toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author (up) Lubk, A.; Béché, A.; Verbeeck, J.
  Title Electron Microscopy of Probability Currents at Atomic Resolution Type A1 Journal article
  Year 2015 Publication Physical review letters Abbreviated Journal Phys Rev Lett
  Volume 115 Issue 115 Pages 176101
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Atomic resolution transmission electron microscopy records the spatially resolved scattered electron density to infer positions, density, and species of atoms. These data are indispensable for studying the relation between structure and properties in solids. Here, we show how this signal can be augmented by the lateral probability current of the scattered electrons in the object plane at similar resolutions and fields of view. The currents are reconstructed from a series of three atomic resolution TEM images recorded under a slight difference of perpendicular line foci. The technique does not rely on the coherence of the electron beam and can be used to reveal electric, magnetic, and strain fields with incoherent electron beams as well as correlations in inelastic transitions, such as electron magnetic chiral dichroism.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000363023700011 Publication Date 2015-10-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.462 Times cited 12 Open Access
  Notes J. V. and A. B. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. The Qu-Ant- EM microscope was partly funded by the Hercules fund from the Flemish Government. All authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483- ESTEEM2. J. V. acknowledges funding from the FWO under Project No. G.0044.13N.; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 8.462; 2015 IF: 7.512
  Call Number c:irua:129190 c:irua:129190UA @ admin @ c:irua:129190 Serial 3954
Permanent link to this record
 

 
Author (up) Lubk, A.; Clark, L.; Guzzinati, G.; Verbeeck, J.
  Title Topological analysis of paraxially scattered electron vortex beams Type A1 Journal article
  Year 2013 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
  Volume 87 Issue 3 Pages 033834-33838
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We investigate topological aspects of subnanometer electron vortex beams upon elastic propagation through atomic scattering potentials. Two main aspects can be distinguished: (i) significantly reduced delocalization compared to a similar nonvortex beam if the beam centers on an atomic column and (ii) site symmetry dependent splitting of higher-order vortex beams. Furthermore, the results provide insight into the complex vortex line fabric within the elastically scattered wave containing characteristic vortex loops predominantly attached to atomic columns and characteristic twists of vortex lines around atomic columns. DOI: 10.1103/PhysRevA.87.033834
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos 000316790600011 Publication Date 2013-03-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.925 Times cited 26 Open Access
  Notes Countatoms; Vortex; Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2013 IF: 2.991
  Call Number UA @ lucian @ c:irua:108496 Serial 3673
Permanent link to this record
 

 
Author (up) Lubk, A.; Guzzinati, G.; Börrnert, F.; Verbeeck, J.
  Title Transport of intensity phase retrieval of arbitrary wave fields including vortices Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
  Volume 111 Issue 17 Pages 173902-173905
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The phase problem can be considered as one of the cornerstones of quantum mechanics intimately connected to the detection process and the uncertainty relation. The latter impose fundamental limits on the manifold phase reconstruction schemes invented to date, in particular, at small magnitudes of the quantum wave. Here, we show that a rigorous solution of the transport of intensity reconstruction (TIE) scheme in terms of a linear elliptic partial differential equation for the phase provides reconstructions even in the presence of wave zeros if particular boundary conditions are given. We furthermore discuss how partial coherence hampers phase reconstruction and show that a modified version of the TIE reconstructs the curl-free current density at arbitrary (in)coherence. Our results open the way for TIE-based phase retrieval of arbitrary wave fields, eventually containing zeros such as phase vortices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000326148400006 Publication Date 2013-10-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.462 Times cited 40 Open Access
  Notes Esteem2; Vortex; esteem2ta ECASJO; Approved Most recent IF: 8.462; 2013 IF: 7.728
  Call Number UA @ lucian @ c:irua:111093 Serial 3726
Permanent link to this record
 

 
Author (up) Lubk, A.; Javon, E.; Cherkashin, N.; Reboh, S.; Gatel, C.; Hytch, M.
  Title Dynamic scattering theory for dark-field electron holography of 3D strain fields Type A1 Journal article
  Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 136 Issue Pages 42-49
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Dark-held electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. (C) 2013 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000327884700006 Publication Date 2013-07-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 18 Open Access
  Notes European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference312483 – ESTEEM2); esteem2_jra4 Approved Most recent IF: 2.843; 2014 IF: 2.436
  Call Number UA @ lucian @ c:irua:112836 Serial 766
Permanent link to this record
 

 
Author (up) Lubk, A.; Vogel, K.; Wolf, D.; Krehl, J.; Röder, F.; Clark, L.; Guzzinati, G.; Verbeeck, J.
  Title Fundamentals of Focal Series Inline Electron Holography Type H1 Book chapter
  Year 2016 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics / Hawkes, P.W. [edit.] Abbreviated Journal
  Volume Issue Pages 105-147
  Keywords H1 Book chapter; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Elsevier BV Place of Publication Editor
  Language Wos Publication Date 2016-09-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1076-5670; http://id.crossref.org/isbn/9780128048115 ISBN 9780128048115 Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes L.C., G.G., and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant no. 278510 VORTEX. A.L., K.V., J. K., D.W., and F.R. acknowledge funding from the DIP of the Deutsche Forschungsgesellschaft.; ECASJO_; Approved Most recent IF: NA
  Call Number EMAT @ emat @ c:irua:140097UA @ admin @ c:irua:140097 Serial 4419
Permanent link to this record
 

