail tunneling current in tunnel FET Type A1 Journal article
Year 2020 Publication Ieee Transactions On Electron Devices Abbreviated Journal Ieee T Electron Dev
Volume 67 Issue 8 Pages 3486-3491
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract To improve the interpretation of the tunnel field-effect transistor (TFET) measurements, we theoretically identify the signatures of the ballistic band-tail (BT) tunneling (BTT) current in the transfer and output characteristics of the TFETs. In particular, we demonstrate that the temperature dependence of a BTT-dominated subthreshold swing (SS) is in agreement with the reported experimental results. We explain how the temperature dependence of the output characteristics can be used to distinguish between a current dominated by BTT and a current dominated by trap-assisted tunneling. Finally, we propose an expression that relates the energetic extension of the quasi-extended BT states in the bandgap to the onset voltage for tunneling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000552976100072 Publication Date 2020-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9383 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.1 Times cited Open Access
Notes ; This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 3.1; 2020 IF: 2.605
Call Number UA @ admin @ c:irua:171189 Serial 6601
Permanent link to this record
 

 
Author (up) Bizindavyi, J.; Verhulst, A.S.; Sorée, B.; Vandenberghe, W.G.
Title Thermodynamic equilibrium theory revealing increased hysteresis in ferroelectric field-effect transistors with free charge accumulation Type A1 Journal article
Year 2021 Publication Communications Physics Abbreviated Journal
Volume 4 Issue 1 Pages 86
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract At the core of the theoretical framework of the ferroelectric field-effect transistor (FeFET) is the thermodynamic principle that one can determine the equilibrium behavior of ferroelectric (FERRO) systems using the appropriate thermodynamic potential. In literature, it is often implicitly assumed, without formal justification, that the Gibbs free energy is the appropriate potential and that the impact of free charge accumulation can be neglected. In this Article, we first formally demonstrate that the Grand Potential is the appropriate thermodynamic potential to analyze the equilibrium behavior of perfectly coherent and uniform FERRO-systems. We demonstrate that the Grand Potential only reduces to the Gibbs free energy for perfectly non-conductive FERRO-systems. Consequently, the Grand Potential is always required for free charge-conducting FERRO-systems. We demonstrate that free charge accumulation at the FERRO interface increases the hysteretic device characteristics. Lastly, a theoretical best-case upper limit for the interface defect density D-FI is identified. The ferroelectric field-effect transistor, which has attracted much attention for application as both a highly energy-efficient logic device and a non-volatile memory device, has often been studied within the framework of equilibrium thermodynamics. Here, the authors theoretically demonstrate the importance of utilizing the correct thermodynamic potential and investigate the impact of free charge accumulation on the equilibrium performance of ferroelectric-based systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000645913400001 Publication Date 2021-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2399-3650 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:179005 Serial 7031
Permanent link to this record
 

 
Author (up) Bizindavyi, J.; Verhulst, A.S.; Verreck, D.; Sorée, B.; Groeseneken, G.
Title Large variation in temperature dependence of band-to-band tunneling current in tunnel devices Type A1 Journal article
Year 2019 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L
Volume 40 Issue 11 Pages 1864-1867
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The observation of a significant temperature-dependent variation in the ${I}$ – ${V}$ characteristics of tunneling devices is often interpreted as a signature of a trap-assisted-tunneling dominated current. In this letter, we use a ballistic 2D quantum-mechanical simulator, calibrated using the measured temperature-dependent ${I}$ – ${V}$ characteristics of Esaki diodes, to demonstrate that the temperature dependence of band-to-band tunneling (BTBT) current can vary significantly in both Esaki diodes and tunnel FETs. The variation of BTBT current with temperature is impacted by doping concentration, gate voltage, possible presence of a highly-doped pocket at the tunnel junction, and material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000496192600040 Publication Date 2019-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0741-3106 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.048 Times cited Open Access
Notes Approved Most recent IF: 3.048
Call Number UA @ admin @ c:irua:164636 Serial 6306
Permanent link to this record
 

 
Author (up) Blagojević, J.; Mijin, S.D.; Bekaert, J.; Opačić, M.; Liu, Y.; Milošević, M.V.; Petrović, C.; Popović, Z.V.; Lazarević, N.
Title Competition of disorder and electron-phonon coupling in 2H-TaSe2-xSx (0≤x≤2) as evidenced by Raman spectroscopy Type A1 Journal article
Year 2024 Publication Physical review materials Abbreviated Journal
Volume 8 Issue 2 Pages 024004-24008
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The vibrational properties of 2H-TaSe<sub>2-x</sub>S<sub>x</sub> (0≤x≤2) single crystals were probed using Raman spectroscopy and density functional theory calculations. The end members revealed two out of four symmetry-predicted Raman active modes, together with the pronounced two-phonon structure, attributable to the enhanced electron-phonon coupling. Additional peaks become observable due to crystallographic disorder for the doped samples. The evolution of the E<sub>2</sub>g<sup>2</sup> mode Fano parameter reveals that the disorder has a weak impact on electron-phonon coupling, which is also supported by the persistence of two-phonon structure in doped samples. As such, this research provides thorough insights into the lattice properties, the effects of crystallographic disorder on Raman spectra, and the interplay of this disorder with the electron-phonon coupling in 2H-TaSe<sub>2-x</sub>S<sub>x</sub> compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001171649400004 Publication Date 2024-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:204404 Serial 9141
Permanent link to this record
 

