|   | 
Details
   web
Records
Author (up) Hadermann, J.; Abakumov, A.M.; Perkisas, T.; d' Hondt, H.; Tan, H.; Verbeeck, J.; Filonenko, V.P.; Antipov, E.V.; Van Tendeloo, G.
Title New perovskite-based manganite Pb2Mn2O5 Type A1 Journal article
Year 2010 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 183 Issue 183 Pages 2190-2195
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new perovskite based compound Pb2Mn2O5 has been synthesized using a high pressure high temperature technique. The structure model of Pb2Mn2O5 is proposed based on electron diffraction, high angle annular dark field scanning transmission electron microscopy and high resolution transmission electron microscopy. The compound crystallizes in an orthorhombic unit cell with parameters a=5.736(1)Å≈√2a p p p (a p the parameter of the perovskite subcell) and space group Pnma. The Pb2Mn2O5 structure consists of quasi two-dimensional perovskite blocks separated by 1/2[110] p (1̄01) p crystallographic shear planes. The blocks are connected to each other by chains of edge-sharing MnO5 distorted tetragonal pyramids. The chains of MnO5 pyramids and the MnO6 octahedra of the perovskite blocks delimit six-sided tunnels accommodating double chains of Pb atoms. The tunnels and pyramidal chains adopt two mirror-related configurations (left L and right R) and layers consisting of chains and tunnels of the same configuration alternate in the structure according to an -LRLR-sequence. The sequence is sometimes locally violated by the appearance of -LL- or -RR-fragments. A scheme is proposed with a JahnTeller distortion of the MnO6 octahedra with two long and two short bonds lying in the ac plane, along two perpendicular orientations within this plane, forming a d-type pattern.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000282139600041 Publication Date 2010-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 8 Open Access
Notes Fwo; Bof; Esteem 026019 Approved Most recent IF: 2.299; 2010 IF: 2.261
Call Number UA @ lucian @ c:irua:85472UA @ admin @ c:irua:85472 Serial 2332
Permanent link to this record
 

 
Author (up) Hadermann, J.; Abakumov, A.M.; Tsirlin, A.A.; Filonenko, V.P.; Gonnissen, J.; Tan, H.; Verbeeck, J.; Gemmi, M.; Antipov, E.V.; Rosner, H.
Title Direct space structure solution from precession electron diffraction data: resolving heavy and light scatterers in Pb13Mn9O25 Type A1 Journal article
Year 2010 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 110 Issue 7 Pages 881-890
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of a novel compound Pb13Mn9O25 has been determined through a direct space structure solution with a Monte-Carlo-based global optimization using precession electron diffraction data (a=14.177(3) Å, c=3.9320(7) Å, SG P4/m, RF=0.239) and compositional information obtained from energy dispersive X-ray analysis and electron energy loss spectroscopy. This allowed to obtain a reliable structural model even despite the simultaneous presence of both heavy (Pb) and light (O) scattering elements and to validate the accuracy of the electron diffraction-based structure refinement. This provides an important benchmark for further studies of complex structural problems with electron diffraction techniques. Pb13Mn9O25 has an anion- and cation-deficient perovskite-based structure with the A-positions filled by the Pb atoms and 9/13 of the B positions filled by the Mn atoms in an ordered manner. MnO6 octahedra and MnO5 tetragonal pyramids form a network by sharing common corners. Tunnels are formed in the network due to an ordered arrangement of vacancies at the B-sublattice. These tunnels provide sufficient space for localization of the lone 6s2 electron pairs of the Pb2+ cations, suggested as the driving force for the structural difference between Pb13Mn9O25 and the manganites of alkali-earth elements with similar compositions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000280050900023 Publication Date 2010-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 24 Open Access
Notes Fwo; Bof; Esteem Approved Most recent IF: 2.843; 2010 IF: 2.063
Call Number UA @ lucian @ c:irua:84085UA @ admin @ c:irua:84085 Serial 721
Permanent link to this record
 

 
Author (up) Hadermann, J.; Abakumov, A.M.; Tsirlin, A.A.; Rozova, M.G.; Sarakinou, E.; Antipov, E.V.
Title Expanding the Ruddlesden-Popper manganite family : the n=3 La3.2Ba0.8Mn3O10 Member Type A1 Journal article
Year 2012 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 51 Issue 21 Pages 11487-11492
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract La3.2Ba0.8Mn3O10, a representative of the rare n = 3 members of the Ruddlesden-Popper manganites A(n+1)Mn(n)O(3n+1), was synthesized in an evacuated sealed silica tube. Its crystal structure was refined from a combination of powder X-ray diffraction (PXD) and precession electron diffraction (PED) data, with the rotations of the MnO6 octahedra described within the symmetry-adapted mode approach (space group Cccm, a = 29.068(1) angstrom, b = 5.5504(5) angstrom, c = 5.5412(5) angstrom; PXD RF = 0.053, RP = 0.026; PED RF = 0.248). The perovskite block in La3.2Ba0.8Mn3O10 features an octahedral tilting distortion with out-of-phase rotations of the Mn06 octahedra according to the (Phi,Phi,0)(Phi,Phi,0) mode, observed for the first time in the n = 3 Ruddlesden-Popper structures. The Mn06 octahedra demonstrate a noticeable deformation with the elongation of two apical Mn-O bonds due to the Jahn-Teller effect in the Mn3+ cations. The relationships between the octahedral tilting distortion, the ionic radii of the cations at the A- and B-positions, and the mismatch between the perovslcite and rock-salt blocks of the Ruddlesden-Popper structure are discussed. At low temperatures, La3.2Ba0.8Mn3O10 reveals a sizable remnant magnetization of about 1.3 mu(B)/Mn at 2K, and shows signatures of spin freezing below 150 K.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000313220200036 Publication Date 2012-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 2 Open Access
Notes Approved Most recent IF: 4.857; 2012 IF: 4.593
Call Number UA @ lucian @ c:irua:110121 Serial 1133
Permanent link to this record
 