 
Author (up) Lubyshev, D.; Fastenau, J.M.; Fang, X.-M.; Wu, Y.; Doss, C.; Snyder, A.; Liu, W.K.; Lamb, M.S.M.; Bals, S.; Song, C.
  Title Comparison of As- and P-based metamorphic buffers for high performance InP heterojunction bipolar transistor and high electron mobility transistor applications Type A1 Journal article
  Year 2004 Publication Journal of vacuum science & technology. B. Microelectronics and nanometer structures. Processing, measurement and phenomena Abbreviated Journal
  Volume 22 Issue 3 Pages 1565-1569
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Metamorphic buffers (M-buffers) consisting of graded InAlAs or bulk InP were employed for the production of InP-based epiwafers on GaAs substrates by molecular-beam epitaxy. The graded InAlAs is the standard for production metamorphic high electron mobility transistors (M-HEMTs), while the bulk InP offers superior thermal properties for higher current density circuits. The surface morphology and crystal structure of the two M-buffers showed different relaxation mechanisms. The graded InAlAs gave a cross-hatched pattern with nearly full relaxation and very effective dislocation filtering, while the bulk InP had a uniform isotropic surface with dislocations propagating further up towards the active layers. Both types of M-buffers had atomic force microscopy root-mean-square roughness values around 2030 Å. The Hall transport properties of high electron mobility transistors (HEMTs) grown on the InAlAs M-buffer, and a baseline HEMT grown lattice matched on InP, both had room-temperature mobilities >10 000 cm2/V s, while the M-HEMT on the InP M-buffer showed a decrease to 9000 cm2/V  s. Similarly, the dc parameters of a double heterojunction bipolar transistor (DHBT) grown on the InAlAs M-buffer were much closer to the baseline heterojunction bipolar transistor than a DHBT grown on the InP M-buffer. A high breakdown voltage of 11.3 V was achieved on an M-DHBT with the InAlAs M-buffer. We speculate that the degradation in device characteristics on the InP M-buffer was related to the incomplete dislocation filtering.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Woodbury, N.Y. Editor
  Language Wos 000222481400141 Publication Date 2004-07-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0734-211X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 25 Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:87596 Serial 427
Permanent link to this record
 

 
Author (up) Luhrs, C.C.; Molins, E.; Van Tendeloo, G.; Beltran-Porter, D.; Fuertes, A.
  Title Crystal structure of Bi6Sr8-xCa3+xO22(-0.5\leq x\leq1.7): a mixed valence bismuth oxide related to perovskite Type A1 Journal article
  Year 1998 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 10 Issue 7 Pages 1875-1881
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The crystal structure of BiSr8-xCa3+xO22 has been determined by single-crystal X-ray diffraction. This phase is the same as Bi9Sr11Ca5Oy that was previously studied by several authors as a secondary phase in the Bi-Sr-Ca-Cu-O system and coexists in thermodynamic equilibrium with the superconductors Bi2Sr2CuO6 and Bi2Sr2CaCu2O8 It crystallizes in the monoclinic space group P2(1)/c, with cell parameters a 11.037(3) Angstrom, b = 5.971(2) Angstrom, c = 19.703(7) Angstrom, beta = 101.46(3)degrees Z = 2. The structure was solved by direct methods and full-matrix least-squares refinement. It is built up by perovskite-related blocks of composition [Sr8-xBi2Ca3+xO16] that intergrow with double rows [Bi4O6] running along b. The perovskite blocks are formed by groups of five octahedra that are shifted from each other 3/2 root 2a(p) along [110](p) (a(p) being the parameter of the cubic perovskite subcell) in a zigzag configuration and are aligned with this direction parallel to the one forming an angle of 25" with the c axis. In turn, the perovskite blocks [Sr8-xBi2Ca3+xO16] are shifted from each other 1/2 of both a(p) and root 2a(p) along [100](p) and [110](p), respectively. In the double rows, two trivalent bismuth atoms are placed, forming dimeric anion complexes [Bi2O6].(6-).6- The oxygen atoms around bismuth in these dimers are placed in the vertexes of a distorted trigonal bipyramid, with one vacant position that would be occupied by the lone pairs characteristic for the electronic configuration of Bi(III). The B sites in the perovskite blocks are occupied by pentavalent bismuth atoms and calcium atoms; the remaining Sr and Ca ions occupy the A sites of the perovskite blocks with coordination numbers with oxygen ranging from 10 to 12. The mean valence for Bi is +3.67 [33.3% of Bi(V) and 66.7% of Bi(III)]. The oxygen vacancies are located in the boundaries between domains having the two possible configurations of the perovskite subcell as in the anionic superconductor Bi3BaO5.5. The oxidation of Bi6Sr8-xCa3+xO22 at 650 degrees C allows the complete filling of the oxygen vacancies to form the double perovskite (Sr2-xCax)Bi1.4Ca0.6O6 that shows 92.5% of bismuth in +5 oxidation state. The experimental high-resolution electon microscopy image and the electron diffraction pattern of powder samples along the [010]* zone axis are in good agreement with those calculated from the structural model obtained by single-crystal X-ray diffraction. The material is almost free of defects and the occurrence of planar defects is very exceptional.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000075019300023 Publication Date 2002-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 6 Open Access
  Notes Approved Most recent IF: 9.466; 1998 IF: 3.359
  Call Number UA @ lucian @ c:irua:104328 Serial 570
Permanent link to this record
 

