toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Zhang, Q.; Vlaeminck, S.E.; DeBarbadillo, C.; Suzuki, R.; Kharkar, S.M.; Al-Omari, A.; Wett, B.; Chandran, K.; Murthy, S.; De Clippeleir, H. openurl 
  Title Startup strategies of deammonification reactors treating reject water from thermally hydrolyzed solids Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 5 p. T2 - WEFTEC.17, 30 September 4 October 2017,  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151113 Serial 8579  
Permanent link to this record
 

 
Author (up) Zhang, X.F.; Van Tendeloo, G. openurl 
  Title Structural evolution of Bi2Sr2CaCu2O8+\delta single crystals studies by “in situ” heating electron microscopy Type A1 Journal article
  Year 1994 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal  
  Volume 70 Issue Pages 549-560  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1994PG03500011 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8610; 1364-2804 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access  
  Notes Approved PHYSICS, APPLIED 47/145 Q2 #  
  Call Number UA @ lucian @ c:irua:10038 Serial 3235  
Permanent link to this record
 

 
Author (up) Zhang, Z.; Bourgeois, L.; Zhang, Y.; Rosalie, J.M.; Medhekar, N. url  doi
openurl 
  Title Advanced imaging and simulations of precipitate interfaces in aluminium alloys and their role in phase transformations Type P1 Proceeding
  Year 2020 Publication MATEC web of conferences T2 – 17th International Conference on Aluminium Alloys (ICAA), October 26-29, 2020 Abbreviated Journal  
  Volume Issue Pages 09003  
  Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Precipitation is accompanied by the formation and migration of heterophase interfaces. Using the combined approach of advanced imaging and atomistic simulations, we studied the precipitate-matrix interfaces in various aluminium alloy systems, aiming to resolve their detailed atomic structures and illuminate their role in phase transformations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000652552200053 Publication Date 2020-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 326 Series Issue Edition  
  ISSN 2261-236x; 2274-7214 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179147 Serial 6851  
Permanent link to this record
 

 
Author (up) Zhang, Z.; Geng, W.; van Landuyt, J.; Van Tendeloo, G. openurl 
  Title A transmission electron microscopy study of tweed-like structures in Al62Cu17.5CO17.5Si3 decagonal quasicrystals Type A1 Journal article
  Year 1995 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal  
  Volume 71 Issue 5 Pages 1177-1189  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1995QW79500016 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8610; 1364-2804 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:13296 Serial 3721  
Permanent link to this record
 

 
Author (up) Zhang, Z.; Lobato, I.; Brown, H.; Jannis, D.; Verbeeck, J.; Van Aert, S.; Nellist, P. doi  openurl
  Title Generalised oscillator strength for core-shell electron excitation by fast electrons based on Dirac solutions Type Dataset
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract Inelastic excitation as exploited in Electron Energy Loss Spectroscopy (EELS) contains a rich source of information that is revealed in the scattering process. To accurately quantify core-loss EELS, it is common practice to fit the observed spectrum with scattering cross-sections calculated using experimental parameters and a Generalized Oscillator Strength (GOS) database [1].   The GOS is computed using Fermi’s Golden Rule and orbitals of bound and excited states. Previously, the GOS was based on Hartree-Fock solutions [2], but more recently Density Functional Theory (DFT) has been used [3]. In this work, we have chosen to use the Dirac equation to incorporate relativistic effects and have performed calculations using Flexible Atomic Code (FAC) [4]. This repository contains a tabulated GOS database based on Dirac solutions for computing double differential cross-sections under experimental conditions.   We hope the Dirac-based GOS database can benefit the EELS community for both academic use and industry integration.   Database Details: – Covers all elements (Z: 1-108) and all edges – Large energy range: 0.01 – 4000 eV – Large momentum range: 0.05 -50 Å-1 – Fine log sampling: 128 points for energy and 256 points for momentum – Data format: GOSH [3]   Calculation Details: – Single atoms only; solid-state effects are not considered – Unoccupied states before continuum states of ionization are not considered; no fine structure – Plane Wave Born Approximation – Frozen Core Approximation is employed; electrostatic potential remains unchanged for orthogonal states when – core-shell electron is excited – Self-consistent Dirac–Fock–Slater iteration is used for Dirac calculations; Local Density Approximation is assumed for electron exchange interactions; continuum states are normalized against asymptotic form at large distances – Both large and small component contributions of Dirac solutions are included in GOS – Final state contributions are included until the contribution of the previous three states falls below 0.1%. A convergence log is provided for reference.   Version 1.1 release note: – Update to be consistent with GOSH data format [3], all the edges are now within a single hdf5 file. A notable change in particular, the sampling in momentum is in 1/m, instead of previously in 1/Å. Great thanks to Gulio Guzzinati for his suggestions and sending conversion script.  Version 1.2 release note: – Add “File Type / File version” information [1] Verbeeck, J., and S. Van Aert. Ultramicroscopy 101.2-4 (2004): 207-224. [2] Leapman, R. D., P. Rez, and D. F. Mayers. The Journal of Chemical Physics 72.2 (1980): 1232-1243. [3] Segger, L, Guzzinati, G, & Kohl, H. Zenodo (2023). doi:10.5281/zenodo.7645765 [4] Gu, M. F. Canadian Journal of Physics 86(5) (2008): 675-689.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:203392 Serial 9042  
Permanent link to this record
 