 
Author (up) Hadermann, J.; Abakumov, A.M.; Turner, S.; Hafideddine, Z.; Khasanova, N.R.; Antipov, E.V.; Van Tendeloo, G.
Title Solving the structure of Li ion battery materials with precession electron diffraction : application to Li2CoPo4F Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue 15 Pages 3540-3545
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of the Li2CoPO4F high-voltage cathode for Li ion rechargeable batteries has been completely solved from precession electron diffraction (PED) data, including the location of the Li atoms. The crystal structure consists of infinite chains of CoO4F2 octahedra sharing common edges and linked into a 3D framework by PO4 tetrahedra. The chains and phosphate anions together delimit tunnels filled with the Li atoms. This investigation demonstrates that PED can be successfully applied for obtaining structural information on a variety of Li-containing electrode materials even from single micrometer-sized crystallites.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000293357100019 Publication Date 2011-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 46 Open Access
Notes Fwo; Bof Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:90357 Serial 3053
Permanent link to this record
 

 
Author (up) Hadermann, J.; Abakumov, A.M.; Van Rompaey, S.; Mankevich, A.S.; Korsakov, I.E.
Title Comment on ALaMn2O6-y (A = K, Rb): novel ferromagnetic manganites exhibiting negative giant magnetoresistance Type Editorial
Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 21 Issue 9 Pages 2000-2001
Keywords Editorial; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000265781000036 Publication Date 2009-04-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 4 Open Access
Notes Approved Most recent IF: 9.466; 2009 IF: 5.368
Call Number UA @ lucian @ c:irua:77055 Serial 411
Permanent link to this record
 

 
Author (up) Hadermann, J.; Abakumov, A.M.; Van Tendeloo, G.; Shpanchenko, R.V.; Oleinikov, P.N.; Antipov, E.V.
Title Anion ordering in fluorinated La2CuO4 Type H1 Book chapter
Year 1999 Publication Abbreviated Journal
Volume Issue Pages 133-138
Keywords H1 Book chapter; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication s.l. Editor
Language Wos 000079308200022 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:29278 Serial 122
Permanent link to this record
 

 
Author (up) Hadermann, J.; Khasanova, N.R.; Van Tendeloo, G.; Abakumov, A.M.; Rozova, M.G.; Alekseeva, A.M.; Antipov, E.V.
Title Suppression of modulations in fluorinated Bi-2201 phases Type A1 Journal article
Year 2001 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 156 Issue Pages 445-451
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000167252000027 Publication Date 2002-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 8 Open Access
Notes Approved Most recent IF: 2.299; 2001 IF: 1.614
Call Number UA @ lucian @ c:irua:36046 Serial 3386
Permanent link to this record
 

 
Author (up) Hadermann, J.; Van Tendeloo, G.; Abakumov, A.M.
Title Transmission electron microscopy and structural phase transitions in anion-deficient perovskite-based oxides Type A1 Journal article
Year 2005 Publication Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A
Volume 61 Issue 1 Pages 77-92
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos 000225865500008 Publication Date 2004-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0108-7673; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.725 Times cited 18 Open Access
Notes Approved Most recent IF: 5.725; 2005 IF: 1.791
Call Number UA @ lucian @ c:irua:51442 Serial 3706
Permanent link to this record
 

 
Author (up) Hadermann, J.; Van Tendeloo, G.; Abakumov, A.M.; Pavlyuk, B.P.; Rozova, M.G.; Antipov, E.V.
Title Structural transformation in fluorinated LaACuGaO5 (A=Ca, Sr) brownmillerites Type A1 Journal article
Year 2000 Publication International journal of inorganic materials Abbreviated Journal Int J Inorg Mater
Volume 2 Issue 6 Pages 493-502
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000165985400005 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1466-6049; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 13 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:36043 Serial 3265
Permanent link to this record
 

 
Author (up) Hadermann, J.; Van Tendeloo, G.; Abakumov, A.M.; Rozova, M.G.; Antipov, E.V.
Title HREM study of fluorinated Nd2CuO4 Type A1 Journal article
Year 2001 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 157 Issue Pages 56-61
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000167634500008 Publication Date 2002-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 7 Open Access
Notes Approved Most recent IF: 2.299; 2001 IF: 1.614
Call Number UA @ lucian @ c:irua:36047 Serial 1510
Permanent link to this record
 

