|   | 
Details
   web
Records
Author (down) Luyten, W.; Van Tendeloo, G.; Amelinckx, S.; Collins, J.L.
Title Electron microscopy study of defects in synthetic diamond layers Type A1 Journal article
Year 1992 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal
Volume 66 Issue 6 Pages 899-915
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1992KC54700003 Publication Date 2007-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-8610;1460-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 36 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:4446 Serial 970
Permanent link to this record
 

 
Author (down) Luyten, W.; Krekels, T.; Amelinckx, S.; Van Tendeloo, G.; van Dyck, D.; van Landuyt, J.
Title Electron diffraction effects of conical, helically wound, graphite whiskers Type A1 Journal article
Year 1993 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 49 Issue Pages 123-131
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1993KV56700014 Publication Date 2002-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.436 Times cited 14 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:6784 Serial 917
Permanent link to this record
 

 
Author (down) Lutz, L.; Corte, D.A.D.; Chen, Y.; Batuk, D.; Johnson, L.R.; Abakumov, A.; Yate, L.; Azaceta, E.; Bruce, P.G.; Tarascon, J.-M.; Grimaud, A.
Title The role of the electrode surface in Na-Air batteries : insights in electrochemical product formation and chemical growth of NaO2 Type A1 Journal article
Year 2018 Publication Advanced energy materials Abbreviated Journal Adv Energy Mater
Volume 8 Issue 4 Pages 1701581
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The Na-air battery, because of its high energy density and low charging overpotential, is a promising candidate for low-cost energy storage, hence leading to intensive research. However, to achieve such a battery, the role of the positive electrode material in the discharge process must be understood. This issue is herein addressed by exploring the electrochemical reduction of oxygen, as well as the chemical formation and precipitation of NaO2 using different electrodes. Whereas a minor influence of the electrode surface is demonstrated on the electrochemical formation of NaO2, a strong dependence of the subsequent chemical precipitation of NaO2 is identified. In the origin, this effect stems from the surface energy and O-2/O-2(-) affinity of the electrode. The strong interaction of Au with O-2/O-2(-) increases the nucleation rate and leads to an altered growth process when compared to C surfaces. Consequently, thin (3 mu m) flakes of NaO2 are found on Au, whereas on C large cubes (10 mu m) of NaO2 are formed. This has significant impact on the cell performance and leads to four times higher capacity when C electrodes with low surface energy and O-2/O-2(-) affinity are used. It is hoped that these findings will enable the design of new positive electrode materials with optimized surfaces.
Address
Corporate Author Thesis
Publisher WILEY-VCH Verlag GmbH & Co. Place of Publication Weinheim Editor
Language Wos 000424152200009 Publication Date 2017-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.721 Times cited 13 Open Access Not_Open_Access
Notes ; L.L. thanks ALISTORE-ERI for his PhD grant. P.G.B. is indebted to the EPSRC for financial support, including the Supergen Energy Storage grant. ; Approved Most recent IF: 16.721
Call Number UA @ lucian @ c:irua:149269 Serial 4951
Permanent link to this record
 

 
Author (down) Lumbeeck, G.; Idrissi, H.; Amin-Ahmadi, B.; Favache, A.; Delmelle, R.; Samaee, V.; Proost, J.; Pardoen, T.; Schryvers, D.
Title Effect of hydriding induced defects on the small-scale plasticity mechanisms in nanocrystalline palladium thin films Type A1 Journal Article
Year 2018 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 124 Issue 22 Pages 225105
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Nanoindentation tests performed on nanocrystalline palladium films subjected to hydriding/dehydriding cycles demonstrate a significant softening when compared to the as-received material. The origin of this softening is unraveled by combining in situ TEM nanomechanical testing with automated crystal orientation mapping in TEM and high resolution TEM. The softening is attributed to the presence of a high density of stacking faults and of Shockley partial dislocations after hydrogen loading. The hydrogen induced defects affect the elementary plasticity mechanisms and the mechanical response by acting as preferential sites for twinning/detwinning during deformation. These results are analyzed and compared to previous experimental and simulation works in the literature. This study provides new insights into the effect of hydrogen on the atomistic deformation and cracking mechanisms as well as on the mechanical properties of nanocrystalline thin films and membranes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453254000025 Publication Date 2018-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 2 Open Access Not_Open_Access
Notes This work was supported by the Hercules Foundation under Grant No. AUHA13009, the Flemish Research Fund (FWO) under Grant No. G.0365.15N, and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. Dr. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). We would like to thank Dr. Hadi Pirgazi from UGent for his technical support to process the ACOM data in the OIM Analysis software. Approved Most recent IF: 2.068
Call Number EMAT @ emat @c:irua:155742 Serial 5135
Permanent link to this record
 

 
Author (down) Lumbeeck, G.; Delvaux, A.; Idrissi, H.; Proost, J.; Schryvers, D.
Title Analysis of internal stress build-up during deposition of nanocrystalline Ni thin films using transmission electron microscopy Type A1 Journal article
Year 2020 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 707 Issue Pages 138076
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ni thin films sputter-deposited at room temperature with varying Ar pressures were investigated with automated crystal orientation mapping in a transmission electron microscope to uncover the mechanisms controlling the internal stress build-up recorded in-situ during deposition. Large grains were found to induce behaviour similar to a stress-free nucleation layer. The measurements of grain size in most of the Ni thin films are in agreement with the island coalescence model. Low internal stress was observed at low Ar pressure and was explained by the presence of large grains. Relaxation of high internal stress was also noticed at the highest Ar pressure, which was attributed to a decrease of Σ3 twin boundary density due to a low deposition rate. The results provide insightful information to better understand the relationship between structural boundaries and the evolution of internal stress upon deposition of thin films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000539312200011 Publication Date 2020-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes This work was supported by the Hercules Foundation [Grant No. AUHA13009], the Flemish Research Fund (FWO) [Grant No. G.0365.15N], and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. Thin film deposition has been realised as part of the WallonHY project, funded by the Public Service of Wallonia – Department of Energy and Sustainable Building. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:169708 Serial 6370
Permanent link to this record
 

 
Author (down) Lumbeeck, G.
Title Mechanisms of nano-plasticity in as-deposited and hydrided nanocrystalline Pd and Ni thin films Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 130 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:164918 Serial 6309
Permanent link to this record
 

 
Author (down) Lukashin, A.V.; Eliseev, A.A.; Zhuravleva, N.G.; Vertegel, A.A.; Tretyakov, Y.D.; Lebedev, O.I.; Van Tendeloo, G.
Title One-step synthesis of shelled PbS nanoparticles in a layered double hydroxide matrix Type A1 Journal article
Year 2004 Publication Mendeleev communications Abbreviated Journal Mendeleev Commun
Volume Issue 4 Pages 174-176
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The one-step preparation of capped PbS nanoparticles in an inorganic matrix via UV-induced decomposition of lead thiosulfate complexes intercalated into a hydrotalcite-type layered double hydroxide is reported.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000224247100025 Publication Date 2004-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9436; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.741 Times cited 9 Open Access
Notes Approved Most recent IF: 1.741; 2004 IF: 0.640
Call Number UA @ lucian @ c:irua:103735 Serial 2468
Permanent link to this record
 

 
Author (down) Luhrs, C.C.; Molins, E.; Van Tendeloo, G.; Beltran-Porter, D.; Fuertes, A.
Title Crystal structure of Bi6Sr8-xCa3+xO22(-0.5\leq x\leq1.7): a mixed valence bismuth oxide related to perovskite Type A1 Journal article
Year 1998 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 10 Issue 7 Pages 1875-1881
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of BiSr8-xCa3+xO22 has been determined by single-crystal X-ray diffraction. This phase is the same as Bi9Sr11Ca5Oy that was previously studied by several authors as a secondary phase in the Bi-Sr-Ca-Cu-O system and coexists in thermodynamic equilibrium with the superconductors Bi2Sr2CuO6 and Bi2Sr2CaCu2O8 It crystallizes in the monoclinic space group P2(1)/c, with cell parameters a 11.037(3) Angstrom, b = 5.971(2) Angstrom, c = 19.703(7) Angstrom, beta = 101.46(3)degrees Z = 2. The structure was solved by direct methods and full-matrix least-squares refinement. It is built up by perovskite-related blocks of composition [Sr8-xBi2Ca3+xO16] that intergrow with double rows [Bi4O6] running along b. The perovskite blocks are formed by groups of five octahedra that are shifted from each other 3/2 root 2a(p) along [110](p) (a(p) being the parameter of the cubic perovskite subcell) in a zigzag configuration and are aligned with this direction parallel to the one forming an angle of 25" with the c axis. In turn, the perovskite blocks [Sr8-xBi2Ca3+xO16] are shifted from each other 1/2 of both a(p) and root 2a(p) along [100](p) and [110](p), respectively. In the double rows, two trivalent bismuth atoms are placed, forming dimeric anion complexes [Bi2O6].(6-).6- The oxygen atoms around bismuth in these dimers are placed in the vertexes of a distorted trigonal bipyramid, with one vacant position that would be occupied by the lone pairs characteristic for the electronic configuration of Bi(III). The B sites in the perovskite blocks are occupied by pentavalent bismuth atoms and calcium atoms; the remaining Sr and Ca ions occupy the A sites of the perovskite blocks with coordination numbers with oxygen ranging from 10 to 12. The mean valence for Bi is +3.67 [33.3% of Bi(V) and 66.7% of Bi(III)]. The oxygen vacancies are located in the boundaries between domains having the two possible configurations of the perovskite subcell as in the anionic superconductor Bi3BaO5.5. The oxidation of Bi6Sr8-xCa3+xO22 at 650 degrees C allows the complete filling of the oxygen vacancies to form the double perovskite (Sr2-xCax)Bi1.4Ca0.6O6 that shows 92.5% of bismuth in +5 oxidation state. The experimental high-resolution electon microscopy image and the electron diffraction pattern of powder samples along the [010]* zone axis are in good agreement with those calculated from the structural model obtained by single-crystal X-ray diffraction. The material is almost free of defects and the occurrence of planar defects is very exceptional.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000075019300023 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 6 Open Access
Notes Approved Most recent IF: 9.466; 1998 IF: 3.359
Call Number UA @ lucian @ c:irua:104328 Serial 570
Permanent link to this record
 

 
Author (down) Lubyshev, D.; Fastenau, J.M.; Fang, X.-M.; Wu, Y.; Doss, C.; Snyder, A.; Liu, W.K.; Lamb, M.S.M.; Bals, S.; Song, C.
Title Comparison of As- and P-based metamorphic buffers for high performance InP heterojunction bipolar transistor and high electron mobility transistor applications Type A1 Journal article
Year 2004 Publication Journal of vacuum science & technology. B. Microelectronics and nanometer structures. Processing, measurement and phenomena Abbreviated Journal
Volume 22 Issue 3 Pages 1565-1569
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Metamorphic buffers (M-buffers) consisting of graded InAlAs or bulk InP were employed for the production of InP-based epiwafers on GaAs substrates by molecular-beam epitaxy. The graded InAlAs is the standard for production metamorphic high electron mobility transistors (M-HEMTs), while the bulk InP offers superior thermal properties for higher current density circuits. The surface morphology and crystal structure of the two M-buffers showed different relaxation mechanisms. The graded InAlAs gave a cross-hatched pattern with nearly full relaxation and very effective dislocation filtering, while the bulk InP had a uniform isotropic surface with dislocations propagating further up towards the active layers. Both types of M-buffers had atomic force microscopy root-mean-square roughness values around 2030 Å. The Hall transport properties of high electron mobility transistors (HEMTs) grown on the InAlAs M-buffer, and a baseline HEMT grown lattice matched on InP, both had room-temperature mobilities >10 000 cm2/V s, while the M-HEMT on the InP M-buffer showed a decrease to 9000 cm2/V  s. Similarly, the dc parameters of a double heterojunction bipolar transistor (DHBT) grown on the InAlAs M-buffer were much closer to the baseline heterojunction bipolar transistor than a DHBT grown on the InP M-buffer. A high breakdown voltage of 11.3 V was achieved on an M-DHBT with the InAlAs M-buffer. We speculate that the degradation in device characteristics on the InP M-buffer was related to the incomplete dislocation filtering.
Address
Corporate Author Thesis
Publisher Place of Publication Woodbury, N.Y. Editor
Language Wos 000222481400141 Publication Date 2004-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-211X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 25 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:87596 Serial 427
Permanent link to this record
 