 
Author (up) Zhao, H.; Li, C.-F.; Yong, X.; Kumar, P.; Palma, B.; Hu, Z.-Y.; Van Tendeloo, G.; Siahrostami, S.; Larter, S.; Zheng, D.; Wang, S.; Chen, Z.; Kibria, M.G.; Hu, J. url  doi
openurl 
  Title Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn1-xCdxS homojunction Type A1 Journal article
  Year 2021 Publication iScience Abbreviated Journal  
  Volume 24 Issue 2 Pages 102109  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Photocatalytic transformation of biomass into value-added chemicals coupled with co-production of hydrogen provides an explicit route to trap sunlight into the chemical bonds. Here, we demonstrate a rational design of Zn1-xCdxS solidsolution homojunction photocatalyst with a pseudo-periodic cubic zinc blende (ZB) and hexagonal wurtzite (WZ) structure for efficient glucose conversion to simultaneously produce hydrogen and lactic acid. The optimized Zn0.6Cd0.4S catalyst consists of a twinning superlattice, has a tuned bandgap, and displays excellent efficiency with respect to hydrogen generation (690 +/- 27.6 mu mol.h(-1).g(cat).(-1)), glucose conversion (similar to 90%), and lactic acid selectivity (similar to 87%) without any co-catalyst under visible light irradiation. The periodic WZ/ZB phase in twinning superlattice facilitates better charge separation, while superoxide radical (center dot O-2(-)) and photogenerated holes drive the glucose transformation and water oxidation reactions, respectively. This work demonstrates that rational photocatalyst design could realize an efficient and concomitant production of hydrogen and value-added chemicals from glucose photocatalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621266700080 Publication Date 2021-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2589-0042 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176744 Serial 6720  
Permanent link to this record
 

 
Author (up) Zhu, W. url  openurl
  Title Microbial resource management for mainstream partial nitritation/anammox : strategies to enhance the nitrogen conversion efficiency Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 207 p.  
  Keywords Doctoral thesis; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This thesis provides three potential ways to enhance the nitrogen removal efficiency of mainstream partial nitritation/anammox (PN/A), a key technology to enable energy-positive sewage treatment. In Chapter 1, the typical technologies to promote nitrogen removal efficiency are summarized. In Chapters 2 and 3, the concept ‘winter bioaugmentation with stored summer surplus sludge’ is proposed. Applying that, a cost-effective sludge preservation strategy is required. Preserving PN/A biomass without cooling and redox adjustment proved to be the cost-effective strategy. The reactivation of these stored sludges was also tested in low-temperature systems (15 and 10℃). Respectively 56% and 41% of granules activity compared to pre-storage activity (after Arrhenius-based temperature correction) could be recovered within a month (41% and 32% for flocs activity). In the end, the stored AnAOB bioaugmentation was successfully validated in the lab (20℃). In Chapter 4, a return-sludge nursery concept, applying the sidestream nitritation and blending the resulting effluent with mainstream effluent to achieve an intermediate temperature and nitrogen concentrations, is proposed. That led to a 33 – 36% increase in nitrogen removal efficiency. Arrhenius’ expectations (10 ℃ higher temperature, θ = 1.09) could only explain 49-51% of the activity increase in the nursery reactor, pointing to the role of other factors, e.g., the ~400% elevated electrical conductivity (15-16%), the 56-335% higher effluent nitrogen concentrations (12-14%), and the synergy and unknown factors (20-23%). Thus, the return-sludge biostimulation approach could also enhance nitrogen efficiency in the mainstream. In Chapter 5, the N2O emissions, linked to three typical nitrite-oxidizing bacteria (NOB) suppression strategies (low dissolved oxygen (DO) level, free ammonia (FA), and free nitrous acids (FNA) treatments) were tested in a biofilm system. A low emerged DO level (~0.60 mg O2 L-1) was effective to suppress NOB activity and decrease N2O emissions, but NOB adaptation gradually appeared after 200 days. Further NOB inhibition was successfully achieved by periodical (3 hours per week) FA (~30 mg NH3-N L-1) or FNA (~3 mg HNO2-N L-1) treatments. The FA treatment promoted N2O production, while the FNA treatment had no effect. Thus, PN/A systems should be operated at relatively low DO levels with periodical FNA treatment. In Chapter 6, the major findings proposed and the main conclusions drawn in this thesis are outlined. Beyond that, the possible design of a mainstream PN/A configuration that combined all described three technologies is demonstrated. Overall, the novel insights from this thesis potential to improve nitrogen removal efficiency in the mainstream.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184236 Serial 8245  
Permanent link to this record
 

 
Author (up) Zou, H.; Krekels, T.; Van Tendeloo, G.; Wagener, G.; Buchgeister, M.; Hosseini, S.M.; Kopitzki, K. openurl 
  Title Oxygen ordering and critical temperature plateaus in ABa2Cu3O7-d (A=Er, Nd, Sm, Yb), pp Type P3 Proceeding
  Year 1992 Publication Abbreviated Journal  
  Volume Issue Pages 278-279  
  Keywords P3 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Beijing Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:4443 Serial 2547  
Permanent link to this record
 

 
Author (up) Zwozdziak, A.; Sowka, I.; Krupińska, B.; Zwozdziak, J.; Nych, A. pdf  doi
openurl 
  Title Infiltration or indoor sources as determinants of the elemental composition of particulate matter inside a school in Wroclaw, Poland? Type A1 Journal article
  Year 2013 Publication Building and environment Abbreviated Journal  
  Volume 66 Issue Pages 173-180  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Children's exposure to air pollution requires a focus on air quality in places where they spend most time, e.g. in schools. Therefore, understanding how indoor elemental concentrations relate the outdoor ones is necessary to create healthy indoor school environment. The aims of this study were to examine the elemental composition of particulate matter (PM1, PM2.5, PM10) in the school and also to investigate to what degree indoor elemental concentrations are affected by outdoor air or generated inside the school. The measurements were performed inside and outside the public school building in the centre of the city. It was observed that concentrations of most elements were higher at school than outside. The dominant elements in PM1 both indoors and outdoors were S, Cl, K, and Zn. PM2.5 and PM10 fractions inside the school were clearly enriched in elements of mineral origin, additionally S, Zn, K and Cl were also present in high concentrations both indoors and outdoors. Results suggested that a significant contribution to indoor Zn, Pb and S concentrations in the PM2.5 fraction was from penetration of outdoor air. 88%, 80% and 90% of the observed total variations in indoor concentrations of Zn, Pb, and S were explained by the linear relationship between indoor and outdoor concentrations. The lack of correlation between indoor and outdoor concentrations obtained for Si, Ca, Ti, Sr indicated that these metals were more likely to originate from indoor sources. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000321423500017 Publication Date 2013-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-1323 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:109788 Serial 8087  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: