|   | 
Details
   web
Records
Author (up) Hamidi-Asl, E.; Dardenne, F.; Pilehvar, S.; Blust, R.; De Wael, K.
Title Unique properties of core shell Ag@Au nanoparticles for the aptasensing of bacterial cells Type A1 Journal article
Year 2016 Publication Chemosensors Abbreviated Journal
Volume 4 Issue 3 Pages 16
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In this article, it is shown that the efficiency of an electrochemical aptasensing device is influenced by the use of different nanoparticles (NPs) such as gold nanoparticles (Au), silver nanoparticles (Ag), hollow gold nanospheres (HGN), hollow silver nanospheres (HSN), silvergold core shell (Ag@Au), goldsilver core shell (Au@Ag), and silvergold alloy nanoparticles (Ag/Au). Among these nanomaterials, Ag@Au core shell NPs are advantageous for aptasensing applications because the core improves the physical properties and the shell provides chemical stability and biocompatibility for the immobilization of aptamers. Self-assembly of the NPs on a cysteamine film at the surface of a carbon paste electrode is followed by the immobilization of thiolated aptamers at these nanoframes. The nanostructured (Ag@Au) aptadevice for Escherichia coli as a target shows four times better performance in comparison to the response obtained at an aptamer modified planar gold electrode. A comparison with other (core shell) NPs is performed by cyclic voltammetry and differential pulse voltammetry. Also, the selectivity of the aptasensor is investigated using other kinds of bacteria. The synthesized NPs and the morphology of the modified electrode are characterized by UV-Vis absorption spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, and electrochemical impedance spectroscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000382480000006 Publication Date 2016-08-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2227-9040 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 9 Open Access
Notes ; Ezat Hamidi-Asl was financially supported by Belspo (University of Antwerp). The authors are thankful to Femke De Croock for her technical support and to Stanislav Trashin for his worthwhile comments on the manuscript. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:135411 Serial 5886
Permanent link to this record
 

 
Author (up) Han, M.; De Clippeleir, H.; Al-Omari, A.; Vlaeminck, S.E.; Wett, B.; Murthy, S.
Title Free ammonia and/or temperature impact study on temperature-acclimated mainstream nitrification sludge Type P3 Proceeding
Year 2016 Publication Abbreviated Journal
Volume Issue Pages 3 p. T2 - WEF/IWA Nutrient Removal and Recovery Co
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151134 Serial 7984
Permanent link to this record
 

 
Author (up) Han, M.; De Clippeleir, H.; Al-Omari, A.; Wett, B.; Vlaeminck, S.E.; Bott, C.; Murthy, S.
Title Impact of carbon to nitrogen ratio and aeration regime on mainstream deammonification Type A1 Journal article
Year 2016 Publication Water science and technology Abbreviated Journal
Volume 74 Issue 2 Pages 375-384
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract While deammonification of high-strength wastewater in the sludge line of sewage treatment plants has become well established, the potential cost savings spur the development of this technology for mainstream applications. This study aimed at identifying the effect of aeration and organic carbon on the deammonification process. Two 10 L sequencing bath reactors with different aeration frequencies were operated at 25 degrees C. Real wastewater effluents from chemically enhanced primary treatment and high-rate activated sludge process were fed into the reactors with biodegradable chemical oxygen demand/nitrogen (bCOD/N) of 2.0 and 0.6, respectively. It was found that shorter aerobic solids retention time (SRT) and higher aeration frequency gave more advantages for aerobic ammonium-oxidizing bacteria (AerAOB) than nitrite oxidizing bacteria (NOB) in the system. From the kinetics study, it is shown that the affinity for oxygen is higher for NOB than for AerAOB, and higher dissolved oxygen set-point could decrease the affinity of both AerAOB and NOB communities. After 514 days of operation, it was concluded that lower organic carbon levels enhanced the activity of anoxic ammonium-oxidizing bacteria (AnAOB) over denitrifiers. As a result, the contribution of AnAOB to nitrogen removal increased from 40 to 70%. Overall, a reasonably good total removal efficiency of 66% was reached under a low bCOD/N ratio of 2.0 after adaptation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380765500011 Publication Date 2016-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:135032 Serial 8062
Permanent link to this record
 

 
Author (up) Han, M.; Vlaeminck, S.E.; Al-Omari, A.; Wett, B.; Bott, C.; Murthy, S.; De Clippeleir, H.
Title Uncoupling the solids retention times of flocs and granules in mainstream deammonification : a screen as effective out-selection tool for nitrite oxidizing bacteria Type A1 Journal article
Year 2016 Publication Bioresource technology Abbreviated Journal
Volume 221 Issue Pages 195-204
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract This study focused on a physical separator in the form of a screen to out-select nitrite oxidizing bacteria (NOB) for mainstream sewage treatment. This separation relied on the principle that the NOB prefer to grow in flocs, while anammox bacteria (AnAOB) reside in granules. Two types of screens (vacuum and vibrating) were tested for separating these fractions. The vibrating screen was preferred due to more moderate normal forces and additional tangential forces, better balancing retention efficiency of AnAOB granules (41% of the AnAOB activity) and washout of NOB (92% activity washout). This operation resulted in increased NOB out-selection (AerAOB/NOB ratio of 2.3) and a total nitrogen removal efficiency of 70% at influent COD/N ratio of 1.4. An effluent total nitrogen concentration <10 mg N/L was achieved using this novel approach combining biological selection with physical separation, opening up the path towards energy positive sewage treatment. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386241000025 Publication Date 2016-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:138157 Serial 8705
Permanent link to this record
 