 
Author (up) Lukashin, A.V.; Eliseev, A.A.; Zhuravleva, N.G.; Vertegel, A.A.; Tretyakov, Y.D.; Lebedev, O.I.; Van Tendeloo, G.
  Title One-step synthesis of shelled PbS nanoparticles in a layered double hydroxide matrix Type A1 Journal article
  Year 2004 Publication Mendeleev communications Abbreviated Journal Mendeleev Commun
  Volume Issue 4 Pages 174-176
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The one-step preparation of capped PbS nanoparticles in an inorganic matrix via UV-induced decomposition of lead thiosulfate complexes intercalated into a hydrotalcite-type layered double hydroxide is reported.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000224247100025 Publication Date 2004-09-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-9436; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.741 Times cited 9 Open Access
  Notes Approved Most recent IF: 1.741; 2004 IF: 0.640
  Call Number UA @ lucian @ c:irua:103735 Serial 2468
Permanent link to this record
 

 
Author (up) Lumbeeck, G.
  Title Mechanisms of nano-plasticity in as-deposited and hydrided nanocrystalline Pd and Ni thin films Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal
  Volume Issue Pages 130 p.
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:164918 Serial 6309
Permanent link to this record
 

 
Author (up) Lumbeeck, G.; Delvaux, A.; Idrissi, H.; Proost, J.; Schryvers, D.
  Title Analysis of internal stress build-up during deposition of nanocrystalline Ni thin films using transmission electron microscopy Type A1 Journal article
  Year 2020 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
  Volume 707 Issue Pages 138076
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Ni thin films sputter-deposited at room temperature with varying Ar pressures were investigated with automated crystal orientation mapping in a transmission electron microscope to uncover the mechanisms controlling the internal stress build-up recorded in-situ during deposition. Large grains were found to induce behaviour similar to a stress-free nucleation layer. The measurements of grain size in most of the Ni thin films are in agreement with the island coalescence model. Low internal stress was observed at low Ar pressure and was explained by the presence of large grains. Relaxation of high internal stress was also noticed at the highest Ar pressure, which was attributed to a decrease of Σ3 twin boundary density due to a low deposition rate. The results provide insightful information to better understand the relationship between structural boundaries and the evolution of internal stress upon deposition of thin films.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000539312200011 Publication Date 2020-05-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes This work was supported by the Hercules Foundation [Grant No. AUHA13009], the Flemish Research Fund (FWO) [Grant No. G.0365.15N], and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. Thin film deposition has been realised as part of the WallonHY project, funded by the Public Service of Wallonia – Department of Energy and Sustainable Building. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:169708 Serial 6370
Permanent link to this record
 

 
Author (up) Lumbeeck, G.; Idrissi, H.; Amin-Ahmadi, B.; Favache, A.; Delmelle, R.; Samaee, V.; Proost, J.; Pardoen, T.; Schryvers, D.
  Title Effect of hydriding induced defects on the small-scale plasticity mechanisms in nanocrystalline palladium thin films Type A1 Journal Article
  Year 2018 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
  Volume 124 Issue 22 Pages 225105
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Nanoindentation tests performed on nanocrystalline palladium films subjected to hydriding/dehydriding cycles demonstrate a significant softening when compared to the as-received material. The origin of this softening is unraveled by combining in situ TEM nanomechanical testing with automated crystal orientation mapping in TEM and high resolution TEM. The softening is attributed to the presence of a high density of stacking faults and of Shockley partial dislocations after hydrogen loading. The hydrogen induced defects affect the elementary plasticity mechanisms and the mechanical response by acting as preferential sites for twinning/detwinning during deformation. These results are analyzed and compared to previous experimental and simulation works in the literature. This study provides new insights into the effect of hydrogen on the atomistic deformation and cracking mechanisms as well as on the mechanical properties of nanocrystalline thin films and membranes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000453254000025 Publication Date 2018-12-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 2 Open Access Not_Open_Access
  Notes This work was supported by the Hercules Foundation under Grant No. AUHA13009, the Flemish Research Fund (FWO) under Grant No. G.0365.15N, and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. Dr. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). We would like to thank Dr. Hadi Pirgazi from UGent for his technical support to process the ACOM data in the OIM Analysis software. Approved Most recent IF: 2.068
  Call Number EMAT @ emat @c:irua:155742 Serial 5135
Permanent link to this record
 