 
Author (down) Lubk, A.; Vogel, K.; Wolf, D.; Krehl, J.; Röder, F.; Clark, L.; Guzzinati, G.; Verbeeck, J.
Title Fundamentals of Focal Series Inline Electron Holography Type H1 Book chapter
Year 2016 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics / Hawkes, P.W. [edit.] Abbreviated Journal
Volume Issue Pages 105-147
Keywords H1 Book chapter; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Elsevier BV Place of Publication Editor
Language Wos Publication Date 2016-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1076-5670; http://id.crossref.org/isbn/9780128048115 ISBN 9780128048115 Additional Links UA library record
Impact Factor Times cited Open Access
Notes L.C., G.G., and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant no. 278510 VORTEX. A.L., K.V., J. K., D.W., and F.R. acknowledge funding from the DIP of the Deutsche Forschungsgesellschaft.; ECASJO_; Approved Most recent IF: NA
Call Number EMAT @ emat @ c:irua:140097UA @ admin @ c:irua:140097 Serial 4419
Permanent link to this record
 

 
Author (down) Lubk, A.; Javon, E.; Cherkashin, N.; Reboh, S.; Gatel, C.; Hytch, M.
Title Dynamic scattering theory for dark-field electron holography of 3D strain fields Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 136 Issue Pages 42-49
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Dark-held electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000327884700006 Publication Date 2013-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 18 Open Access
Notes European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference312483 – ESTEEM2); esteem2_jra4 Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:112836 Serial 766
Permanent link to this record
 

 
Author (down) Lubk, A.; Guzzinati, G.; Börrnert, F.; Verbeeck, J.
Title Transport of intensity phase retrieval of arbitrary wave fields including vortices Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 17 Pages 173902-173905
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The phase problem can be considered as one of the cornerstones of quantum mechanics intimately connected to the detection process and the uncertainty relation. The latter impose fundamental limits on the manifold phase reconstruction schemes invented to date, in particular, at small magnitudes of the quantum wave. Here, we show that a rigorous solution of the transport of intensity reconstruction (TIE) scheme in terms of a linear elliptic partial differential equation for the phase provides reconstructions even in the presence of wave zeros if particular boundary conditions are given. We furthermore discuss how partial coherence hampers phase reconstruction and show that a modified version of the TIE reconstructs the curl-free current density at arbitrary (in)coherence. Our results open the way for TIE-based phase retrieval of arbitrary wave fields, eventually containing zeros such as phase vortices.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000326148400006 Publication Date 2013-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 40 Open Access
Notes Esteem2; Vortex; esteem2ta ECASJO; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:111093 Serial 3726
Permanent link to this record
 

 
Author (down) Lubk, A.; Clark, L.; Guzzinati, G.; Verbeeck, J.
Title Topological analysis of paraxially scattered electron vortex beams Type A1 Journal article
Year 2013 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 87 Issue 3 Pages 033834-33838
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We investigate topological aspects of subnanometer electron vortex beams upon elastic propagation through atomic scattering potentials. Two main aspects can be distinguished: (i) significantly reduced delocalization compared to a similar nonvortex beam if the beam centers on an atomic column and (ii) site symmetry dependent splitting of higher-order vortex beams. Furthermore, the results provide insight into the complex vortex line fabric within the elastically scattered wave containing characteristic vortex loops predominantly attached to atomic columns and characteristic twists of vortex lines around atomic columns. DOI: 10.1103/PhysRevA.87.033834
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000316790600011 Publication Date 2013-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 26 Open Access
Notes Countatoms; Vortex; Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2013 IF: 2.991
Call Number UA @ lucian @ c:irua:108496 Serial 3673
Permanent link to this record
 

 
Author (down) Lubk, A.; Béché, A.; Verbeeck, J.
Title Electron Microscopy of Probability Currents at Atomic Resolution Type A1 Journal article
Year 2015 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 115 Issue 115 Pages 176101
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Atomic resolution transmission electron microscopy records the spatially resolved scattered electron density to infer positions, density, and species of atoms. These data are indispensable for studying the relation between structure and properties in solids. Here, we show how this signal can be augmented by the lateral probability current of the scattered electrons in the object plane at similar resolutions and fields of view. The currents are reconstructed from a series of three atomic resolution TEM images recorded under a slight difference of perpendicular line foci. The technique does not rely on the coherence of the electron beam and can be used to reveal electric, magnetic, and strain fields with incoherent electron beams as well as correlations in inelastic transitions, such as electron magnetic chiral dichroism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000363023700011 Publication Date 2015-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 12 Open Access
Notes J. V. and A. B. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. The Qu-Ant- EM microscope was partly funded by the Hercules fund from the Flemish Government. All authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483- ESTEEM2. J. V. acknowledges funding from the FWO under Project No. G.0044.13N.; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 8.462; 2015 IF: 7.512
Call Number c:irua:129190 c:irua:129190UA @ admin @ c:irua:129190 Serial 3954
Permanent link to this record
 