 
Author (up) Hawrylak, P.; Peeters, F.; Ensslin, K.
Title Carbononics : integrating electronics, photonics and spintronics with graphene quantum dots Preface Type Editorial
Year 2016 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R
Volume 10 Issue 10 Pages 11-12
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Wiley-v c h verlag gmbh Place of Publication Weinheim Editor
Language Wos 000368814500002 Publication Date 2016-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.032 Times cited 7 Open Access
Notes ; ; Approved Most recent IF: 3.032
Call Number UA @ lucian @ c:irua:131600 Serial 4146
Permanent link to this record
 

 
Author (up) Heidari, H.; Rivero, G.; Idrissi, H.; Ramachandran, D.; Cakir, S.; Egoavil, R.; Kurttepeli, M.; Crabbé, A.C.; Hauffman, T.; Terryn, H.; Du Prez, F.; Schryvers, D.
Title Melamine–Formaldehyde Microcapsules: Micro- and Nanostructural Characterization with Electron Microscopy Type A1 Journal article
Year 2016 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 22 Issue 22 Pages 1222-1232
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A systematic study has been carried out to compare the surface morphology, shell thickness, mechanical properties, and binding behavior of melamine–formaldehyde microcapsules of 5–30 μm diameter size with various amounts of core content by using scanning and transmission electron microscopy including electron tomography, in situ nanomechanical tensile testing, and electron energy-loss spectroscopy. It is found that porosities are present on the outside surface of the capsule shell, but not on the inner surface of the shell. Nanomechanical tensile tests on the capsule shells reveal that Young’s modulus of the shell material is higher than that of bulk melamine–formaldehyde and that the shells exhibit a larger fracture strain compared with the bulk. Core-loss elemental analysis of microcapsules embedded in epoxy indicates that during the curing process, the microcapsule-matrix interface remains uniform and the epoxy matrix penetrates into the surface micro-porosities of the capsule shells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393853100011 Publication Date 2016-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 2 Open Access
Notes This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The authors are also thankful to Stijn Van den Broeck and Dr. Frederic Leroux for help in sample preparation and to S. Bals and J. Verbeeck for valuable discussions. H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, under Contract No. P7/21. Approved Most recent IF: 1.891
Call Number EMAT @ emat @ c:irua:138980 Serial 4333
Permanent link to this record
 

 
Author (up) Heshmati-Moulai, A.; Simchi, H.; Esmaeilzadeh, M.; Peeters, F.M.
Title Phase transition and spin-resolved transport in MoS2 nanoribbons Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue 94 Pages 235424
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic structure and transport properties of monolayer MoS2 are studied using a tight-binding approach coupled with the nonequilibrium Green's function method. A zigzag nanoribbon of MoS2 is conducting due to the intersection of the edge states with the Fermi level that is located within the bulk gap. We show that applying a transverse electric field results in the disappearance of this intersection and turns the material into a semiconductor. By increasing the electric field the band gap undergoes a two stage linear increase after which it decreases and ultimately closes. It is shown that in the presence of a uniform exchange field, this electric field tuning of the gap can be exploited to open low energy domains where only one of the spin states contributes to the electronic conductance. This introduces possibilities in designing spin filters for spintronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000394546100005 Publication Date 2016-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:141978 Serial 4557
Permanent link to this record
 

 
Author (up) Hill, E.H.; Claes, N.; Bals, S.; Liz-Marzán, L.M.
Title Layered Silicate Clays as Templates for Anisotropic Gold Nanoparticle Growth Type A1 Journal article
Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 28 Issue 28 Pages 5131-5139
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Clay minerals are abundant natural materials arising in the presence of water and are composed of small particles of different sizes and shapes. The interlamellar space between layered silicate clays can also be used to host a variety of different organic and inorganic guest molecules or particles. Recent studies of clay−metal hybrids formed by impregnation of nanoparticles into the interlayer spaces of the clays have not demonstrated the ability for templated growth following the shape of the particles. Following this line of interest, a method for the synthesis of gold nanoparticles on the synthetic layered silicate clay laponite was developed. This approach can be used to make metal−clay nanoparticles with a variety of morphologies while retaining the molecular adsorption properties of the clay. The surface enhanced Raman scattering enhancement of these particles was also found to be greater than that obtained from other metal nanoparticles of a similar morphology, likely due to increased dye adsorption by the presence of the clay. The hybrid particles presented herein will contribute to further study of plasmonic

sensing, catalysis, dye aggregation, and novel composite materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380576700031 Publication Date 2016-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 13 Open Access OpenAccess
Notes This work has been supported by the European Research Council (ERC Advanced Grant No. 267867, PLASMAQUO). E.H.H. thanks the Spanish Ministry of Economy and Competitiveness for providing a Juan de la Cierva Fellowship (FJCI-2014-22598). N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). We gratefully acknowledge A. B. Serrano-Montes for providing the seed-mediated Au nanostars.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466
Call Number c:irua:135178 c:irua:135178 Serial 4117
Permanent link to this record
 

 
Author (up) Hoang, D.-Q.; Pobedinskas, P.; Nicley, S.S.; Turner, S.; Janssens, S.D.; Van Bael, M.K.; D'Haen, J.; Haenen, K.
Title Elucidation of the Growth Mechanism of Sputtered 2D Hexagonal Boron Nitride Nanowalls Type A1 Journal article
Year 2016 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des
Volume 16 Issue 7 Pages 3699-3708
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hexagonal boron nitride nanowall thin films were deposited on Si(100) substrates using a Ar(51%)/N-2(44%)/H-2(5%) gas mixture by unbalanced radio frequency sputtering. The effects of various target-to-substrate distances, substrate temperatures, and substrate tilting angles were investigated. When the substrate is close to the target, hydrogen etching plays a significant role in the film growth, while the effect is negligible for films deposited at a farther distance. The relative quantity of defects was measured by a non-destructive infrared spectroscopy technique that characterized the hydrogen incorporation at dangling nitrogen bonds at defect sites in the deposited films. Despite the films deposited at different substrate tilting angles, the nanowalls of those films were found to consistently grow vertical to the substrate surface, independent of the tilting angle. This implies that chemical processes, rather than physical ones, govern the growth of the nanowalls. The results also reveal that the degree of nanowall crystallization is tunable by varying the growth parameters. Finally, evidence of hydrogen desorption during vacuum annealing is given based on measurements of infrared stretching (E-1u) and bending (A(2u)) modes of the optical phonons, and the H-N vibration mode.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000379456700020 Publication Date 2016-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.055 Times cited 8 Open Access
Notes Approved Most recent IF: 4.055
Call Number UA @ lucian @ c:irua:144690 Serial 4652
Permanent link to this record
 