 
Author (up) Lutz, L.; Corte, D.A.D.; Chen, Y.; Batuk, D.; Johnson, L.R.; Abakumov, A.; Yate, L.; Azaceta, E.; Bruce, P.G.; Tarascon, J.-M.; Grimaud, A.
  Title The role of the electrode surface in Na-Air batteries : insights in electrochemical product formation and chemical growth of NaO2 Type A1 Journal article
  Year 2018 Publication Advanced energy materials Abbreviated Journal Adv Energy Mater
  Volume 8 Issue 4 Pages 1701581
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The Na-air battery, because of its high energy density and low charging overpotential, is a promising candidate for low-cost energy storage, hence leading to intensive research. However, to achieve such a battery, the role of the positive electrode material in the discharge process must be understood. This issue is herein addressed by exploring the electrochemical reduction of oxygen, as well as the chemical formation and precipitation of NaO2 using different electrodes. Whereas a minor influence of the electrode surface is demonstrated on the electrochemical formation of NaO2, a strong dependence of the subsequent chemical precipitation of NaO2 is identified. In the origin, this effect stems from the surface energy and O-2/O-2(-) affinity of the electrode. The strong interaction of Au with O-2/O-2(-) increases the nucleation rate and leads to an altered growth process when compared to C surfaces. Consequently, thin (3 mu m) flakes of NaO2 are found on Au, whereas on C large cubes (10 mu m) of NaO2 are formed. This has significant impact on the cell performance and leads to four times higher capacity when C electrodes with low surface energy and O-2/O-2(-) affinity are used. It is hoped that these findings will enable the design of new positive electrode materials with optimized surfaces.
  Address
  Corporate Author Thesis
  Publisher WILEY-VCH Verlag GmbH & Co. Place of Publication Weinheim Editor
  Language Wos 000424152200009 Publication Date 2017-09-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 16.721 Times cited 13 Open Access Not_Open_Access
  Notes ; L.L. thanks ALISTORE-ERI for his PhD grant. P.G.B. is indebted to the EPSRC for financial support, including the Supergen Energy Storage grant. ; Approved Most recent IF: 16.721
  Call Number UA @ lucian @ c:irua:149269 Serial 4951
Permanent link to this record
 

 
Author (up) Luyten, W.; Krekels, T.; Amelinckx, S.; Van Tendeloo, G.; van Dyck, D.; van Landuyt, J.
  Title Electron diffraction effects of conical, helically wound, graphite whiskers Type A1 Journal article
  Year 1993 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 49 Issue Pages 123-131
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos A1993KV56700014 Publication Date 2002-10-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.436 Times cited 14 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:6784 Serial 917
Permanent link to this record
 

 
Author (up) Luyten, W.; Van Tendeloo, G.; Amelinckx, S.; Collins, J.L.
  Title Electron microscopy study of defects in synthetic diamond layers Type A1 Journal article
  Year 1992 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal
  Volume 66 Issue 6 Pages 899-915
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1992KC54700003 Publication Date 2007-07-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0141-8610;1460-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 36 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:4446 Serial 970
Permanent link to this record
 

 
Author (up) Luyten, W.; Van Tendeloo, G.; Fallon, P.J.; Woods, G.S.
  Title Electron microscopy and energy-loss spectroscopy of voidites in pure IaB diamonds Type A1 Journal article
  Year 1994 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal
  Volume 69 Issue Pages 767-778
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1994NE63400009 Publication Date 2007-07-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0141-8610;1460-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 7 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:10024 Serial 944
Permanent link to this record
 

 
Author (up) Luyten, W.; Volkov, V.V.; van Landuyt, J.; Amelinckx, S.; Férauge, C.; Gijbels, R.; Vasilev, M.G.; Shelyakin, A.A.; Lazarev, V.B.
  Title Electron microscopy and mass-spectrometry study of In0.72Ga0.28As0.62P0.38 lasers grown by liquid phase epitaxy Type A1 Journal article
  Year 1993 Publication Physica status solidi: A: applied research Abbreviated Journal
  Volume 140 Issue 2 Pages 453-462
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Broad area as well as buried heterostructure lasers based on In0.72Ga0.28As0.62P0.38/InP and emitting at 1.3 mum are grown by liquid phase epitaxy and are studied in detail by means of transmission electron microscopy, X-ray diffraction, secondary ion mass-spectrometry, and electroluminescence. The InGaAsP epilayer is found to be well lattice-matched and of good structural quality. A tentative explanation is presented for the spinodal decomposition observed in the InGaAsP alloy. We also report on the high performance characteristics of the infrared lasers.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Berlin Editor
  Language Wos A1993MP79700015 Publication Date 2007-01-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 3 Open Access
  Notes Approved
  Call Number UA @ lucian @ c:irua:6156 Serial 946
Permanent link to this record
 