 
Author (down) Lu, Y.; Liu, X.-L.; He, L.; Zhang, Y.-X.; Hu, Z.-Y.; Tian, G.; Cheng, X.; Wu, S.-M.; Li, Y.-Z.; Yang, X.-H.; Wang, L.-Y.; Liu, J.-W.; Janiak, C.; Chang, G.-G.; Li, W.-H.; Van Tendeloo, G.; Yang, X.-Y.; Su, B.-L.
Title Spatial heterojunction in nanostructured TiO₂ and its cascade effect for efficient photocatalysis Type A1 Journal article
Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett
Volume 20 Issue 5 Pages 3122-3129
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A highly efficient photoenergy conversion is strongly dependent on the cumulative cascade efficiency of the photogenerated carriers. Spatial heterojunctions are critical to directed charge transfer and, thus, attractive but still a challenge. Here, a spatially ternary titanium-defected TiO2@carbon quantum dots@reduced graphene oxide (denoted as V-Ti@CQDs@rGO) in one system is shown to demonstrate a cascade effect of charges and significant performances regarding the photocurrent, the apparent quantum yield, and photocatalysis such as H-2 production from water splitting and CO2 reduction. A key aspect in the construction is the technologically irrational junction of Ti-vacancies and nanocarbons for the spatially inside-out heterojunction. The new “spatial heterojunctions” concept, characteristics, mechanism, and extension are proposed at an atomic- nanoscale to clarify the generation of rational heterojunctions as well as the cascade electron transfer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000535255300024 Publication Date 2020-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited 5 Open Access Not_Open_Access
Notes ; This work was supported by the joint National Natural Science Foundation of China-Deutsche Forschungsgemeinschaft (NSFC-DFG) project (NSFC grant 51861135313, DFG JA466/39-1), Fundamental Research Funds for the Central Universities (19lgpy113, 19lgzd16), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52) and Jilin Province Science and Technology Development Plan (20180101208JC). ; Approved Most recent IF: 10.8; 2020 IF: 12.712
Call Number UA @ admin @ c:irua:170263 Serial 6608
Permanent link to this record
 

 
Author (down) Lu, Y.; Cheng, X.; Tian, G.; Zhao, H.; He, L.; Hu, J.; Wu, S.-M.; Dong, Y.; Chang, G.-G.; Lenaerts, S.; Siffert, S.; Van Tendeloo, G.; Li, Z.-F.; Xu, L.-L.; Yang, X.-Y.; Su, B.-L.
Title Hierarchical CdS/m-TiO 2 /G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability Type A1 Journal article
Year 2018 Publication Nano energy Abbreviated Journal Nano Energy
Volume 47 Issue Pages 8-17
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Hierarchical semiconductors are the most important photocatalysts, especially for visible light-induced hydrogen production from water splitting. We demonstrate herein a hierarchical electrostatic assembly approach to hierarchical CdS/m-TiO2/G ternary photocatalyst, which exhibits high photoactivity and excellent photostability (more than twice the activity of pure CdS while 82% of initial photoactivity remained after 15 recycles during 80 h irradiation). The ternary nanojunction effect of the photocatalyst has been investigated from orbitals hybrid, bonding energy to atom-stress distortion and nano-interface fusion. And a coherent separation mechanism of charge carriers in the ternary system has been proposed at an atomic/nanoscale. This work offers a promising way to inhibit the photocorrosion of CdS and, more importantly, provide new insights for the design of ternary nanostructured photocatalysts with an ideal heterojunction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430057000002 Publication Date 2018-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.343 Times cited 58 Open Access Not_Open_Access
Notes This work supported by National Key R&D Program of China (2017YFC1103800), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), National Natural Science Foundation of China (U1663225, U1662134, 51472190, 51611530672, 21711530705, 51503166, 51602236, 21706199), International Science & Technology Cooperation Program of China (2015DFE52870), Natural Science Foundation of Hubei Province (2016CFA033, 2017CFB487), Open 22 Project Program of State Key Laboratory of Petroleum Pollution Control (PPC2016007) CNPC Research Institute of Safety and Environmental Technology., China Postdoctoral Science Foundation (2016M592400), Fundamental Research Funds for the Central Universities (WUT: 2017IVB012). Approved Most recent IF: 12.343
Call Number EMAT @ lucian @c:irua:150720 Serial 4925
Permanent link to this record
 

 
Author (down) Lu, Y.-G.; Verbeeck, J.; Turner, S.; Hardy, A.; Janssens, S.D.; De Dobbelaere, C.; Wagner, P.; Van Bael, M.K.; Van Tendeloo, G.
Title Analytical TEM study of CVD diamond growth on TiO2 sol-gel layers Type A1 Journal article
Year 2012 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
Volume 23 Issue Pages 93-99
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The early growth stages of chemical vapor deposition (CVD) diamond on a solgel TiO2 film with buried ultra dispersed diamond seeds (UDD) have been studied. In order to investigate the diamond growth mechanism and understand the role of the TiO2 layer in the growth process, high resolution transmission electron microscopy (HRTEM), energy-filtered TEM and electron energy loss spectroscopy (EELS) techniques were applied to cross sectional diamond film samples. We find evidence for the formation of TiC crystallites inside the TiO2 layer at different diamond growth stages. However, there is no evidence that diamond nucleation starts from these crystallites. Carbon diffusion into the TiO2 layer and the chemical bonding state of carbon (sp2/sp3) were both extensively investigated. We provide evidence that carbon diffuses through the TiO2 layer and that the diamond seeds partially convert to amorphous carbon during growth. This carbon diffusion and diamond to amorphous carbon conversion make the seed areas below the TiO2 layer grow and bend the TiO2 layer upwards to form the nucleation center of the diamond film. In some of the protuberances a core of diamond seed remains, covered by amorphous carbon. It is however unlikely that the remaining seeds are still active during the growth process.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000302887600017 Publication Date 2012-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 16 Open Access
Notes Iap; Esteem 026019; Fwo Approved Most recent IF: 2.561; 2012 IF: 1.709
Call Number UA @ lucian @ c:irua:95037UA @ admin @ c:irua:95037 Serial 111
Permanent link to this record
 