 
Author (up) Hoogmartens, R.; Eyckmans, J.; Van Passel, S.
Title Landfill taxes and enhanced waste management : combining valuable practices with respect to future waste streams Type A1 Journal article
Year 2016 Publication Waste Management Abbreviated Journal Waste Manage
Volume 55 Issue Pages 345-354
Keywords A1 Journal article; Engineering Management (ENM)
Abstract Both landfill taxes and Enhanced Waste Management (EWM) practices can mitigate the scarcity issue of landfill capacity by respectively reducing landfilled waste volumes and valorising future waste streams. However, high landfill taxes might erode incentives for EWM, even though EWM creates value by valorising waste. Concentrating on Flanders (Belgium), the paper applies dynamic optimisation modelling techniques to analyse how landfill taxation and EWM can reinforce each other and how taxation schemes can be adjusted in order to foster sustainable and welfare maximising ways of processing future waste streams. Based on the Flemish simulation results, insights are offered that are generally applicable in international waste and resource management policy. As shown, the optimal Flemish landfill tax that optimises welfare in the no EWM scenario is higher than the one in the EWM scenario (93 against (sic)50/ton). This difference should create incentives for applying EWM and is driven by the positive external effects that are generated by EWM practices. In Flanders, as the current landfill tax is slightly lower than these optimal levels, the choice that can be made is to further increase taxation levels or show complete commitment to EWM. A first generally applicable insight that was found points to the fact that it is not necessarily the case that the higher the landfill tax, the more effective waste management improvements can be realised. Other insights are about providing sufficient incentives for applying EMW practices and formulating appropriate pleas in support of technological development. By these insights, this paper should provide relevant information that can assist in triggering the transition towards a resource efficient, circular economy in Europe. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000381535200036 Publication Date 2016-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 4.03 Times cited 5 Open Access
Notes ; ; Approved Most recent IF: 4.03
Call Number UA @ admin @ c:irua:137150 Serial 6222
Permanent link to this record
 

 
Author (up) Horzum, S.; Torun, E.; Serin, T.; Peeters, F.M.
Title Structural, electronic and optical properties of Cu-doped ZnO : experimental and theoretical investigation Type A1 Journal article
Year 2016 Publication Philosophical magazine Abbreviated Journal Philos Mag
Volume 96 Issue 96 Pages 1743-1756
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Experiments are supplemented with ab initio density functional theory (DFT) calculations in order to investigate how the structural, electronic and optical properties of zinc oxide (ZnO) thin films are modified upon Cu doping. Changes in characteristic properties of doped thin films, that are deposited on a glass substrate by sol-gel dip coating technique, are monitored using X-ray diffraction (XRD) and UV measurements. Our ab initio calculations show that the electronic structure of ZnO can be well described by DFT+U/G(0)W(0) method and we find that Cu atom substitutional doping in ZnO is the most favourable case. Our XRD measurements reveal that the crystallite size of the films decrease with increasing Cu doping. Moreover, we determine the optical constants such as refractive index, extinction coefficient, optical dielectric function and optical energy band gap values of the films by means of UV-Vis transmittance spectra. The optical band gap of ZnO the thin film linearly decreases from 3.25 to 3.20 eV at 5% doping. In addition, our calculations reveal that the electronic defect states that stem from Cu atoms are not optically active and the optical band gap is determined by the ZnO band edges. Experimentally observed structural and optical results are in good agreement with our theoretical results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000376076500002 Publication Date 2016-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1478-6435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.505 Times cited 29 Open Access
Notes ; Theoretical part of this work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. Experimental part of this work was supported by Ankara University BAP under Project Number [14B0443001]. ; Approved Most recent IF: 1.505
Call Number UA @ lucian @ c:irua:134161 Serial 4254
Permanent link to this record
 

 
Author (up) Hosseininia, G.; Rafiaani Khachak, P.; Nooripoor, M.; Van Passel, S.; Azadi, H.
Title Understanding communicational behavior among rangelands' stakeholders : application of social network analysis Type A1 Journal article
Year 2016 Publication Journal Of Environmental Planning And Management Abbreviated Journal J Environ Plann Man
Volume 59 Issue 2 Pages 320-341
Keywords A1 Journal article; Economics; Engineering Management (ENM)
Abstract Understanding communicational behavior of rangelands stakeholders is fundamental for effective development of rangeland management plans. This study aimed to understand differences between stakeholders relations among various actors involved in rangeland management using social network analysis (SNA). A survey was conducted on 334 stakeholders (89 extension agents, 110 researchers and 135 executive agents) in the Tehran province, Iran. Results showed that all the three groups of stakeholders are interested in making contact mainly within their own group. Furthermore, while the executive agents have shared the strongest technical and friendship relations with the two other groups, the extension agents established the strongest administrative interactions. The researchers, however, made a poor link especially with the extension agents. The study concluded that SNA could be an efficient tool to assess communicational behavior in rangeland management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366383400008 Publication Date 2015-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0964-0568 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.56 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 1.56
Call Number UA @ admin @ c:irua:136755 Serial 6274
Permanent link to this record
 

 
Author (up) Hu, Z.-Y.
Title Electron microscopy of hierarchically structured nanomaterials : linking structure to properties and synthesis Type Doctoral thesis
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:138754 Serial 4377
Permanent link to this record
 

 
Author (up) Huybrechts, W.; Mali, G.; Kuśtrowski, P.; Willhammar, T.; Mertens, M.; Bals, S.; Van Der Voort, P.; Cool, P.
Title Post-synthesis bromination of benzene bridged PMO as a way to create a high potential hybrid material Type A1 Journal article
Year 2016 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 236 Issue 236 Pages 244-249
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Periodic mesoporous organosilicas provide the best of two worlds: the strength and porosity of an inorganic framework combined with the infinite possibilities created by the organic bridging unit. In this work we focus on post-synthetical modification of benzene bridged PMO, in order to create bromobenzene PMO. In the past, this proved to be very challenging due to unwanted structural deterioration. However, now we have found a way to brominate this material whilst keeping the structure intact. In-depth structural analysis by solid state NMR and XPS shows both vast progress over previous attempts as well as potential for improvement.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000385899600028 Publication Date 2016-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 7 Open Access OpenAccess
Notes ; The authors would like to thank financial support from the FWO-Flanders (project no G.0068.13). The authors further acknowledge financial support of the University of Antwerp through BOF GOA funding. S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). ; ecas_Sara Approved Most recent IF: 3.615
Call Number UA @ lucian @ c:irua:135274 Serial 4228
Permanent link to this record
 

 
Author (up) Huygh, S.; Bogaerts, A.; Neyts, E.C.
Title How Oxygen Vacancies Activate CO2 Dissociation on TiO2 Anatase (001) Type A1 Journal article
Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 120 Issue 120 Pages 21659-21669
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The adsorption, dissociation, and diffusion of CO2 on the anatase (001) surface was studied using DFT by means of the generalized gradient approximation using the Perdew−Burcke−Ernzerhof (PBE)-functional and applying corrections for long-range dispersion interactions. Different stable adsorption configurations were identified for the fully oxidized surface. The most stable adsorption configuration is the monodentated carbonate-like structure. Small energy barriers were identified for the conversion of a physisorbed to a chemisorbed configuration.

CO2 dissociation is found to be unfeasible on the stoichiometric surface. The introduction of oxygen vacancy defects gives rise to new highly stable adsorption configurations with a stronger activation of the C−O bonds. This leads to the possibility of exothermic dissociation of CO2 with barriers up to 22.2 kcal/mol,

corresponding to chemical lifetimes of less than 4 s at 300 K. These reactions cause a CO molecule to be formed, which will easily desorb, and the reduced surface to become oxidized. It is clear that oxygen vacancy defects play a key role in the catalytic activity of an anatase (001) surface. Oxygen vacancies play an important role in the dissociation of CO2 on the anatase (001) surface, and will play a significant role in complex problems, such as the catalytic conversion of CO2 to value-added chemicals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384626800055 Publication Date 2016-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 49 Open Access
Notes Stijn Huygh is funded as an aspirant of the Research Foundation Flanders (FWO, project number 11C0115N). This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @ c:irua:136164 Serial 4291
Permanent link to this record
 

 
Author (up) Idrissi, H.; Bollinger, C.; Boioli, F.; Schryvers, D.; Cordier, P.
Title Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing Type A1 Journal article
Year 2016 Publication Science Advances Abbreviated Journal
Volume 2 Issue 2 Pages e1501671-e1501671
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The rheology of the lithospheric mantle is fundamental to understanding how mantle convection couples with plate tectonics. However, olivine rheology at lithospheric conditions is still poorly understood because experiments are difficult in this temperature range where rocks and mineral become very brittle. We combine techniques of quantitative in situ tensile testing in a transmission electron microscope and numerical modeling of dislocation dynamics to constrain the low-temperature rheology of olivine. We find that the intrinsic ductility of olivine at low temperature is significantly lower than previously reported values, which were obtained under strain-hardened conditions. Using this method, we can anchor rheological laws determined at higher temperature and can provide a better constraint on intermediate temperatures relevant for the lithosphere. More generally, we demonstrate the possibility of characterizing the mechanical properties of specimens, which can be available in the form of submillimeter-sized particles only.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000379620200043 Publication Date 2016-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 32 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:134983 Serial 4202
Permanent link to this record
 