 
Author (up) M. K. Kinyanjui, N. Gauquelin, E. Benckiser, H. –U. Habermeier, B. Keimer, U. Kaiser and G.A. Botton
  Title Local lattice distortion and anisotropic modulation in Epitaxially Strained LaNiO3/LaAlO3 hetero-structures Type A1 Journal Article
  Year 2014 Publication Applied Physics Letters Abbreviated Journal
  Volume 104 Issue Pages 221909
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Using a complementary combination of x-ray diffraction and atomically resolved imaging we investigated the lattice structure of epitaxial LaNiO3/LaAlO3 superlattices grown on a compressive-strain inducing LaSrAlO4 (001) substrate. A refinement of the structure obtained from the x-ray data revealed the monoclinic I 2/c 1 1 space group. The (Ni/Al)O6 octahedral rotation angle perpendicular to the superlattice plane is enhanced, and the one parallel to the plane is reduced with respect to the corresponding bulk values. High-angle annular dark field imaging was used to determine the lattice parameters within the superlattice unit cell. High-resolution electron microscopy images of the oxygen atoms are consistent with the x-ray results.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000337161700029 Publication Date 2014-06-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links
  Impact Factor Times cited 22 Open Access
  Notes Approved Most recent IF: NA
  Call Number EMAT @ emat @ Serial 4545
Permanent link to this record
 

 
Author (up) Ma, R.; He, Y.; Feng, J.; Hu, Z.-Y.; Van Tendeloo, G.; Li, D.
  Title A facile synthesis of Ag@PdAg core-shell architecture for efficient purification of ethene feedstock Type A1 Journal article
  Year 2019 Publication Journal of catalysis Abbreviated Journal
  Volume 369 Issue Pages 440-449
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Precise control of elemental configurations within multimetallic nanoparticles could enable access to functional nanomaterials with significant performance benefits. Here, we present a one-pot synthesis of supported Ag@PdAg core-shell catalyst with an ordered PdAg alloy shell and an Ag core. Both the relative reduction potential and ratio of metal precursors are essential for this synthesis strategy. The distinguished properties of Ag@PdAg, particularly the electronic structure, indicates the existence of electron modification not only between Pd and Ag on PdAg shell, but between Ag core and alloy shell. The Ag@PdAg catalyst displays 97% ethene yield in the partial hydrogenation of acetylene, which is 2.0 and 8.1 times that of over PdAg alloy and pure Pd catalysts, and this is the most selective catalyst reported to data under industrial evaluation conditions. Moreover, this core-shell structure exhibits preferable stability with comparison to PdAg alloy catalyst. The facile synthesis of core-shell architecture with alloy shell structure provides a new platform for efficient catalytic transfer of chemical resource. (C) 2018 Elsevier Inc. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000460711700045 Publication Date 2018-12-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9517 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:181261 Serial 6848
Permanent link to this record
 

 
Author (up) MacArthur, K.E.; Yankovich, A.B.; Béché, A.; Luysberg, M.; Brown, H.G.; Findlay, S.D.; Heggen, M.; Allen, L.J.
  Title Optimizing Experimental Conditions for Accurate Quantitative Energy-Dispersive X-ray Analysis of Interfaces at the Atomic Scale Type A1 Journal article
  Year 2021 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal
  Volume Issue Pages 1-15
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The invention of silicon drift detectors has resulted in an unprecedented improvement in detection efficiency for energy-dispersive X-ray (EDX) spectroscopy in the scanning transmission electron microscope. The result is numerous beautiful atomic-scale maps, which provide insights into the internal structure of a variety of materials. However, the task still remains to understand exactly where the X-ray signal comes from and how accurately it can be quantified. Unfortunately, when crystals are aligned with a low-order zone axis parallel to the incident beam direction, as is necessary for atomic-resolution imaging, the electron beam channels. When the beam becomes localized in this way, the relationship between the concentration of a particular element and its spectroscopic X-ray signal is generally nonlinear. Here, we discuss the combined effect of both spatial integration and sample tilt for ameliorating the effects of channeling and improving the accuracy of EDX quantification. Both simulations and experimental results will be presented for a perovskite-based oxide interface. We examine how the scattering and spreading of the electron beam can lead to erroneous interpretation of interface compositions, and what approaches can be made to improve our understanding of the underlying atomic structure.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000664532400007 Publication Date 2021-04-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.891 Times cited Open Access OpenAccess
  Notes The authors would like to thank Jürgen Schubert for helping to supply the sample and valuable discussions on the topic. K. E. MacArthur and M. Heggen acknowledge the Helmholtz Funding agency and the DFG (grant number HE 7192/1-2) for their financial support of this work. L. J. Allen acknowledges the support of the Alexander von Humboldt Foundation. This research was supported under the Discovery Projects funding scheme of the Australian Research Council (Projects DP140102538 and FT190100619). K.E. MacArthur, A.B. Yankovich and A. Béché acknowledge support from the European Union’s Horizon 2020 research innovation program under grant agreement No. 823717 – ESTEEM3. A.B. Yankovich also acknowledges support from the Materials Science Area of Advance at Chalmers and the Swedish Research Council (VR, under grant No: 2020-04986).; esteem3TA; esteem3reported Approved Most recent IF: 1.891
  Call Number EMAT @ emat @c:irua:178129 Serial 6760
Permanent link to this record
 