 
Author (down) Lu, Y.-G.; Turner, S.; Verbeeck, J.; Janssens, S.D.; Wagner, P.; Haenen, K.; Van Tendeloo, G.
Title Direct visualization of boron dopant distribution and coordination in individual chemical vapor deposition nanocrystalline B-doped diamond grains Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 101 Issue 4 Pages 041907
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The boron dopant distribution in individual heavily boron-doped nanocrystalline diamond film grains, with sizes ranging from 100 to 350nm in diameter, has been studied using a combination of high resolution annular dark field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy. Using these tools, the boron distribution and local boron coordination have been determined. Quantification results reveal embedding of B dopants in the diamond lattice, and a preferential enrichment of boron at defective areas and twin boundaries. Coordination mapping reveals a distinct difference in coordination of the B dopants in “pristine” diamond areas and in defective regions. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738885]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000306944700030 Publication Date 2012-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 59 Open Access
Notes This work was performed within the framework of an IAP P6/42 project of the Belgian government. The authors acknowledge financial support from the Fund for Scientific Research Flanders (FWO) under Contract No. G.0568.10N. The authors acknowledge support from the European Union under a Contract from an Integrated Infrastructure Initiative (Reference 262348 ESMI), the Marie Curie ITN “MATCON” (PITN-GA-2009-238201), and the Collaborative Project “DINAMO” (No. 245122). G.V.T. and J.V. acknowledge the ERC Grant N246791-COUNTATOMS and ERC Starting Grant 278510 VORTEX. S.T. gratefully acknowledges financial support from the FWO. The microscope used in this study was partially financed by the Hercules Foundation of the Flemish Government. ECASJO_; Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:100468UA @ admin @ c:irua:100468 Serial 726
Permanent link to this record
 

 
Author (down) Lu, Y.-G.; Turner, S.; Verbeeck, J.; Janssens, S.D.; Haenen, K.; Van Tendeloo, G.
Title Local bond length variations in boron-doped nanocrystalline diamond measured by spatially resolved electron energy-loss spectroscopy Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 103 Issue 3 Pages 032105-5
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Variations in local bond length and coordination in boron-doped nanocrystalline diamond (NCD) films have been studied through changes in the fine structure of boron and carbon K-edges in electron energy-loss spectra, acquired in a scanning transmission electron microscope. The presence of high concentrations of B in pristine diamond regions and enrichment of B at defects in single NCD grains is demonstrated. Local bond length variations are evidenced through an energy shift of the carbon 1s → σ* edge at B-rich defective regions within single diamond grains, indicating an expansion of the diamond bond length at sites with local high B content.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000322146300049 Publication Date 2013-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 15 Open Access
Notes Iap P6/42; Fwo G056810n; 262348 Esmi; 246791 Countatoms; 278510 Vortex; Fwo ECASJO_; Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:109210UA @ admin @ c:irua:109210 Serial 1824
Permanent link to this record
 

 
Author (down) Lu, Y.-G.; Turner, S.; Ekimov, E.A.; Verbeeck, J.; Van Tendeloo, G.
Title Boron-rich inclusions and boron distribution in HPHT polycrystalline superconducting diamond Type A1 Journal article
Year 2015 Publication Carbon Abbreviated Journal Carbon
Volume 86 Issue 86 Pages 156-162
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycrystalline boron-doped superconducting diamond, synthesized at high pressure and high temperature (HPHT) via a reaction of a single piece of crystalline boron with monolithic graphite, has been investigated by analytical transmission electron microscopy. The local boron distribution and boron environment have been studied by a combination of (scanning) transmission electron microscopy ((S)TEM) and spatially resolved electron energy-loss spectroscopy (EELS). High resolution TEM imaging and EELS elemental mapping have established, for the first time, the presence of largely crystalline diamond-diamond grain boundaries within the material and have evidenced the presence of substitutional boron dopants within individual diamond grains. Confirmation of the presence of substitutional B dopants has been obtained through comparison of acquired boron K-edge EELS fine structures with known references. This confirmation is important to understand the origin of superconductivity in polycrystalline B-doped diamond. In addition to the substitutional boron doping, boron-rich inclusions and triple-points, both amorphous and crystalline, with chemical compositions close to boron carbide B4C, are evidenced. (C) 2015 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000352922700019 Publication Date 2015-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 20 Open Access
Notes FWO; 246791 COUNTATOMS; 278510 VORTEX; Hercules ECASJO_; Approved Most recent IF: 6.337; 2015 IF: 6.196
Call Number c:irua:125994UA @ admin @ c:irua:125994 Serial 250
Permanent link to this record
 

 
Author (down) Lu, Y.
Title Electron energy-loss spectroscopy (EELS) characterization of diamond and related materials Type Doctoral thesis
Year 2013 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:111231 Serial 932
Permanent link to this record
 