 
Author (up) Ilgrande, C.; Christiaens, M.; Clauwaert, P.; Vlaeminck, S.E.; Boon, N.
Title Can nitrification bring us to Mars? The role of microbial interactions on nitrogen recovery in Life Support Systems Type A2 Journal article
Year 2016 Publication Communications in agricultural and applied biological sciences Abbreviated Journal
Volume 81 Issue 1 Pages 74-79
Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The development cost-effective life support technologies is a highly relevant topic for space biology. Currently, food and water supply during space flights is currently restricted by technical and economic constraints: daily water consumption of an average crew of 6 members is about 72 L, with an estimated cost of 2,160,000 d-1. To reduce these costs and sustain long term space missions, the European Space Agency designed MELiSSA, an artificial ecosystem based on 5 compartments for the recycling gas, liquid and solid waste (Lasseur et al., 2011). In the CI stage, crew and inedible solid waste is fermented by thermophilic anaerobic bacteria, producing volatile fatty acids (VFAs), CO2 and ammonium (NH4+). In the CII compartment the VFAs are converted into edible biomass, using the photoheterotroph Rodospirillum rubrum. Afterwards, the nitrifying CIII unit converts toxic levels of ammonia/ammonium into nitrate, which enables the effluent to be fed to the photoautotrohopic CIV stage, that provides food and oxygen for the crew (Godia et al., 2002). The highest nitrogen flux in a Life Support System is human urine. As nitrate is the preferred form of nitrogen fertilizer for hydroponic plant cultivation, urine nitrification is an essential process in the MELiSSA loop. The development of the Additional Unit for Water Treatment or Urine NItrification ConsortiUM (UNICUM) requires the selection and characterization of the microorganisms that will be used. The key microorganisms in the biological treatment of urine are heterotrophs, for the hydrolysis of urea into ammonia and carbon dioxide, Ammonia Oxidizing Bacteria (AOB), for the ammonia oxidation into nitrite and Nitrite Oxidizing Bacteria (NOB), for the conversion of nitrite into nitrate. The strains were selected according to predefined safety (non sporogenic and BSL 1) and metabolic (Ks, μmax) criteria. To evaluate functional consortia for space applications, ureolysis, nitritation and nitratation of the selected microorganisms and synthetic communities were elucidated. Additionally, urine is a matrix with a high salt content. Unhydrolised urine's EC ranges from 1.1 to 33.9 mS/cm, the mean value being 21.5 mS/cm (Marickar, 2010), while hydrolysed urine can reach higher levels, up to 75 mS/cm. This conditions could inhibit microbial metabolism, therefore the effect of salinity on urine nitrification was also elucidated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1379-1176 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151151 Serial 7573
Permanent link to this record
 

 
Author (up) Ilin, A.; Martyshov, M.; Forsh, E.; Forsh, P.; Rumyantseva, M.; Abakumov, A.; Gaskov, A.; Kashkarov, P.
Title UV effect on NO2 sensing properties of nanocrystalline In2O3 Type A1 Journal article
Year 2016 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 231 Issue 231 Pages 491-496
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline indium oxide films with extremely small grains in range of 7-40 nm are prepared by sol-gel method. The influence of grain size on the sensitivity of indium oxide to nitrogen dioxide in low concentration at room temperature is investigated under the UV illumination and without illumination. The sensitivity increases with the decrease of grain sizes when In2O3 is illuminated while in the dark In2O3 with intermediate grain size exhibits the highest response. An explanation of the different behavior of the In2O3 with different grain size sensitivity to NO2 under illumination and in the dark is proposed. We demonstrate that pulsed illumination may be used for NO2 detection at room temperature that significantly reduces the power consumption of sensor. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000374330900055 Publication Date 2016-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 27 Open Access
Notes Approved Most recent IF: 5.401
Call Number UA @ lucian @ c:irua:133630 Serial 4273
Permanent link to this record
 

 
Author (up) Iyikanat, F.; Senger, R.T.; Peeters, F.M.; Sahin, H.
Title Quantum-Transport Characteristics of a p-n Junction on Single-Layer TiS3 Type A1 Journal article
Year 2016 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 17 Issue 17 Pages 3985-3991
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By using density functional theory and non-equilibrium Green's function-based methods, we investigated the electronic and transport properties of a TiS3 monolayer p-n junction. We constructed a lateral p-n junction on a TiS3 monolayer using Li and F adatoms. An applied bias voltage caused significant variability in the electronic and transport properties of the TiS3 p-n junction. In addition, the spin-dependent current-volt-age characteristics of the constructed TiS3 p-n junction were analyzed. Important device characteristics were found, such as negative differential resistance and rectifying diode behaviors for spin-polarized currents in the TiS3 p-n junction. These prominent conduction properties of the TiS3 p-n junction offer remarkable opportunities for the design of nanoelectronic devices based on a recently synthesized single-layered material.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000389534800018 Publication Date 2016-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 12 Open Access
Notes ; This work was supported by the bilateral project between TUBITAK (through Grant No. 113T050) and the Flemish Science Foundation (FWO-Vl). The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). FI, HS, and RTS acknowledge the support from TUBITAK Project No 114F397. H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 3.075
Call Number UA @ lucian @ c:irua:140245 Serial 4458
Permanent link to this record
 

 
Author (up) Jacobs, W.; Reynaerts, C.; Andries, S.; van den Akker, S.; Moonen, N.; Lamoen, D.
Title Analyzing the dispersion of cargo vapors around a ship’s superstructure by means of wind tunnel experiments Type A1 Journal article
Year 2016 Publication Journal of marine science and technology Abbreviated Journal J Mar Sci Tech-Japan
Volume 21 Issue 21 Pages 758-766
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In a previous study, it was found that cargo tank operations like cleaning and venting, lead to higher cargo vapor concentrations around the ship’s superstructure. Can wind tunnel experiments confirm these findings? Is there an improvement when using higher outlets at high velocities compared to lower outlets with a low outlet velocity? Is there a relation between relative wind speed and measured concentration? These questions were investigated in the Peutz wind tunnel. By using a tracer gas for the wind tunnel experiments, concentration coefficients have been calculated for various settings. The study shows that using high-velocity outlets is an efficient way to keep concentrations as low as possible. The only exception is for relative wind directions from the bow. In this last case using a manhole as ventilation outlet leads to lower concentrations. With increasing wind speeds the building downwash effect resulted in higher concentration coefficients near the main deck. This study confirms our on-board measurements and suggests the lowering of the ventilation inlet of the accommodation, so that the high-velocity outlet can be used safely at all times.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000388260200015 Publication Date 2016-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0948-4280 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.838 Times cited 2 Open Access
Notes The authors would like to thank Peutz bv. at Molenhoek, the Netherlands, for providing the wind tunnel facilities and their assistance during the various stages of this research. Approved Most recent IF: 0.838
Call Number EMAT @ emat @ c:irua:138728 Serial 4326
Permanent link to this record
 