 
Author (up) Maccato, C.; Simon, Q.; Carraro, G.; Barreca, D.; Gasparotto, A.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.
  Title Zinc and copper oxides functionalized with metal nanoparticles : an insight into their nano-organization Type A1 Journal article
  Year 2012 Publication Journal of advanced microscopy research Abbreviated Journal
  Volume 7 Issue 2 Pages 84-90
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Ag/ZnO and Au/CuxO (x = 1, 2) nanocomposites supported on Si(100) and polycrystalline Al2O3 were synthesised by hybrid approaches, combining chemical vapor deposition (either thermal or plasma-assisted) of host oxide matrices and subsequent radio frequency-sputtering of guest metal particles. The influence of the adopted synthetic parameters on the nanocomposite morphological and compositional features was investigated by field emission-scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Results confirm the synthesis of ZnO and CuxO nanoarchitectures, characterized by a tailored morphology and an intimate metal/oxide contact. A careful control of the processing conditions enabled a fine tuning of the mutual constituent distribution, opening thus attractive perspectives for the engineering of advanced nanomaterials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2012-12-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2156-7573;2156-7581; ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Esteem Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:105298 Serial 3932
Permanent link to this record
 

 
Author (up) Macke, S.; Radi, A.; Hamann-Borrero, J.E.; Verna, A.; Bluschke, M.; Brück, S.; Goering, E.; Sutarto, R.; He, F.; Cristiani, G.; Wu, M.; Benckiser, E.; Habermeier, H.-U.; Logvenov, G.; Gauquelin, N.; Botton, G.A; Kajdos, A.P.; Stemmer, S.; Sawatzky,G.A.; Haverkort, M.W.; Keimer, B.; Hinkov, V.
  Title Element Specific Monolayer Depth Profiling Type A1 Journal Article
  Year 2014 Publication Advanced Materials Abbreviated Journal Adv Mater
  Volume 26 Issue 38 Pages 6554-6559
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)
  Abstract The electronic phase behavior and functionality of interfaces and surfaces in complex materials are strongly correlated to chemical composition profiles, stoichiometry and intermixing. Here a novel analysis scheme for resonant X-ray reflectivity maps is introduced to determine such profiles, which is element specific and non-destructive, and which exhibits atomic-layer resolution and a probing depth of hundreds of nanometers.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000343763200004 Publication Date 2014-08-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1521-4095 ISBN Additional Links
  Impact Factor 19.791 Times cited 34 Open Access
  Notes Approved Most recent IF: 19.791; 2014 IF: NA
  Call Number EMAT @ emat @ Serial 4541
Permanent link to this record
 

 
Author (up) Madsen, J.; Pennycook, T.J.; Susi, T.
  Title ab initio description of bonding for transmission electron microscopy Type A1 Journal article
  Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 231 Issue Pages
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The simulation of transmission electron microscopy (TEM) images or diffraction patterns is often required to interpret their contrast and extract specimen features. This is especially true for high-resolution phase-contrast imaging of materials, but electron scattering simulations based on atomistic models are widely used in materials science and structural biology. Since electron scattering is dominated by the nuclear cores, the scattering potential is typically described by the widely applied independent atom model. This approximation is fast and fairly accurate, especially for scanning TEM (STEM) annular dark-field contrast, but it completely neglects valence bonding and its effect on the transmitting electrons. However, an emerging trend in electron microscopy is to use new instrumentation and methods to extract the maximum amount of information from each electron. This is evident in the increasing popularity of techniques such as 4D-STEM combined with ptychography in materials science, and cryogenic microcrystal electron diffraction in structural biology, where subtle differences in the scattering potential may be both measurable and contain additional insights. Thus, there is increasing interest in electron scattering simulations based on electrostatic potentials obtained from first principles, mainly via density functional theory, which was previously mainly required for holography. In this Review, we discuss the motivation and basis for these developments, survey the pioneering work that has been published thus far, and give our outlook for the future. We argue that a physically better justified ab initio description of the scattering potential is both useful and viable for an increasing number of systems, and we expect such simulations to steadily gain in popularity and importance.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000744190300006 Publication Date 2021-03-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 2.843
  Call Number UA @ admin @ c:irua:183955 Serial 6850
Permanent link to this record
 