 
Author (down) Lu, W.; Cui, W.; Zhao, W.; Lin, W.; Liu, C.; Van Tendeloo, G.; Sang, X.; Zhao, W.; Zhang, Q.
Title In situ atomistic insight into magnetic metal diffusion across Bi0.5Sb1.5Te3 quintuple layers Type A1 Journal article
Year 2022 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume Issue Pages 2102161
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Diffusion and occupancy of magnetic atoms in van der Waals (VDW) layered materials have significant impact on applications such as energy storage, thermoelectrics, catalysis, and topological phenomena. However, due to the weak VDW bonding, most research focus on in-plane diffusion within the VDW gap, while out-of-plane diffusion has rarely been reported. Here, to investigate out-of-plane diffusion in VDW-layered Bi2Te3-based alloys, a Ni/Bi0.5Sb1.5Te3 heterointerface is synthesized by depositing magnetic Ni metal on a mechanically exfoliated Bi0.5Sb1.5Te3 (0001) substrate. Diffusion of Ni atoms across the Bi0.5Sb1.5Te3 quintuple layers is directly observed at elevated temperatures using spherical-aberration-corrected scanning transmission electron microscopy (STEM). Density functional theory calculations demonstrate that the diffusion energy barrier of Ni atoms is only 0.31-0.45 eV when they diffuse through Te-3(Bi, Sb)(3) octahedron chains. Atomic-resolution in situ STEM reveals that the distortion of the Te-3(Bi, Sb)(3) octahedron, induced by the Ni occupancy, drives the formation of coherent NiM (M = Bi, Sb, Te) at the heterointerfaces. This work can lead to new strategies to design novel thermoelectric and topological materials by introducing magnetic dopants to VDW-layered materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000751742300001 Publication Date 2022-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 5.4
Call Number UA @ admin @ c:irua:186421 Serial 6960
Permanent link to this record
 

 
Author (down) Lu, Q.
Title Precipitation behavior and heat resistance properties of Al-Cu-Mg-Ag-(Si) alloy Type Doctoral thesis
Year 2024 Publication Abbreviated Journal
Volume Issue Pages VIII, 212 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract With the rapid increase in the speed of new-generation aerospace vehicles, conventional heat-resistant aluminum alloys cannot meet the long-term service of the equipment. Therefore, the development of new high-strength heat-resistant aluminum alloys is of great strategic for the sustainable and high-quality development of industries. Al-Cu-Mg-Ag alloy is an age-hardenable heat-resistant aluminum alloy and has high strength and heat resistance. The addition of alloying elements such as Si and Sc to Al-Cu-Mg-Ag alloy introduces a competitive relationship among the σ-Al5Cu6Mg2, θ′-Al2Cu, and Ω phases. Therefore, a systematic investigation of precipitation behavior and heat resistance of Al-Cu-Mg-Ag-(Si) is essential for guiding the design of high-strength heat-resistant aluminum alloys. Combined characterization testing methods such as scanning electron microscopy, transmission electron microscopy, atom probe tomography, microhardness testing, and tensile testing with simulation calculation methods such as calculation of phase diagram, first-principles calculations, and Ab initio molecular dynamics, the effects of heat treatment processes and element content on the precipitation behavior, mechanical properties, and heat resistance of Al-Cu-Mg-Ag-(Si) alloys were systematically investigated. Furthermore, a multiple interface segregation structure was constructed at the θ′/Al interface, and a new Al-Cu-Mg-Ag-Si-Sc alloy with synergistically improved strength and heat resistance was developed. The main conclusions are as follows: (1) Based on the Kampmann-Wagner-Numerical theory, the relationship between the coarsening rate of the Ω phase and the aging process was analyzed, revealing for the first time that the critical size of Ω phase ( ) under thermal exposure temperature was the key factor determining the coarsening rate of Ω phase during long time thermal exposure heat treatment. After artificial ageing, when the size of Ω phase was smaller than the critical size , the dissolution of smaller Ω phase leaded to a rapid decrease in the number density of Ω phases, thereby reducing the heat resistance of the alloy. When the size of Ω phase was greater than or equal to the critical size , the coarsening rate of Ω phase was consistent, but a larger initial size would result in a larger final size after long-term thermal exposure. Therefore, the closer the size of Ω phase in the alloy is to the critical size under heat exposure temperature, the better the heat resistance of the alloy. (2) A concept of constructing a multiple interface segregation structure at the precipitate/matrix interface was proposed, and based on this concept, a multiple interface segregation structure containing the C/L-AlMgSiCu interfacial phase, newly discovered χ-AgMg interfacial phase, and Sc segregation layer was successfully constructed at the θ′/Al interface. The existence of the multiple interface segregation structure ensured that the designed Al-Cu-Mg-Ag-Si-Sc alloy maintains a yield strength of 400 MPa after thermal exposure at 200 C for 100 h, with a strength retention rate of 97%, creating a new record for the synergistic improvement of strength and heat resistance in aluminum alloys. In addition, combining transmission electron microscopy ex-situ/in-situ characterization with first-principles calculations, it is shown that the χ-AgMg interface phase will be destroyed due to the diffusion of the outer Ag layer during thermal exposure, and gradually dissolve into the matrix, but it can still delay the coarsening behavior of θ′-Al2Cu phase. (3) The criteria for determining whether Ω phase can precipitate are updated in Al-Cu-Mg-Ag-Si alloys with low Mg/Si ratio based on phase diagram thermodynamic calculations and multi-scale structural characterization. When W(Mg)/W(Si) > 1.4 and X(Ag)/X(Mgexcess) > 1, Ω phase can precipitate in Al-Cu-Mg-Ag-Si alloys, where X(Mgexcess) represents the atomic percentage of residual Mg elements after the formation of the AlMgSiCu quaternary precipitate phase C/L phase in the supersaturated solid solution, and the W(Mg) is the mass fraction of Mg in the supersaturated solid solution before artificial ageing. (4) The effects of alloy element content on precipitation behavior and heat resistance of Al-Cu-Mg-Ag-Si alloys were systematically analyzed. Critical conditions for the precipitation of σ-Al5Cu6Mg2 and Ω phase in Al-Cu-Mg-Ag-Si alloys are revealed. Based on calculation of phase diagram results, the conditions for precipitating σ-Al5Cu6Mg2 phase in the alloy are: ① W(Mg)/W(Si) > 1.8; ② W(Cu) > 2.7W(Mg) – 5W(Si). When W(Mg)/W(Si) < 1.8, the alloy is mainly precipitated with C/L/Q′-AlMgSiCu. When W(Cu) < 2.7W(Mg) – 5W(Si), the alloy will generate GPB zone. In addition, W(Ag)/W(Si) > 4 is the critical condition which the Ω phase can the main precipitates in Al-Cu-Mg-Ag-Si alloys. Furthermore, the correlation between precipitate types and heat resistance was summarized, showing that Al-Cu-Mg-Ag-(Si) alloys with Ω phase as the main strengthening phase are more suitable for the preparation of structures with short service time but high temperature, while Al-Cu-Mg-Ag-(Si) alloys with low Mg content and multiple segregation structures are more suitable for structures requiring long-term service at medium to high temperatures. This study, for the first time, combines calculation of phase diagram with multi-scale microstructure characterization, systematically unraveling the effects of element content on precipitation behavior, strength, and heat resistance of Al-Cu-Mg-Ag-(Si) alloys. In addition, a concept of constructing a multiple interface segregation structure at the precipitate/matrix interface was proposed to synergistically improve alloy strength and heat resistance. This work provides theoretical guidance for optimizing the composition and processing of Al-Cu-Mg-Ag-(Si) alloy and regulating the microstructure. Furthermore, it also offers new ideas and theoretical guidance for the development of novel high-strength heat-resistant alloys in other systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:206180 Serial 9167
Permanent link to this record
 