 
Author (up) Hendrickx, M.; Paulus, A.; Kirsanova, M.A.; Van Bael, M.K.; Abakumov, A.M.; Hardy, A.; Hadermann, J.
Title The influence of synthesis method on the local structure and electrochemical properties of Li-rich/Mn-rich NMC cathode materials for Li-Ion batteries Type A1 Journal article
Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 12 Issue 13 Pages 2269-18
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electrochemical energy storage plays a vital role in combating global climate change. Nowadays lithium-ion battery technology remains the most prominent technology for rechargeable batteries. A key performance-limiting factor of lithium-ion batteries is the active material of the positive electrode (cathode). Lithium- and manganese-rich nickel manganese cobalt oxide (LMR-NMC) cathode materials for Li-ion batteries are extensively investigated due to their high specific discharge capacities (>280 mAh/g). However, these materials are prone to severe capacity and voltage fade, which deteriorates the electrochemical performance. Capacity and voltage fade are strongly correlated with the particle morphology and nano- and microstructure of LMR-NMCs. By selecting an adequate synthesis strategy, the particle morphology and structure can be controlled, as such steering the electrochemical properties. In this manuscript we comparatively assessed the morphology and nanostructure of LMR-NMC (Li1.2Ni0.13Mn0.54Co0.13O2) prepared via an environmentally friendly aqueous solution-gel and co-precipitation route, respectively. The solution-gel (SG) synthesized material shows a Ni-enriched spinel-type surface layer at the {200} facets, which, based on our post-mortem high-angle annual dark-field scanning transmission electron microscopy and selected-area electron diffraction analysis, could partly explain the retarded voltage fade compared to the co-precipitation (CP) synthesized material. In addition, deviations in voltage fade and capacity fade (the latter being larger for the SG material) could also be correlated with the different particle morphology obtained for both materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000824547500001 Publication Date 2022-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 5.3
Call Number UA @ admin @ c:irua:189591 Serial 7098
Permanent link to this record
 

 
Author (up) Hervieu, M.; Damay, F.; Poienar, M.; Elkaim, E.; Rouquette, J.; Abakumov, A.M.; Van Tendeloo, G.; Maignan, A.; Martin, C.
Title Nanostructures in LuFe2O4+\delta Type A1 Journal article
Year 2013 Publication Solid state sciences Abbreviated Journal Solid State Sci
Volume 23 Issue Pages 26-34
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A LuFe2O4+delta sample, previously characterized by X-ray synchrotron and neutron diffraction, has been studied by electron microscopy techniques, in order to get a precise description of its micro- and nanostructures at room temperature. The X-ray synchrotron data vs. temperature show that the monoclinic distortion is associated with the charge ordering; this distortion results in elongated twinning domains, which enhance the complexity of the microstructural state at room temperature. The structural modulation associated with oxygen excess is observed in large domains inside a non modulated matrix, in contrast with the modulations associated with the charge ordering of the Fe2+ and Fe3+ species, which are mostly short-range. The investigation of the nature and density of defects in the sample shows that they are nano-scaled, preserving the regularity of the layer stacking mode, and limited to the formation of one- or two-units large stacking faults, associated with gliding mechanisms. Based on these observations, an original description of the LuFe2O4 ferrite structure, through puckered [LuO4](infinity) sandwiching [Fe-2](infinity) layers, is proposed. (C) 2013 Elsevier Masson SAS. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000324156200005 Publication Date 2013-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.811 Times cited 7 Open Access
Notes Approved Most recent IF: 1.811; 2013 IF: 1.679
Call Number UA @ lucian @ c:irua:111196 Serial 2276
Permanent link to this record
 

 
Author (up) Ilin, A.; Martyshov, M.; Forsh, E.; Forsh, P.; Rumyantseva, M.; Abakumov, A.; Gaskov, A.; Kashkarov, P.
Title UV effect on NO2 sensing properties of nanocrystalline In2O3 Type A1 Journal article
Year 2016 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 231 Issue 231 Pages 491-496
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline indium oxide films with extremely small grains in range of 7-40 nm are prepared by sol-gel method. The influence of grain size on the sensitivity of indium oxide to nitrogen dioxide in low concentration at room temperature is investigated under the UV illumination and without illumination. The sensitivity increases with the decrease of grain sizes when In2O3 is illuminated while in the dark In2O3 with intermediate grain size exhibits the highest response. An explanation of the different behavior of the In2O3 with different grain size sensitivity to NO2 under illumination and in the dark is proposed. We demonstrate that pulsed illumination may be used for NO2 detection at room temperature that significantly reduces the power consumption of sensor. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000374330900055 Publication Date 2016-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 27 Open Access
Notes Approved Most recent IF: 5.401
Call Number UA @ lucian @ c:irua:133630 Serial 4273
Permanent link to this record
 

 
Author (up) Isaeva, A.A.; Makarevich, O.N.; Kutznetsov, A.N.; Doert, T.; Abakumov, A.M.; Van Tendeloo, G.
Title Mixed tellurides Ni3-xGaTe2 (0\leq x\leq0.65): crystal and electronic structures, properties, and nickel deficiency effects on vacancy ordering Type A1 Journal article
Year 2010 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume Issue 9 Pages 1395-1404
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Ni3-xGaTe2 series of compounds (0 x 0.65) was synthesized by a high-temperature ceramic technique at 750 °C. Crystal structures of three compounds in the series were determined by X-ray powder diffraction: Ni2.98(1)GaTe2 (RI = 0.042, Rp = 0.023, Rwp = 0.035), Ni2.79(1)GaTe2 (RI = 0.053, Rp = 0.028, Rwp = 0.039), Ni2.58(1)GaTe2 (RI = 0.081, Rp = 0.037, Rwp = 0.056); the structures were verified by electron diffraction and, for the former compound, high-resolution electron microscopy. The compounds crystallize in a hexagonal lattice with P63/mmc, and the structures can be regarded as a hexagonal close-packed array with a -Ga-Te-Te- stacking sequence. The octahedral and trigonal bipyramidal voids in the hcp structure are selectively filled with Ni atoms to form one entirely occupied and two partially occupied sites, thus allowing variations in the nickel content in the series of compounds Ni3-xGaTe2 (0 x 0.65). A superstructure with asup = 2asub (P63/mmc) has been identified for Ni3-xGaTe2 (0.5 x 0.65) by electron diffraction. Real-space, high-resolution images confirm an ordering of Ni atoms and vacancies inthe ab plane. Quantum-chemical calculations performed forNi3-xGaTe2 (x = 0, 0.25, 0.75, 1) suggest anisotropic metallic conductivity and Pauli paramagnetic behavior that are experimentally confirmed for Ni3GaTe2.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000276370300009 Publication Date 2010-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-1948;1099-0682; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 8 Open Access
Notes Approved Most recent IF: 2.444; 2010 IF: 2.910
Call Number UA @ lucian @ c:irua:82266 Serial 2090
Permanent link to this record
 

 
Author (up) Juchtmans, R.; Béché, A.; Abakumov, A.; Batuk, M.; Verbeeck, J.
Title Using electron vortex beams to determine chirality of crystals in transmission electron microscopy Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 094112
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We investigate electron vortex beams elastically scattered on chiral crystals. After deriving a general expression for the scattering amplitude of a vortex electron, we study its diffraction on point scatterers arranged on a helix. We derive a relation between the handedness of the helix and the topological charge of the electron vortex on one hand and the symmetry of the higher-order Laue zones in the diffraction pattern on the other for kinematically and dynamically scattered electrons. We then extend this to atoms arranged on a helix as found in crystals which belong to chiral space groups and propose a method to determine the handedness of such crystals by looking at the symmetry of the diffraction pattern. In contrast to alternative methods, our technique does not require multiple scattering, which makes it possible to also investigate extremely thin samples in which multiple scattering is suppressed. In order to verify the model, elastic scattering simulations are performed, and an experimental demonstration on Mn2Sb2O7 is given in which we find the sample to belong to the right-handed variant of its enantiomorphic pair. This demonstrates the usefulness of electron vortex beams to reveal the chirality of crystals in a transmission electron microscope and provides the required theoretical basis for further developments in this field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352017000002 Publication Date 2015-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 54 Open Access
Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra1; esteem2jra2 ECASJO_; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:125512 c:irua:125512 Serial 3825
Permanent link to this record
 

 
Author (up) Kalyuzhnaya, A.S.; Abakumov, A.M.; Rozova, M.G.; d' Hondt, H.; Hadermann, J.; Antipov, E.V.
Title Synthesis and crystal structure of the new complex oxide Ca7Mn2.14Ga5.86O17.93 Type A1 Journal article
Year 2010 Publication Russian chemical bulletin Abbreviated Journal Russ Chem B+
Volume 59 Issue 4 Pages 706-711
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The complex oxide Ca7Mn2.14Ga5.86O17.93 was synthesized by the solid-state reaction in a sealed evacuated quartz tube at 1000 °C. Its crystal structure was determined by electron diffraction and X-ray powder diffraction. The structure can be represented as a tetrahedral framework, viz., the polyanion [(Mn0.285Ga0.715)15O29.86]19- stabilized by the incorporated cation [Ca14GaO6]19+. The polycation consists of the GaO6 octahedra surrounded by the Ca atoms, which are arranged to form a cube capped at all places. The tetrahedral framework is partially disordered due to the presence of tetrahedra with two possible orientations in the positions (0, 0, 0) and (x, x, x) with x ≈ 0.15 and 0.17. The relationship between the Ca7Mn2.14Ga5.86O17.93 structures and related ordered phases with the symmetry F23, as well as the influence of the oxygen content on the ordering in the tetrahedral framework, are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000283302000006 Publication Date 2010-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1066-5285;1573-9171; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.529 Times cited 1 Open Access
Notes Approved Most recent IF: 0.529; 2010 IF: 0.629
Call Number UA @ lucian @ c:irua:85675 Serial 3427
Permanent link to this record
 

 
Author (up) Kaminsky, F.V.; Ryabchikov, I.D.; McCammon, C.A.; Longo, M.; Abakumov, A.M.; Turner, S.; Heidari, H.
Title Oxidation potential in the Earth's lower mantle as recorded by ferropericlase inclusions in diamond Type A1 Journal article
Year 2015 Publication Earth and planetary science letters Abbreviated Journal Earth Planet Sc Lett
Volume 417 Issue 417 Pages 49-56
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ferropericlase (fPer) inclusions from kimberlitic lower-mantle diamonds recovered in the Juina area, Mato Grosso State, Brazil were analyzed with transmission electron microscopy, electron energy-loss spectroscopy and the flank method. The presence of exsolved non-stoichiometric Fe3+-enriched clusters, varying in size from 1-2 nm to 10-15 nm and comprising similar to 3.64 vol.% of fPer was established. The oxidation conditions necessary for fPer formation within the uppermost lower mantle (P = 25 GPa, T = 1960 K) vary over a wide range: Delta log f(o2) (IW) from 1.58 to 7.76 (Delta = 6.2), reaching the fayalite-magnetite-quartz (FMQ) oxygen buffer position. This agrees with the identification of carbonates and free silica among inclusions within lower-mantle Juina diamonds. On the other hand, at the base of the lower mantle Delta log f(o2) values may lie at and below the iron-wustite (IW) oxygen buffer. Hence, the variations of Delta log f(o2) values within the entire sequence of the lower mantle may reach ten logarithmic units, varying from the IW buffer to the FMQ buffer values. The similarity between lower- and upper-mantle redox conditions supports whole mantle convection, as already suggested on the basis of nitrogen and carbon isotopic compositions in lower- and upper-mantle diamonds. The mechanisms responsible for redox differentiation in the lower mantle may include subduction of oxidized crustal material, mechanical separation of metallic phase(s) and silicate-oxide mineral assemblages enriched in ferric iron, as well as transfer of fused silicate-oxide material presumably also enriched in ferric iron through the mantle. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000351799400006 Publication Date 2015-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0012-821X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.409 Times cited 23 Open Access
Notes Approved Most recent IF: 4.409; 2015 IF: 4.734
Call Number c:irua:125451 Serial 2539
Permanent link to this record
 