 
Author (up) Mahadi, A.H.; Ye, L.; Fairclough, S.M.; Qu, J.; Wu, S.; Chen, W.; Papaioannou, E.; Ray, B.; Pennycook, T.J.; Haigh, S.J.; Young, N.P.; Tedsree, K.; Metcalfe, I.S.; Tsang, S.C.E.
  Title Beyond surface redox and oxygen mobility at pd-polar ceria (100) interface : underlying principle for strong metal-support interactions in green catalysis Type A1 Journal article
  Year 2020 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ
  Volume 270 Issue Pages 118843
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract When ceria is used as a support for many redox catalysis involved in green catalysis, it is well-known that the overlying noble metal can gain access to a significant quantity of oxygen atoms with high mobility and fast reduction and oxidation properties under mild conditions. However, it is as yet unclear what the underlying principle and the nature of the ceria surface involved are. By using two tailored morphologies of ceria nanocrystals, namely cubes and rods, it is demonstrated from Scanning Transmission Electron Microscopy with Electron Energy Loss Spectroscopy (STEM-EELS) mapping and Pulse Isotopic Exchange (PIE) that ceria nano-cubes terminated with a polar surface (100) can give access to more than the top most layer of surface oxygen atoms. Also, they give higher oxygen mobility than ceria nanorods with a non-polar facet of (110). A new insight for the possible additional role of polar ceria surface plays in the oxygen mobility is obtained from Density Functional Theory (DFT) calculations which suggest that the (100) surface sites that has more than half-filled O on same plane can drive oxygen atoms to oxidise adsorbate(s) on Pd due to the strong electrostatic repulsion.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000526110500007 Publication Date 2020-03-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 22.1 Times cited Open Access
  Notes Approved Most recent IF: 22.1; 2020 IF: 9.446
  Call Number UA @ admin @ c:irua:183959 Serial 6856
Permanent link to this record
 

 
Author (up) Mahieu, S.; Ghekiere, P.; de Winter, G.; de Gryse, R.; Depla, D.; Lebedev, O.I.
  Title Biaxially aligned yttria stabilized zirconia and titanium nitride layers deposited by unbalanced magnetron sputtering Type A1 Journal article
  Year 2005 Publication Diffusion and defect data : solid state data : part B : solid state phenomena T2 – 2nd International Conference on Texture and Anisotropy of Polycrystals, JUL 07-09, 2004, Metz, FRANCE Abbreviated Journal
  Volume 105 Issue Pages 447-452
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Control of the texture and the biaxial alignment of sputter deposited films has provoked a great deal of interest due to its technological importance. indeed, many physical properties of thin films are influenced by the biaxial alignment. In this context, extensive research has been established to understand the growth mechanism of biaxially aligned Yttria Stabilized Zirconia (YSZ) as a buffer layer for high temperature superconducting copper oxides. In this work, the growth mechanism in general and the mechanism responsible of the biaxial alignment in detail were investigated for thin films of YSZ and TiN deposited by unbalanced magnetron sputtering using non-aligned polycrystalline stainless steel substrates. The mechanism responsible for the preferential out-of-plane alignment has been investigated by performing depositions on a non-tilted substrate. However, to study the in-plane alignment a tilted substrate was used. The microstructure of the deposited layers was characterised by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The crystallographic alignment has been investigated by X-ray diffraction (XRD) (angular scans and pole figures) and by Selective Area Diffraction (SAD). It was observed that the deposited layers show a zone T or zone II structure and the layers with a zone T structure consist of faceted grains. There seems to be a correlation between the crystal habit of these faceted grains and the measured biaxial alignment. A model for the preferential out-of-plane orientation, the in-plane alignment and the correlation between the microstructure and the biaxial alignment is proposed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Vaduz Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 3-908451-09-4 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:103190 Serial 230
Permanent link to this record
 

 
Author (up) Mahieu, S.; Ghekiere, P.; de Winter, G.; de Gryse, R.; Depla, D.; Van Tendeloo, G.; Lebedev, O.I.
  Title Biaxially aligned titanium nitride thin films deposited by reactive unbalanced magnetron sputtering Type A1 Journal article
  Year 2006 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech
  Volume 200 Issue 8 Pages 2764-2768
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000235202100023 Publication Date 2004-12-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0257-8972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.589 Times cited 36 Open Access
  Notes IWT-Vlaanderen Approved Most recent IF: 2.589; 2006 IF: 1.559
  Call Number UA @ lucian @ c:irua:56554 Serial 229
Permanent link to this record
 

 
Author (up) Mahieu, S.; Ghekiere, P.; de Winter, G.; Depla, D.; de Gryse, R.; Lebedev, O.I.; Van Tendeloo, G.
  Title Influence of the Ar/O2 ratio on the growth and biaxial alignment of yttria stabilized zirconia layers during reactive unbalanced magnetron sputtering Type A1 Journal article
  Year 2005 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
  Volume 484 Issue Pages 18-25
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000230045900003 Publication Date 2005-03-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.879 Times cited 23 Open Access
  Notes Approved Most recent IF: 1.879; 2005 IF: 1.569
  Call Number UA @ lucian @ c:irua:54879 Serial 1656
Permanent link to this record
 

 
Author (up) Mahieu, S.; Ghekiere, P.; de Winter, G.; Heirwegh, S.; Depla, D.; de Gryse, R.; Lebedev, O.I.; Van Tendeloo, G.
  Title Mechanism of preferential orientation in sputter deposited titanium nitride and yttria-stabilized zirconia layers Type A1 Journal article
  Year 2005 Publication Journal of crystal growth Abbreviated Journal J Cryst Growth
  Volume 279 Issue Pages 100-109
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000229348400015 Publication Date 2005-03-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.751 Times cited 41 Open Access
  Notes Approved Most recent IF: 1.751; 2005 IF: 1.681
  Call Number UA @ lucian @ c:irua:54788 Serial 1979
Permanent link to this record
 