 
Author (down) Lu, J.B.; Shi, H.; Sedlakova-Ignacova, S.; Espinoza, R.; Kopeček, J.; Sittner, P.; Bártová, B.; Schryvers, D.
Title Microstructure and precipitates in annealed Co38Ni33Al29 ferromagnetic shape memory alloy Type A1 Journal article
Year 2013 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
Volume 572 Issue Pages 5-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Transmission electron microscopy was performed to investigate the microstructure and precipitates in the annealed Co38Ni33Al29 ferromagnetic shape memory alloy. Apart from the dendritic secondary phase in the austenite matrix, micron-sized (up to 100 μm) fcc-based precipitates with partial γ′ L12 ordering and containing none, one or three {1 1 1}p parallel twin planes were found. The orientation relationship between the precipitates and matrix was found to be KurdjumovSachs. STEMEDX analysis indicates that twinned and non-twinned precipitates are Co-rich and Al- and Ni-deficient with respect to the matrix and with a lower Co/Al ratio for the latter. The 3D morphologies of precipitates were reconstructed with focused ion beam/scanning electron microscope dual-beam slice-and-view imaging, showing that the single {1 1 1}p plane twinned precipitates have a plate-like shape while the non-twinned precipitates are lath-like and often bent.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000319209600002 Publication Date 2013-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.133 Times cited 10 Open Access
Notes Approved Most recent IF: 3.133; 2013 IF: 2.726
Call Number UA @ lucian @ c:irua:107914 Serial 2058
Permanent link to this record
 

 
Author (down) Lu, J.B.; Schryvers, D.
Title Microstructure and phase composition characterization in a Co38Ni33Al29 ferromagnetic shape memory alloy Type A1 Journal article
Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 118 Issue 118 Pages 9-13
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Transmission electron microscopy was performed to investigate the microstructures of a secondary phase and its surrounding matrix in a Co38Ni33Al29 ferromagnetic shape memory alloy. The secondary phase shows a γ′ L12 structure exhibiting a dendritic morphology with enclosed B2 austenite regions while the matrix shows the L10 martensitic structure. A secondary phase-austenite-martensite sandwich structure with residual austenite ranging from several hundred nanometers to several micrometers wide is observed at the secondary phase-martensite interface due to the depletion of Co and enrichment of Al in the chemical gradient zone and the effect of the strong martensitic start temperature dependency of the element concentrations. The crystallographic orientation relationship of the secondary phase and the B2 austenite fits the Kurdjumov-Sachs relationship.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383292000002 Publication Date 2016-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 3 Open Access
Notes J.B. Lu thanks the Belgian Science Ministry (Belspo) for support of his post-doctoral research stay at EMAT. We thank S. Sedlakova-Ignacova from the Institute of Physics in Prague, Czech Republic, for providing samples. Approved Most recent IF: 2.714
Call Number c:irua:133100 Serial 4071
Permanent link to this record
 

 
Author (down) Lu, J.; Roeffaers, M.B.J.; Bartholomeeusen, E.; Sels, B.F.; Schryvers, D.
Title Intergrowth of components and ramps in coffin-shaped ZSM-5 zeolite crystals unraveled by focused ion beam-assisted transmission electron microscopy Type A1 Journal article
Year 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 20 Issue 1 Pages 42-49
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Scanning electron microscopy, focused ion beam (FIB), and transmission electron microscopy are combined to study the intergrowth of 90 degrees rotational components and of ramps in coffin-shaped ZSM-5 crystals. The 90 degrees rotational boundaries with local zig-zag features between different intergrowth components are observed in the main part of crystal. Also a new kind of displacement boundary is described. At the displacement boundary there is a shift of the unit cells along the boundary without a change in orientation. Based on lamellae prepared with FIB from different positions of the ramps and crystal, the orientation relationships between ramps and the main part of the crystal are studied and the three-dimensional morphology and growth mechanism of the ramp are illustrated.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000335378400006 Publication Date 2013-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 7 Open Access
Notes Approved Most recent IF: 1.891; 2014 IF: 1.877
Call Number UA @ lucian @ c:irua:117688 Serial 1697
Permanent link to this record
 

 
Author (down) Lu, J.; Martinez, G.T.; Van Aert, S.; Schryvers, D.
Title Lattice deformations in quasi-dynamic strain glass visualised and quantified by aberration corrected electron microscopy Type A1 Journal article
Year 2014 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 251 Issue 10 Pages 2034-2040
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Advanced transmission electron microscopy and statistical parameter estimated quantification procedures were applied to study the room temperature quasi-dynamical strain glass state in NiTi alloys. Nanosized strain pockets are visualised and the displacements of the atom columns are quantified. A comparison is made with conventional high-resolution transmission electron microscopy images of point defect induced strains in NiAl alloys.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000344360000009 Publication Date 2014-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 2 Open Access
Notes Fwo Approved Most recent IF: 1.674; 2014 IF: 1.489
Call Number UA @ lucian @ c:irua:120471 Serial 1801
Permanent link to this record
 

 
Author (down) Lu, J.; Bartholomeeusen, E.; Sels, B.F.; Schryvers, D.
Title Internal architecture of coffin-shaped ZSM-5 zeolite crystals with hourglass contrast unravelled by focused ion beam-assisted transmission electron microscopy: INTERNAL ARCHITECTURE OF COFFIN-SHAPED Type A1 Journal article
Year 2017 Publication Journal of microscopy Abbreviated Journal J Microsc-Oxford
Volume 265 Issue 265 Pages 27-33
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Optical microscopy, focused ion beam and transmission electron microscopy are combined to study the internal architecture in a coffin-shaped ZSM-5 crystal showing an hourglass contrast in optical microscopy. Based on parallel lamellas from different positions in the crystal, the orientation relationships between the intergrowth components of the crystal are studied and the internal architecture and growth mechanism are illustrated. The crystal is found to contain two pyramid-like components aside from a central component. Both pyramid-like components are rotated by 90 degrees along the common c-axis and with respect to the central component while the interfaces between the components show local zig-zag feature, the latter indicating variations in relative growth velocity of the two components. The pyramid-like intergrowth components are larger and come closer to one another in the middle of the crystal than at the edges, but they do not connect. A model of multisite nucleation and growth of 90 degrees intergrowth components is proposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000392487400004 Publication Date 2016-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2720 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.692 Times cited 4 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G.0603.10N ; Approved Most recent IF: 1.692
Call Number EMAT @ emat @ c:irua:141015 Serial 4437
Permanent link to this record
 

 
Author (down) Lottini, E.; López-Ortega, A.; Bertoni, G.; Turner, S.; Meledina, M.; Van Tendeloo, G.; de Julián Fernández, C.; Sangregorio, C.
Title Strongly Exchange Coupled Core|Shell Nanoparticles with High Magnetic Anisotropy: A Strategy toward Rare-Earth-Free Permanent Magnets Type A1 Journal article
Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 28 Issue 28 Pages 4214-4222
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Antiferromagnetic(AFM)|ferrimagnetic(FiM) core|shell (CS) nanoparticles (NPs) of formula Co0.3Fe0.7O|Co0.6Fe2.4O4 with mean diameter from 6 to 18 nm have been synthesized through a one-pot thermal decomposition process. The CS structure has been generated by topotaxial oxidation of the core region, leading to the formation of a highly monodisperse single inverted AFM|FiM CS system with variable AFM-core diameter and constant FiM-shell thickness (~2 nm). The sharp interface, the high structural matching between both phases and the good crystallinity of the AFM material have been structurally demonstrated and are corroborated by the robust exchange-coupling between AFM and FiM phases, which gives rise to one among the largest exchange bias (HE) values ever reported for CS NPs (8.6 kOe) and to a strongly enhanced coercive field (HC). In addition, the investigation of the magnetic properties as a function of the AFM-core size (dAFM), revealed a non-monotonous trend of both HC and HE, which display a maximum value for dAFM = 5 nm (19.3 and 8.6 kOe, respectively). These properties induce a huge improvement of the capability of storing energy of the material, a result which suggests that the combination of highly anisotropic AFM|FiM materials can be an efficient strategy towards the realization of novel Rare Earth-free permanent magnets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000378973100013 Publication Date 2016-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 48 Open Access
Notes This work was supported by the EU-FP7 through NANOPYME Project (No. 310516) and Integrated Infrastructure Initiative ESTEEM2 (No. 312483). S.T. gratefully acknowledges the FWO Flanders for a post-doctoral scholarship.; esteem2_ta Approved Most recent IF: 9.466
Call Number c:irua:134084 c:irua:134084 Serial 4092
Permanent link to this record
 

 
Author (down) Loreto, S.; Vanrompay, H.; Mertens, M.; Bals, S.; Meynen, V.
Title The influence of acids on tuning the pore size of mesoporous TiO2 templated by non-ionic block copolymers Type A1 Journal article
Year 2018 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume 2018 Issue 2018 Pages 62-65
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract <script type='text/javascript'>document.write(unpmarked('We show the possibility to tune the pore size of mesoporous TiO2 templated by non-ionic block copolymers by adding different inorganic acids at well-chosen concentration. The effect of the inorganic anions on both the TiO2 cluster formation and the non-ionic block copolymers micelles is investigated to explain the experimental results.'));
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000419706000008 Publication Date 2017-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-1948 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 6 Open Access OpenAccess
Notes ; This work was supported by the Research Foundation-Flanders (FWO) (grant G.0687.13) and the University of Antwerp (BOF project). Hans Vanrompay gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO grant 1S32617N). Sara Bals acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). ; ecas_Sara Approved Most recent IF: 2.444
Call Number UA @ lucian @ c:irua:147897UA @ admin @ c:irua:147897 Serial 4881
Permanent link to this record