 
Author (up) Janssens, K.; Legrand, S.; van der Snickt, G.; Vanmeert, F.
Title Virtual archaeology of altered paintings : multiscale chemical imaging tools Type A1 Journal article
Year 2016 Publication Elements Abbreviated Journal Elements
Volume 12 Issue 1 Pages 39-44
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Understanding how painted works of art were constructed, layer-by-layer, requires a range of macroscopic and microscopic X-ray and infrared-based analytical methods. Deconstructing complex assemblies of paints horizontally across a picture and vertically through it provides insight into the detailed production process of the art work and on the painting techniques and styles of its maker. The unwanted chemical transformations that some paint pigments undergo are also detectable; these changes can alter the paint's optical properties. Understanding the chemistry behind such paint degradation gives conservators vital clues to counter these effects and is an invaluable asset in protecting these cultural artefacts for future generations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370987700007 Publication Date 2016-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1811-5209 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.038 Times cited 12 Open Access
Notes ; ; Approved Most recent IF: 4.038
Call Number UA @ admin @ c:irua:132301 Serial 5904
Permanent link to this record
 

 
Author (up) Janssens, K.; van der Snickt, G.; Alfeld, M.; Noble, P.; van Loon, A.; Delaney, J.; Conover, D.; Zeibel, J.; Dik, J.
Title Rembrandt's 'Saul and David' (c. 1652) : use of multiple types of smalt evidenced by means of non-destructive imaging Type A1 Journal article
Year 2016 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 126 Issue Pages 515-523
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The painting Saul and David, considered to date from c. 1652 and previously attributed to Rembrandt van Rijn and/or his studio, is a complex work of art that has been recently subjected to intensive investigation and conservation treatment. The goal of the research was to give insight into the painting's physical construction and condition in preparation for conservation treatment. It was also anticipated that analysis would shed light on authenticity questions and Rembrandt's role in the creation of the painting. The painting depicts the Old Testament figures of King Saul and David. At left is Saul, seated, holding a spear and wiping a tear from his eye with a curtain. David kneels before him at the right playing his harp. In the past, the large sections with the life-size figures were cut apart and later reassembled. A third piece of canvas was added to replace a missing piece of canvas above the head of David. As part of the investigation into the authenticity of the curtain area, a number of paint micro samples were examined with LM and SEM-EDX. Given that the earth, smalt and lake pigments used in the painting could not be imaged with traditional imaging techniques, the entire painting was also examined with state of the art non-destructive imaging techniques. Special attention was devoted to the presence of cobalt-containing materials, specifically the blue glass pigment smalt considered characteristic for the late Rembrandt. A combination of quantitative electron microprobe analysis and macroscopic X-ray fluorescence scanning revealed that three types of cobalt-containing materials are present in the painting. The first type is a cobalt drier that was found in the overpaint used to cover up the canvas inset and the joins that were added in the 19th century. The other two Co-containing materials are part of the original paint used by Rembrandt and comprise two varieties of smalt, a K-rich glass pigment that derives its gray-blue color by doping with Co-ions. Smalt paint with a higher Ni content (NiO:CoO ratio of around 1:4) was used to depict the blue stripes in Saul's colorful turban, while smalt with a lower Ni content was employed (NiO:CoO ratio of around 1:5) for the broad expanses of Saul's garments. The presence of two types of smalt not only supports the recent re-attribution of the painting to Rembrandt, but also that the picture was painted in two phases. Saul's dark red garment is painted in a rough, “loose” manner and the now discolored smalt-rich layer was found to have been partially removed during a past restoration treatment/s. In contrast, the blue-green smalt in the turban is much better preserved and provides a colorful accent. While the use of different types of smalt in a Rembrandt painting has been previously identified using quantitative EDX analysis of paint cross-sections, to the best of our knowledge this is the first time such a distinction has been observed in a 17th-century painting using non-destructive imaging techniques. In addition to the XRF-based non-invasive elemental mapping, hyperspectral imaging in the visual to near-infrared (VNIR) region was also carried out. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000373647500063 Publication Date 2016-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 18 Open Access
Notes ; This research is part of the ReVisualising late Rembrandt: Developing and Applying New Imaging Techniques research project, supported by the Science4Arts research program of the Netherlands Organisation for Scientific Research (NWO, The Hague, NL, ReVisRembrandt project) and the National Science Foundation (NSF, Washington DC, USA, award 1041827). We would like to thank colleagues of the Mauritshuis (The Hague, NL) and the Dutch Cultural Heritage Agency (RCE) in Rijswijk, NL for their support and assistance during the scanning of the Saul and David painting. The GOA project “SOLARPAINT” (University of Antwerp) and the Fund Baillet Latour (Brussels, B) are acknowledged for financial support to GvdS and KJ. We also like to acknowledge the help of Eliza Longhini and Stijn Legrand during some of the XRF scanning stages. ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:133258 Serial 5813
Permanent link to this record
 

 
Author (up) Janssens, K.; van der Snickt, G.; Vanmeert, F.; Legrand, S.; Nuyts, G.; Alfeld, M.; Monico, L.; Anaf, W.; de Nolf, W.; Vermeulen, M.; Verbeeck, J.; De Wael, K.
Title Non-invasive and non-destructive examination of artistic pigments, paints, and paintings by means of X-Ray methods Type A1 Journal article
Year 2016 Publication Topics in Current Chemistry Abbreviated Journal Topics Curr Chem
Volume 374 Issue 374 Pages 81
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Recent studies are concisely reviewed, in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples, and/or entire paintings from the seventeenth to the early twentieth century painters. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging, as well as with the combined use of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Microscopic XRF is a variant of the method that is well suited to visualize the elemental distribution of key elements, mostly metals, present in paint multi-layers, on the length scale from 1 to 100 μm inside micro-samples taken from paintings. In the context of the characterization of artists pigments subjected to natural degradation, the use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS and μ-XRD have proven themselves to be very suitable for such studies. Their use is often combined with microscopic Fourier transform infra-red spectroscopy and/or Raman microscopy since these methods deliver complementary information of high molecular specificity at more or less the same length scale as the X-ray microprobe techniques. Since microscopic investigation of a relatively limited number of minute paint samples, taken from a given work of art, may not yield representative information about the entire artefact, several methods for macroscopic, non-invasive imaging have recently been developed. Those based on XRF scanning and full-field hyperspectral imaging appear very promising; some recent published results are discussed.
Address
Corporate Author Thesis
Publisher Springer international publishing ag Place of Publication Cham Editor
Language Wos 000391178900006 Publication Date 2016-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2365-0869;2364-8961; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.033 Times cited 50 Open Access
Notes ; ; Approved Most recent IF: 4.033
Call Number UA @ lucian @ c:irua:139930UA @ admin @ c:irua:139930 Serial 4443
Permanent link to this record
 

 
Author (up) Jeanloz, S.; Lizin, S.; Beenaerts, N.; Brouwer, R.; Van Passel, S.; Witters, N.
Title Towards a more structured selection process for attributes and levels in choice experiments : a study in a Belgian protected area Type A1 Journal article
Year 2016 Publication Ecosystem Services Abbreviated Journal Ecosyst Serv
Volume 18 Issue Pages 45-57
Keywords A1 Journal article; Engineering Management (ENM)
Abstract The process of selecting attributes for inclusion in choice experiments frequently involves qualitative methods such as focus groups and interviews. In order for a choice experiment to be successful and the results to be valid, this qualitative selection process is essential. It often lacks rigour and is poorly described, particularly in environmental choice experiments. We propose a meticulous attribute and attribute-level selection process consisting of a scoring exercise and an interactive discussion. This paper provides a case study describing how attributes and attribute-levels were identified and selected for the National Park Hoge Kempen in Belgium. We carried out four focus groups and thirteen semi-structured interviews with various park stakeholders to select attributes from six categories: the four categories of ecosystem services (supporting, provisioning, regulating, cultural), infrastructure, and land use types. The top-ranked characteristics were nature conservation, natural forests, biodiversity refuge, wetlands, landscape variety, heathlands, air purification, and education. Both the scoring exercise and the interactive discussion contributed to the attributes selected for the CE. Following these, an ultimate expert consultation stage is recommended to approve both the attribute and attribute-level selection. The semi-qualitative protocol proposed in this paper can help practitioners and demonstrates how the results guide choice experiment design.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375213800004 Publication Date 2016-02-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-0416 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.072 Times cited 10 Open Access
Notes ; We would like to thank study informants, focus group participants and interviewees, as well as Tom Kuppens, Silvie Daniels, Janka Vanschoenwinkel and Michele Moretti of the Environmental Economics Research group of Hasselt University. Johan Van den Bosch, project leader at Regional Landschap Kempen en Maasland (RLKM), and Rolinde Demeyer from the Research Institute for Nature and Forest (INBO) have provided this study with valuable assistance and comments. Sarah Jeanloz was funded by the INTERREG IVB NEW program (Grant no. D1941/ 56200), Nele Witters (Grant no. 12B2913N) and Sebastien Lizin (Grant no. 12G5415N) are funded by Research Foundation- Flanders (FWD). Finally, we thank all reviewers for their constructive and insightful comments, and for their time. ; Approved Most recent IF: 4.072
Call Number UA @ admin @ c:irua:134332 Serial 6272
Permanent link to this record
 

 
Author (up) Jelić, Z.L.; Milošević, M.V.; Silhanek, A.V.
Title Velocimetry of superconducting vortices based on stroboscopic resonances Type A1 Journal article
Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 6 Issue Pages 35687
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract An experimental determination of the mean vortex velocity in superconductors mostly relies on the measurement of flux-flow resistance with magnetic field, temperature, or driving current. In the present work we introduce a method combining conventional transport measurements and a frequency-tuned flashing pinning potential to obtain reliable estimates of the vortex velocity. The proposed device is characterized using the time-dependent Ginzburg-Landau formalism, where the velocimetry method exploits the resonances in mean vortex dissipation when temporal commensuration occurs between the vortex crossings and the flashing potential. We discuss the sensitivity of the proposed technique on applied current, temperature and heat diffusion, as well as the vortex core deformations during fast motion.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000385919600001 Publication Date 2016-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 22 Open Access
Notes ; This work was supported by the Research Foundation-Flanders (FWO) and EU COST action MP1201. The work of Z.L.J. and A.V.S. was partially supported by “Mandat d'Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:144636 Serial 4701
Permanent link to this record
 

 
Author (up) Ji, G.; Tan, Z.; Lu, Y.; Schryvers, D.; Li, Z.; Zhang, D.
Title Heterogeneous interfacial chemical nature and bonds in a W-coated diamond/Al composite Type A1 Journal article
Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 112 Issue 112 Pages 129-133
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Heterogeneous Al/Al4C3/Al2O3/diamond{111}, Al/nanolayered Al4C3/diamond{111} and Al12W particle/Al4C3/Al2O3/diamond{111} multi-interfaces have been developed at the nanoscale in a W-coated diamond/Al composite produced by vacuum hot pressing. The formation of nanoscale Al4C3 crystals is strongly associated with local O enrichment and can be further promoted by Al12W interfacial particles. The latter effectively contributes to enhance interfacial chemical bonding reducing interfacial thermal resistance and, in turn, enhancing thermal conductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370109200015 Publication Date 2015-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 7 Open Access
Notes This work is financially supported by the FWO project of Belgium (No. U2 FA 070100/3506), the travel funding BQR (No. R8DIV AUE) provided by Université Lille 1, the National Natural Science Foundation of China (Grant No. 51401123) and the China Postdoctoral Science Foundation (Grant No. 2014 M561469) for Dr. Z.Q. Tan. Dr. W.G. Grünewald (LeicaMicrosystems, Germany) is also thanked for the assistance of surface preparation. Approved Most recent IF: 2.714
Call Number c:irua:129976 Serial 3987
Permanent link to this record
 

 
Author (up) Juchtmans, R.
Title Novel applications of vortex beams and spiral phase plates in transmission electron microscopy Type Doctoral thesis
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:135836 Serial 4394
Permanent link to this record
 

 
Author (up) Juchtmans, R.; Clark, L.; Lubk, A.; Verbeeck, J.
Title Spiral phase plate contrast in optical and electron microscopy Type A1 Journal article
Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A
Volume 94 Issue 94 Pages 023838
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The use of phase plates in the back focal plane of a microscope is a well-established technique in optical microscopy to increase the contrast of weakly interacting samples and is gaining interest in electron microscopy as well. In this paper we study the spiral phase plate (SPP), also called helical, vortex, or two-dimensional Hilbert phase plate, which adds an angularly dependent phase of the form exp(iℓϕk) to the exit wave in Fourier space. In the limit of large collection angles, we analytically calculate that the average of a pair of l=+-1

SPP filtered images is directly proportional to the gradient squared of the exit wave, explaining the edge contrast previously seen in optical SPP work. We discuss the difference between a clockwise-anticlockwise pair of SPP filtered images and derive conditions under which the modulus of the wave's gradient can be seen directly from one SPP filtered image. This work provides the theoretical background to interpret images obtained with a SPP, thereby opening new perspectives for new experiments to study, for example, magnetic materials in an electron microscope.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000381882800011 Publication Date 2016-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 10 Open Access
Notes The authors acknowledge support from the FWO (Aspirant Fonds Wetenschappelijk Onderzoek – Vlaanderen) and the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 and ERC Starting Grant No. 278510 VORTEX.; ECASJO_ Approved Most recent IF: 2.925
Call Number EMAT @ emat @ c:irua:140086 Serial 4418
Permanent link to this record
 

 
Author (up) Juchtmans, R.; Guzzinati, G.; Verbeeck, J.
Title Extension of Friedel's law to vortex-beam diffraction Type A1 Journal article
Year 2016 Publication Physical Review A Abbreviated Journal Phys Rev A
Volume 94 Issue 94 Pages 033858
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Friedel's law states that the modulus of the Fourier transform of real functions is centrosymmetric, while the phase is antisymmetric. As a consequence of this, elastic scattering of plane-wave photons or electrons within the first-order Born-approximation, as well as Fraunhofer diffraction on any aperture, is bound to result in centrosymmetric diffraction patterns. Friedel's law, however, does not apply for vortex beams, and centrosymmetry in general is not present in their diffraction patterns. In this work we extend Friedel's law for vortex beams by showing that the diffraction patterns of vortex beams with opposite topological charge, scattered on the same two-dimensional potential, always are centrosymmetric to one another, regardless of the symmetry of the scattering object. We verify our statement by means of numerical simulations and experimental data. Our research provides deeper understanding in vortex-beam diffraction and can be used to design new experiments to measure the topological charge of vortex beams with diffraction gratings or to study general vortex-beam diffraction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384374500010 Publication Date 2016-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 13 Open Access
Notes The authors acknowledge support from the FWO (Aspirant Fonds Wetenschappelijk Onderzoek – Vlaanderen) and the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 and ERC Starting Grant No. 278510 VORTEX.; ECASJO_; Approved Most recent IF: 2.925
Call Number EMAT @ emat @ c:irua:137200UA @ admin @ c:irua:137200 Serial 4314
Permanent link to this record
 

 
Author (up) Juchtmans, R.; Verbeeck, J.
Title Local orbital angular momentum revealed by spiral-phase-plate imaging in transmission-electron microscopy Type A1 Journal article
Year 2016 Publication Physical Review A Abbreviated Journal Phys Rev A
Volume 93 Issue 93 Pages 023811
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The orbital angular momentum (OAM) of light and matter waves is a parameter that has been getting increasingly more attention over the past couple of years. Beams with a well-defined OAM, the so-called vortex beams, are applied already in, e.g., telecommunication, astrophysics, nanomanipulation, and chiral measurements in optics and electron microscopy. Also, the OAM of a wave induced by the interaction with a sample has attracted a lot of interest. In all these experiments it is crucial to measure the exact (local) OAM content of the wave, whether it is an incoming vortex beam or an exit wave after interacting with a sample. In this work we investigate the use of spiral phase plates (SPPs) as an alternative to the programmable phase plates used in optics to measure OAM. We derive analytically how these can be used to study the local OAM components of any wave function. By means of numerical simulations we illustrate how the OAM of a pure vortex beam can be measured. We also look at a sum of misaligned vortex beams and show how, by using SPPs, the position and the OAM of each individual beam can be detected. Finally, we look at the OAM induced by a magnetic dipole on a free-electron wave and show how the SPP can be used to localize the magnetic poles and measure their “magnetic charge.” Although our findings can be applied to study the OAM of any wave function, our findings are of particular interest for electron microscopy where versatile programmable phase plates do not yet exist.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000369367700006 Publication Date 2016-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 12 Open Access
Notes The authors acknowledge support from the Aspirant Fonds Wetenschappelijk Onderzoek–Vlaanderen (FPO), the EU un- der the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2, and the ERC Starting Grant 278510 VORTEX.; esteem2jra2 ECASJO; Approved Most recent IF: 2.925
Call Number c:irua:131613 c:irua:131613UA @ admin @ c:irua:131613 Serial 4030
Permanent link to this record