 
Author (up) Karakulina, O.M.; Demortière, A.; Dachraoui, W.; Abakumov, A.M.; Hadermann, J.
Title In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion batteries Type A1 Journal article
Year 2018 Publication Nano letters Abbreviated Journal Nano Lett
Volume 18 Issue 10 Pages 6286-6291
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We demonstrate that changes in the unit cell structure of lithium battery cathode materials during electrochemical cycling in liquid electrolyte can be determined for particles of just a few hundred nanometers in size using in situ transmission electron microscopy (TEM). The atomic coordinates, site occupancies (including lithium occupancy), and cell parameters of the materials can all be reliably quantified. This was achieved using electron diffraction tomography (EDT) in a sealed electrochemical cell with conventional liquid electrolyte (LP30) and LiFePO4 crystals, which have a well-documented charged structure to use as reference. In situ EDT in a liquid environment cell provides a viable alternative to in situ X-ray and neutron diffraction experiments due to the more local character of TEM, allowing for single crystal diffraction data to be obtained from multiphased powder samples and from submicrometer- to nanometer-sized particles. EDT is the first in situ TEM technique to provide information at the unit cell level in the liquid environment of a commercial TEM electrochemical cell. Its application to a wide range of electrochemical experiments in liquid environment cells and diverse types of crystalline materials can be envisaged.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000447355400024 Publication Date 2018-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 12 Open Access Not_Open_Access: Available from 08.09.2019
Notes O.M. Karakulina, A.M. Abakumov and J. Hadermann acknowledge support from FWO under grant G040116N. A. Demortière wants to thank the French network on the electrochemical energy storage (RS2E), the Store-Ex Labex, for the financial support. Finally, the Fonds Européen de Développement Régional (FEDER), CNRS, Région Hauts-de-France, and Ministère de l’Education Nationale de l’Enseignement Supérieur et de la Recherche are acknowledged for funding. Approved Most recent IF: 12.712
Call Number EMAT @ emat @c:irua:154750 Serial 5063
Permanent link to this record
 

 
Author (up) Karakulina, O.M.; Khasanova, N.R.; Drozhzhin, O.A.; Tsirlin, A.A.; Hadermann, J.; Antipov, E.V.; Abakumov, A.M.
Title Antisite Disorder and Bond Valence Compensation in Li2FePO4F Cathode for Li-Ion Batteries Type A1 Journal article
Year 2016 Publication Chemistry Of Materials Abbreviated Journal Chem Mater
Volume 28 Issue 28 Pages 7578-7581
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000387518500004 Publication Date 2016-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 10 Open Access
Notes Russian Science Foundation, 16-19-00190 ; Fonds Wetenschappelijk Onderzoek, G040116N ; Approved Most recent IF: 9.466
Call Number EMAT @ emat @ c:irua:139170 c:irua:138599 Serial 4320
Permanent link to this record
 

 
Author (up) Kazakov, S.M.; Abakumov, A.M.; Perz-Mato, J.M.; Ovchinnikov, A.V.; Roslova, M.V.; Boltalin, A.I.; Morozov, I.V.; Antipov, E.V.; Van Tendeloo, G.
Title Uniform patterns of Fe-vacancy ordering in the Kx(Fe,Co)2-ySe2 superconductors Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue 19 Pages 4311-4316
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Fe-vacancy ordering patterns in the superconducting KxFe2ySe2 and nonsuperconducting Kx(Fe,Co)2ySe2 samples have been investigated by electron diffraction and high angle annular dark field scanning transmission electron microscopy. The Fe-vacancy ordering occurs in the ab plane of the parent ThCr2Si2-type structure, demonstrating two types of patterns. Superstructure I retains the tetragonal symmetry and can be described with the aI = bI = as√5 (as is the unit cell parameter of the parent ThCr2Si2-type structure) supercell and I4/m space group. Superstructure II reduces the symmetry to orthorhombic with the aII = as√2, bII = 2as√2 supercell and the Ibam space group. This type of superstructure is observed for the first time in KxFe2ySe2. The Fe-vacancy ordering is inhomogeneous: the disordered areas interleave with the superstructures I and II in the same crystallite. The observed superstructures represent the compositionally dependent uniform ordering patterns of two species (the Fe atoms and vacancies) on a square lattice. More complex uniform ordered configurations, including compositional stripes, can be predicted for different chemical compositions of the KxFe2ySe2 (0 < y < 0.5) solid solutions.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000295487800005 Publication Date 2011-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 20 Open Access
Notes Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:92805 Serial 3810
Permanent link to this record
 

 
Author (up) Kazin, P.E.; Abakumov, A.M.; Zaytsev, D.D.; Tretyakov, Y.D.; Khasanova, N.R.; Van Tendeloo, G.; Jansen, M.
Title Synthesis and crystal structure of Sr2ScBiO6 Type A1 Journal article
Year 2001 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 162 Issue 1 Pages 142-147
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000172586400019 Publication Date 2002-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 3 Open Access
Notes Approved Most recent IF: 2.299; 2001 IF: 1.614
Call Number UA @ lucian @ c:irua:54710 Serial 3426
Permanent link to this record
 

 
Author (up) Khasanova, N.R.; Van Tendeloo, G.; Lebedev, O.I.; Amelinckx, S.; Grippa, A.Y.; Abakumov, A.M.; Istomin, S.Y.; D'yachenko, O.G.; Antipov, E.V.
Title A new structure type of the ternary sulfide Eu1.3Nb1.9S5 Type A1 Journal article
Year 2002 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 164 Issue 2 Pages 345-353
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000174848000020 Publication Date 2002-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 2 Open Access
Notes Approved Most recent IF: 2.299; 2002 IF: 1.671
Call Number UA @ lucian @ c:irua:54714 Serial 2334
Permanent link to this record
 

 
Author (up) King, G.; Abakumov, A.M.; Hadermann, J.; Alekseeva, A.M.; Rozova, M.G.; Perkisas, T.; Woodward, P.M.; Van Tendeloo, G.; Antipov, E.V.
Title Crystal structure and phase transitions in Sr3WO6 Type A1 Journal article
Year 2010 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 49 Issue 13 Pages 6058-6065
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structures of the beta and gamma polymorphs of Sr3WO6 and the gamma <->beta phase transition have been investigated using electron diffraction, synchrotron X-ray powder diffraction, and neutron powder diffraction. The gamma-Sr3WO6 polymorph is stable above T-c approximate to 470 K and adopts a monoclinically distorted double perovskite A(2)BB'O-6= Sr2SrWO6 structure (space group Cc, a = 10.2363(1)angstrom, b= 17.9007(1)angstrom, c= 11.9717(1)angstrom, beta=125.585(1)degrees at T= 1373 K, Z=12, corresponding to a = a(p)+1/2b(p) – 1/2c(p), b =3/2b(p) + 3/2c(p), c =-b(p) + c(p), a(p),b(p), c(p), lattice vectors of the parent Fm (3) over barm double perovskite structure). Upon cooling it undergoes a continuous phase transition into the triclinically distorted beta-Sr3WO6 phase (space group Cl, a = 10.09497(3)angstrom, b = 17.64748(5)angstrom, c = 11.81400(3)angstrom, alpha = 89.5470(2)degrees, beta= 125.4529(2)degrees, gamma =90.2889(2)degrees at T= 300 K). Both crystal structures of Sr3WO6 belong to a family of double perovskites with broken corner sharing connectivity of the octahedral framework. A remarkable feature of the gamma-Sr3WO6 structure is a non-cooperative rotation of the WO6 octahedra. One third of the WO6 octahedra are rotated by 45 about either the bp or the cp axis of the parent double perovskite structure. As a result, the WO6 octahedra do not share corners but instead share edges with the coordination polyhedra of the Sr cations at the B positions increasing their coordination number from 6 to 7 or 8. The crystal structure of the beta-phase is very close to the structure of the gamma-phase; decreasing symmetry upon the gamma ->beta transformation occurs because of unequal octahedral rotation angles about the bp and cp axes and increasing distortions of the WO6 octahedra.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000279211500036 Publication Date 2010-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 18 Open Access
Notes Approved Most recent IF: 4.857; 2010 IF: 4.326
Call Number UA @ lucian @ c:irua:83877 Serial 562
Permanent link to this record
 

 
Author (up) King, G.; Abakumov, A.M.; Woodward, P.M.; Llobet, A.; Tsirlin, A.A.; Batuk, D.; Antipov, E.V.
Title The high-temperature polymorphs of K3AlF6 Type A1 Journal article
Year 2011 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 50 Issue 16 Pages 7792-7801
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structures of the three high-temperature polymorphs of K3AlF6 have been solved from neutron powder diffraction, synchrotron X-ray powder diffraction, and electron diffraction data. The β-phase (stable between 132 and 153 °C) and γ-phase (stable between 153 to 306 °C) can be described as unusually complex superstructures of the double-perovskite structure (K2KAlF6) which result from noncooperative tilting of the AlF6 octahedra. The β-phase is tetragonal, space group I4/m, with lattice parameters of a = 13.3862(5) Å and c = 8.5617(3) Å (at 143 °C) and Z = 10. In this phase, one-fifth of the AlF6 octahedra are rotated about the c-axis by 45° while the other four-fifths remain untilted. The large 45° rotations result in edge sharing between these AlF6 octahedra and the neighboring K-centered polyhedra, resulting in pentagonal bipyramidal coordination for four-fifths of the K+ ions that reside on the B-sites of the perovskite structure. The remaining one-fifth of the K+ ions on the B-sites retain octahedral coordination. The γ-phase is orthorhombic, space group Fddd, with lattice parameters of a = 36.1276(4) Å, b = 17.1133(2) Å, and c = 12.0562(1) Å (at 225 °C) and Z = 48. In the γ-phase, one-sixth of the AlF6 octahedra are randomly rotated about one of two directions by 45° while the other five-sixths remain essentially untilted. These rotations result in two-thirds of the K+ ions on the B-site obtaining 7-fold coordination while the other one-third remain in octahedral coordination. The δ-phase adopts the ideal cubic double-perovskite structure, space group Fmm, with a = 8.5943(1) Å at 400 °C. However, pair distribution function analysis shows that locally the δ-phase is quite different from its long-range average crystal structure. The AlF6 octahedra undergo large-amplitude rotations which are accompanied by off-center displacements of the K+ ions that occupy the 12-coordinate A-sites.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000293493100052 Publication Date 2011-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 19 Open Access
Notes Approved Most recent IF: 4.857; 2011 IF: 4.601
Call Number UA @ lucian @ c:irua:91131 Serial 1468
Permanent link to this record
 

 
Author (up) Kirsanova, M.A.; De Sloovere, D.; Karakulina, O.M.; Hadermann, J.; Van Bael, M.K.; Hardy, A.; Abakumov, A.M.
Title Toward unlocking the Mn3+/Mn2+ redox pair in alluaudite-type Na2+2zMn2-z(SO4)3-x(SeO4)x cathodes for sodium-ion batteries Type A1 Journal article
Year 2019 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 277 Issue 277 Pages 804-810
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In polyanion cathodes, the inductive effect alters the potential of a M(n+1)+/Mn+ redox couple (M – transition metal) according to the electronegativity of the X cation in the polyanion groups (XO4m+). To manipulate the operating potential, we synthesized a series of mixed sulfate-selenate alluaudites, with structure formulas Na2+2zMn2-z(SO4)(3-x)(SeO4)(x) and Na2.81Ni1.60(SO4)(1.43)(SeO4)(1.57). Their crystal structure was determined from powder X-ray diffraction data, revealing that the Mn-based alluaudites form solid solutions with the same crystal structure for x = 0.75; 1.125 and 1.5. Na2.81Ni1.60(SO4)(1.43)(SeO4)(1.57) is isostructural to the Mn-based alluaudites. Although the Na2+2zMn2-z(SO4)(3-x)(SeO4)(x) compound with the highest selenium content demonstrates a reversible discharge capacity of 60 mAh g(-1), only a small part of this electrochemical activity can be ascribed to the Mn3+/Mn2+ redox couple. The redox potential of the Mn3+/Mn2+ pair in Na2+2zMn2-z(SO4)(3-)x(SeO4)(x) decreases with increasing values of x, in agreement with the lower electronegativity of Se compared to that of S.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000481726300103 Publication Date 2019-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.299 Times cited Open Access
Notes ; The authors thank the Russian Foundation for Basic Research for financial support (grant 17-03-00370), in addition to Research Foundation-Flanders (project No G040116). ; Approved Most recent IF: 2.299
Call Number UA @ admin @ c:irua:162852 Serial 5401
Permanent link to this record
 

 
Author (up) Kirsanova, M.A.; Mori, T.; Maruyama, S.; Abakumov, A.M.; Van Tendeloo, G.; Olenev, A.; Shevelkov, A.V.
Title Cationic clathrate of type-III Ge172-xPxTey (y\approx21,5, x\approx2y) : synthesis, crystal structure and thermoelectric properties Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 52 Issue 14 Pages 8272-8279
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A first germanium-based cationic clathrate of type-III, Ge129.3P42.7Te21.53, was synthesized and structurally characterized (space group P42/mnm, a = 19.948(3) Å, c = 10.440(2) Å, Z = 1). In its crystal structure, germanium and phosphorus atoms form three types of polyhedral cages centered with Te atoms. The polyhedra share pentagonal and hexagonal faces to form a 3D framework. Despite the complexity of the crystal structure, the Ge129.3P42.7Te21.53 composition corresponds to the Zintl counting scheme with a good accuracy. Ge129.3P42.7Te21.53 demonstrates semiconducting/insulating behavior of electric resistivity, high positive Seebeck coefficient (500 μV K1 at 300 K), and low thermal conductivity (<0.92 W m1 K1) within the measured temperature range.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000322087100052 Publication Date 2013-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 3 Open Access
Notes Countatoms Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number UA @ lucian @ c:irua:109214 Serial 301
Permanent link to this record
 

 
Author (up) Kirsanova, M.A.; Mori, T.; Maruyama, S.; Matveeva; Batuk, D.; Abakumov, A.M.; Gerasimenko, A.V.; Olenev, A.V.; Grin, Y.; Shevelkov, A.V.
Title Synthesis, structure, and transport properties of type-I derived clathrate Ge46-xPxSe8-y (x=15.4(1); y=0-2.65) with diverse host-guest bonding Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 52 Issue 2 Pages 577-588
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A first clathrate compound with selenium guest atoms, [Ge46-xPx]Se8-y square(y) (x = 15.4(1); y = 0-2.65; square denotes a vacancy), was synthesized as a single-phase and structurally characterized. It crystallizes in the space group Fm (3) over bar with the unit cell parameter a varying from 20.310(2) to 20.406(2) angstrom and corresponding to a 2 x 2 x 2 supercell of a usual clathrate-I structure. The superstructure is formed due to the symmetrical arrangement of the three-bonded framework atoms appearing as a result of the framework transformation of the parent clathrate-I structure. Selenium guest atoms occupy two types of polyhedral cages inside the positively charged framework; all selenium atoms in the larger cages form a single covalent bond with the framework atoms, relating the title compounds to a scanty family of semiclathrates. According to the measurements of electrical resistivity and Seebeck coefficient, [Ge46-xPx]Se8-y square(y) is an n-type semiconductor with E-g = 0.41 eV for x = 15.4(1) and y = 0; it demonstrates the maximal thermoelectric power factor of 2.3 x 10(-5) W K-2 m(-1) at 660 K.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000314007500010 Publication Date 2012-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 14 Open Access
Notes Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number UA @ lucian @ c:irua:107689 Serial 3463
Permanent link to this record
 

 
Author (up) Kirsanova, M.A.; Olenev, A.V.; Abakumov, A.M.; Bykov, M.A.; Shevelkov, A.V.
Title Extension of the clathrate family : the type X clathrate Ge79P29S18Te6 Type A1 Journal article
Year 2011 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 50 Issue 10 Pages 2371-2374
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Now they are 10! The title compound displays a new type of crystal structure and is labeled clathrate X according to the general classification of clathrate structures. In contrast to typical clathrates, this compound has three-coordinate atoms within the framework and combines distorted 24-vertex polyhedra (see picture, green) centered around tellurium guest atoms with very irregular 10-vertex polyhedra around sulfur atoms (yellow).
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000288036300033 Publication Date 2011-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 23 Open Access
Notes Approved Most recent IF: 11.994; 2011 IF: 13.455
Call Number UA @ lucian @ c:irua:88793 Serial 1158
Permanent link to this record
 

 
Author (up) Kirsanova, M.A.; Reshetova, L.N.; Olenev, A.V.; Abakumov, A.M.; Shevelkov, A.V.
Title Semiclathrates of the GePTe system : synthesis and crystal structures Type A1 Journal article
Year 2011 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 17 Issue 20 Pages 5719-5726
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Novel compounds [Ge46−xPx]Tey (13.9≤x≤15.6, 5.92≤y≤7.75) with clathrate-like structures have been prepared and structurally characterized. They crystallize in the space group Fmequation image with the unit cell parameter changing from 20.544(2) to 20.698(2) Å (Z=8) on going from x=13.9 to x=15.6. Their crystal structure is composed of a covalently bonded Ge[BOND]P framework that hosts tellurium atoms in the guest positions and can be viewed as a peculiar variant of the type I clathrate superstructure. In contrast to the conventional type I clathrates, [Ge46−xPx]Tey contain tricoordinated (3b) atoms and no vacancies in the framework positions. As a consequence of the transformation of the framework, the majority of the guest tellurium atoms form a single covalent bond with the host framework and thus the title compounds are the first representative of semiclathrates with covalent bonding. A comparison is made with silicon clathrates and the evolution of the crystal structure upon changing the tellurium content is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000290216000028 Publication Date 2011-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited 17 Open Access
Notes Approved Most recent IF: 5.317; 2011 IF: 5.925
Call Number UA @ lucian @ c:irua:89773 Serial 2981
Permanent link to this record
 

 
Author (up) Kolchina, L. M.; Lyskov, N.V.; Kuznetsov, A.N.; Kazakov, S.M.; Galin, M.Z.; Meledin, A.; Abakumov, A.M.; Bredikhin, S.I.; Mazo, G.N.; Antipov, E.V.
Title Evaluation of Ce-doped Pr2CuO4for potential application as a cathode material for solid oxide fuel cells Type A1 Journal article
Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 6 Issue 6 Pages 101029-101037
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Pr2−xCexCuO4 (x = 0.05; 0.1; 0.15) samples were synthesized and systematically characterized towards application as a cathode material for solid oxide fuel cells (SOFCs). High-temperature electrical conductivity, thermal expansion, and electrocatalytic activity in the oxygen reduction reaction (ORR) were examined. The electrical conductivity of Pr2−xCexCuO4 oxides demonstrates semiconducting behavior up to 900 °C. Small Ce-doping (2.5 at%) allows an increase in electrical conductivity from 100 to 130 S cm−1 in air at 500–800 °C. DFT calculations revealed that the density of states directly below the Fermi level, comprised mainly of Cu 3d and O 2p states, is significantly affected by atoms in rare earth positions, which might give an indication of a correlation between calculated electronic structures and measured conducting properties. Ce-doping in Pr2−xCexCuO4 slightly increases TEC from 11.9 × 10−6 K−1 for x = 0 to 14.2 × 10−6 K−1 for x = 0.15. Substitution of 2.5% of Pr atoms in Pr2CuO4 by Ce is effective to enhance the electrochemical performance of the material as a SOFC cathode in the ORR (ASR of Pr1.95Ce0.05CuO4 electrode applied on Ce0.9Gd0.1O1.95 electrolyte is 0.39 Ω cm2 at 750 °C in air). The peak power density achieved for the electrolyte-supported fuel cell with the Pr1.95Ce0.05CuO4 cathode is 150 mW cm−2 at 800 °C
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000387427700044 Publication Date 2016-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 7 Open Access
Notes his work was partially supported by Russian Foundation for Basic Research (grant no. 153820247), Skolkovo Institute of Science and Technology (Center of electrochemical energy), and MSUdevelopment Program up to 2020. K.L.M. is grateful to Haldor Topsøe A/S for the financial support. Approved Most recent IF: 3.108
Call Number EMAT @ emat @ c:irua:136441 Serial 4296
Permanent link to this record