 
Author (up) Blom, F.A.P.; Peeters, F.M.; van de Zanden, K.; van Hove, M.
Title Magneto-oscillations of the gate current in a laterally modulated two-dimensional electron gas Type A1 Journal article
Year 1996 Publication Surface science : a journal devoted to the physics and chemistry of interfaces Abbreviated Journal Surf Sci
Volume 361/362 Issue Pages 851-854
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1996UZ03300202 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.925 Times cited 1 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15812 Serial 1905
Permanent link to this record
 

 
Author (up) Blundo, E.; Faria, P.E., Jr.; Surrente, A.; Pettinari, G.; Prosnikov, M.A.; Olkowska-Pucko, K.; Zollner, K.; Wozniak, T.; Chaves, A.; Kazimierczuk, T.; Felici, M.; Babinski, A.; Molas, M.R.; Christianen, P.C.M.; Fabian, J.; Polimeni, A.
Title Strain-Induced Exciton Hybridization in WS2 Monolayers Unveiled by Zeeman-Splitting Measurements Type A1 Journal article
Year 2022 Publication Physical review letters Abbreviated Journal
Volume 129 Issue 6 Pages 067402
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Mechanical deformations and ensuing strain are routinely exploited to tune the band gap energy and to enhance the functionalities of two-dimensional crystals. In this Letter, we show that strain leads also to a strong modification of the exciton magnetic moment in WS2 monolayers. Zeeman-splitting measurements under magnetic fields up to 28.5 T were performed on single, one-layer-thick WS2 microbubbles. The strain of the bubbles causes a hybridization of k-space direct and indirect excitons resulting in a sizable decrease in the modulus of they factor of the ground-state exciton. These findings indicate that strain may have major effects on the way the valley number of excitons can be used to process binary information in two-dimensional crystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000842367600007 Publication Date 2022-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007; 1079-7114 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:198538 Serial 8936
Permanent link to this record
 

 
Author (up) Bogaerts, R.; de Keyser, A.; Herlach, F.; Peeters, F.M.; DeRosa, F.; Palmstrøm, C.J.; Brehmer, D.; Allen, S.J.
Title Quantum oscillations in the Hall effect of thin Sc1-xErxAs epitaxial layers burried in GaAs Type P3 Proceeding
Year 1995 Publication Abbreviated Journal
Volume Issue Pages 596-599
Keywords P3 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher World Scientific Place of Publication Singapore Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12208 Serial 2782
Permanent link to this record
 

 
Author (up) Bogaerts, R.; de Keyser, A.; Herlach, F.; Peeters, F.M.; DeRosa, F.; Palmstrøm, C.J.; Brehmer, D.; Allen, S.J.
Title Size effects in the transport properties of thin Sc1-xErxAs epitaxial layers buried in GaAs Type A1 Journal article
Year 1994 Publication Solid state electronics Abbreviated Journal Solid State Electron
Volume 37 Issue Pages 789-792
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos A1994NE79600063 Publication Date 2002-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.504 Times cited 4 Open Access
Notes Approved CHEMISTRY, PHYSICAL 77/144 Q3 # MATHEMATICS, INTERDISCIPLINARY 19/101 Q1 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 17/35 Q2 #
Call Number UA @ lucian @ c:irua:9375 Serial 3037
Permanent link to this record
 

 
Author (up) Bogaerts, R.; de Keyser, A.; van Bockstal, L.; Herlach, F.; Karavolas, V.C.; Peeters, F.M.; Borghs, G.
Title Magnetic freeze-out induced transition from three- to two-dimensional magnetotransport in Si-δ-doped InSb layers grown on GaAs Type P3 Proceeding
Year 1995 Publication Abbreviated Journal
Volume Issue Pages 706-709
Keywords P3 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher World Scientific Place of Publication Singapore Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12209 Serial 1881
Permanent link to this record
 

 
Author (up) Bogaerts, R.; de Keyser, A.; van Bockstal, L.; van der Burgt, M.; van Esch, A.; Provoost, R.; Silverans, R.; Herlach, F.; Swinnen, B.; van de Stadt, A.F.W.; Koenraad, P.M.; Wolter, J.H.; Karavolas, V.C.; Peeters, F.M.; van de Graaf, W.; Borghs, G.
Title 2D semiconductors at the Leuven pulsed field facility Type A1 Journal article
Year 1997 Publication Physicalia magazine Abbreviated Journal
Volume 19 Issue Pages 229-239
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Gent Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0770-0520 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:19257 Serial 7
Permanent link to this record