 
Author (up) Mahr, C.; Kundu, P.; Lackmann, A.; Zanaga, D.; Thiel, K.; Schowalter, M.; Schwan, M.; Bals, S.; Wittstock, A.; Rosenauer, A.
  Title Quantitative determination of residual silver distribution in nanoporous gold and its influence on structure and catalytic performance Type A1 Journal article
  Year 2017 Publication Journal of catalysis Abbreviated Journal J Catal
  Volume 352 Issue 352 Pages 52-58
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Large efforts have been made trying to understand the origin of the high catalytic activity of dealloyed nanoporous gold as a green catalyst for the selective promotion of chemical reactions at low temperatures. Residual silver, left in the sample after dealloying of a gold-silver alloy, has been shown to have a strong influence on the activity of the catalyst. But the question of how the silver is distributed within the porous structure has not finally been answered yet. We show by quantitative energy dispersive X-ray tomography measurements that silver forms clusters that are distributed irregularly, both on the surface and inside the ligaments building up the porous structure. Furthermore, we find that the role of the residual silver is ambiguous. Whereas CO oxidation is supported by more residual silver, methanol oxidation to methyl formate is hindered. Structural characterisation reveals larger ligaments and pores for decreasing residual silver concentration.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000408299600006 Publication Date 2017-05-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9517 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.844 Times cited 42 Open Access OpenAccess
  Notes This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under contracts no. RO2057/12-1 (SP 6) and WI4497/1-1 (SP 2) within the research unit FOR2213 (www.nagocat. de) and the European Research Council (ERC Starting Grant No. 335078-COLOURATOMS). (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 6.844
  Call Number EMAT @ emat @c:irua:144434UA @ admin @ c:irua:144434 Serial 4623
Permanent link to this record
 

 
Author (up) Mahr, C.; Müller-Caspary, K.; Graf, M.; Lackmann, A.; Grieb, T.; Schowalter, M.; Krause, F.F.; Mehrtens, T.; Wittstock, A.; Weissmueller, J.; Rosenauer, A.
  Title Measurement of local crystal lattice strain variations in dealloyed nanoporous gold Type A1 Journal article
  Year 2018 Publication Materials research letters Abbreviated Journal Mater Res Lett
  Volume 6 Issue 1 Pages 84-92
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Reversible macroscopic length changes in nanoporous structures can be achieved by applying electric potentials or by exposing them to different gases or liquids. Thus, these materials are interesting candidates for applications as sensors or actuators. Macroscopic length changes originate from microscopic changes of crystal lattice parameters. In this report, we show spatially resolved measurements of crystal lattice strain in dealloyed nanoporous gold. The results confirm theory by indicating a compression of the lattice along the axis of cylindrically shaped ligaments and an expansion in radial direction. Furthermore, we show that curved npAu surfaces show inward relaxation of the surface layer. [GRAPHICS] .
  Address
  Corporate Author Thesis
  Publisher Taylor & Francis Place of Publication Abingdon Editor
  Language Wos 000428141500013 Publication Date 2017-11-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2166-3831 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.773 Times cited 4 Open Access Not_Open_Access
  Notes ; This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under contracts no. RO2057/12-1 (SP 6), WI4497/1-1 (SP 2) and WE1424/17-1 (SP 3) within the research unit FOR2213 (www.nagocat.de). K.M.-C acknowledges support by the DFG under contract no. MU3660/1-1 and T.G. under contract no. RO2057/ 11-1. ; Approved Most recent IF: 4.773
  Call Number UA @ lucian @ c:irua:150921 Serial 4973
Permanent link to this record
 

 
Author (up) Mai, H.H.; Kaydashev, V.E.; Tikhomirov, V.K.; Janssens, E.; Shestakov, M.V.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Moshchalkov, V.V.; Lievens, P.
  Title Nonlinear optical properties of Ag nanoclusters and nanoparticles dispersed in a glass host Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 118 Issue 29 Pages 15995-16002
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The nonlinear absorption of Ag atomic clusters and nanoparticles dispersed in a transparent oxyfluoride glass host has been studied. The as-prepared glass, containing 0.15 atom % Ag, shows an absorption band in the UV/violet attributed to the presence of amorphous Ag atomic nanoclusters with an average size of 1.2 nm. Upon heat treatment the Ag nanoclusters coalesce into larger nanoparticles that show a surface plasmon absorption band in the visible. Open aperture z-scan experiments using 480 nm nanosecond laser pulses demonstrated nonsaturated and saturated nonlinear absorption with large nonlinear absorption indices for the Ag nanoclusters and nanoparticles, respectively. These properties are promising, e.g., for applications in optical limiting and objects contrast enhancement.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000339540700049 Publication Date 2014-07-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 43 Open Access
  Notes FWO; Methusalem; funding from the European Research Council under the seventh Framework Program (FP7); ERC Grant 246791 COUNTATOMS and the EC project IFOX. Approved Most recent IF: 4.536; 2014 IF: 4.772
  Call Number UA @ lucian @ c:irua:118626 Serial 2353
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: