|   | 
Details
   web
Records
Author (down) Egli, H.; Dassenakis, M.; Garelick, H.; Van Grieken, R.; Peijnenburg, W.J.G.M.; Klasinc, L.; Kördel, W.; Priest, N.; Tavares, T.
Title Minimum requirements for reporting analytical data for environmental samples Type A1 Journal article
Year 2003 Publication Pure and applied chemistry Abbreviated Journal
Volume 75 Issue Pages 1097-1106
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000184923500013 Publication Date 2007-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-4545 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:42731 Serial 8253
Permanent link to this record
 

 
Author (down) Efimov, K.; Xu, Q.; Feldhoff, A.
Title Transmission electron microscopy study of BA0.5Sr0.5CO0.8Fe0.2O3-\delta Perovskite decomposition at intermediate temperatures Type A1 Journal article
Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 22 Issue 21 Pages 5866-5875
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The cubic perovskite Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-delta) (denoted BSCF) is the state-of-the-art ceramic membrane material used for oxygen separation technologies above 1150 K. BSCF is a mixed oxygen-ion and electron conductor (MIEC) and exhibits one of the highest oxygen permeabilities reported so far for dense oxides. Additionally, it has excellent phase stability above 1150 K. In the intermediate temperature range (750-1100 K), however, BSCF suffers from a slow decomposition of the cubic perovskite into variants with hexagonal stacking that are barriers to oxygen transport. To elucidate details of the decomposition process, both sintered BSCF ceramic and powder were annealed for 180-240 h in ambient air at temperatures below 1123 K and analyzed by different transmission electron microscopy techniques. Aside from hexagonal perovskite Ba(0.5)Sr(0.5)CoO(3-delta) , the formation of lamellar noncubic phases was observed in the quenched samples. The structure of the lamellae with the previously unknown composition Ba(1-x)Sr(x)Co(2-y)Fe(y)O(5-delta) was found to be related to the 15R hexagonal perovskite polytype. The valence and spin-state transition of cobalt leading to a considerable diminution of its ionic radius can be considered a reason for BSCF's inherent phase instability at intermediate temperatures.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000283623700010 Publication Date 2010-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 117 Open Access
Notes Esteem 026019 Approved Most recent IF: 9.466; 2010 IF: 6.400
Call Number UA @ lucian @ c:irua:95546 Serial 3720
Permanent link to this record
 

 
Author (down) Eckert, M.; Neyts, E.; Bogaerts, A.
Title Molecular dynamics simulations of the sticking and etch behavior of various growth species of (ultra)nanocrystalline diamond films Type A1 Journal article
Year 2008 Publication Chemical vapor deposition Abbreviated Journal Chem Vapor Depos
Volume 14 Issue 7/8 Pages 213-223
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The reaction behavior of species that may affect the growth of ultrananocrystal line and nanocrystalline diamond ((U)NCD) films is investigated by means of molecular dynamics simulations. Impacts of CHx (x = 0 – 4), C2Hx (x=0-6), C3Hx (x=0-2), C4Hx (x = 0 – 2), H, and H-2 on clean and hydrogenated diamond (100)2 x 1 and (111) 1 x 1 surfaces at two different substrate temperatures are simulated. We find that the different bonding structures of the two surfaces cause different temperature effects on the sticking efficiency. These results predict a temperature-dependent ratio of diamond (100) and (111) growth. Furthermore, predictions of which are the most important hydrocarbon species for (U)NCD growth are made.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000259302700008 Publication Date 2008-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.333 Times cited 25 Open Access
Notes Approved Most recent IF: 1.333; 2008 IF: 1.483
Call Number UA @ lucian @ c:irua:70001 Serial 2177
Permanent link to this record
 

 
Author (down) Eckert, M.; Mortet, V.; Zhang, L.; Neyts, E.; Verbeeck, J.; Haenen, ken; Bogaerts, A.
Title Theoretical investigation of grain size tuning during prolonged bias-enhanced nucleation Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue 6 Pages 1414-1423
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, the effects of prolonged bias-enhanced nucleation (prolonged BEN) on the growth mechanisms of diamond are investigated by molecular dynamics (MD) and combined MD-Metropolis Monte Carlo (MD-MMC) simulations. First, cumulative impacts of CxHy+ and Hx+ on an a-C:H/nanodiamond composite were simulated; second, nonconsecutive impacts of the dominant ions were simulated in order to understand the observed phenomena in more detail. As stated in the existing literature, the growth of diamond structures during prolonged BEN is a process that takes place below the surface of the growing film. The investigation of the penetration behavior of CxHy+ and Hx+ species shows that the carbon-containing ions remain trapped within this amorphous phase where they dominate mechanisms like precipitation of sp3 carbon clusters. The H+ ions, however, penetrate into the crystalline phase at high bias voltages (>100 V), destroying the perfect diamond structure. The experimentally measured reduction of grain sizes at high bias voltage, reported in the literature, might thus be related to penetrating H+ ions. Furthermore, the CxHy+ ions are found to be the most efficient sputtering agents, preventing the build up of defective material.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000288291400011 Publication Date 2011-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 9 Open Access
Notes Iwt; Fwo; Esteem 026019; Iap Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:87642 Serial 3605
Permanent link to this record
 

 
Author (down) Duran, T.A.; Šabani, D.; Milošević, M.V.; Sahin, H.
Title Experimental and theoretical investigation of synthesis and properties of dodecanethiol-functionalized MoS₂ Type A1 Journal article
Year 2023 Publication Physical chemistry, chemical physics Abbreviated Journal
Volume 25 Issue 40 Pages 27141-27150
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Herein, we investigate the DDT (1-dodecanethiol) functionalization of exfoliated MoS2 by using experimental and theoretical tools. For the functionalization of MoS2, DDT treatment was incorporated into the conventional NMP (N-methyl pyrrolidone) exfoliation procedure. Afterward, it has been demonstrated that the functionalization process is successful through optical, morphological and theoretical analysis. The D, G and 2LA peaks seen in the Raman spectrum of exfoliated NMP-MoS2 particles, indicate the formation of graphitic species on MoS2 sheets. In addition, as the DDT ratio increases, the vacant sites on MoS2 sheets diminish. Moreover, at an optimized ratio of DDT-NMP, the maximum number of graphitic quantum dots (GQDs) is observed on MoS2 nanosheets. Specifically, the STEM and AFM data confirm that GQDs reside on the MoS2 nano-sheets and also that the particle size of the DDT-MoS2 is mostly fixed, while the NMP-MoS2 show many smaller and distributed sizes. The comparison of PL intensities of the NMP-MoS2 and DDT-MoS2 samples states a 10-fold increment is visible, and a 60-fold increment in NIR region photoluminescent properties. Moreover, our results lay out understanding and perceptions on the surface and edge chemistry of exfoliated MoS2 and open up more opportunities for MoS2 and GQD particles with broader applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001076998800001 Publication Date 2023-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.3 Times cited Open Access
Notes Approved Most recent IF: 3.3; 2023 IF: 4.123
Call Number UA @ admin @ c:irua:200284 Serial 9033
Permanent link to this record
 

 
Author (down) Dubinina, T.V.; Moiseeva, E.O.; Astvatsaturov, D.A.; Borisova, N.E.; Tarakanov, P.A.; Trashin, S.A.; De Wael, K.; Tomilova, L.G.
Title Novel 2-naphthyl substituted zinc naphthalocyanine : synthesis, optical, electrochemical and spectroelectrochemical properties Type A1 Journal article
Year 2020 Publication New Journal Of Chemistry Abbreviated Journal New J Chem
Volume 44 Issue 19 Pages 7849-7857
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract New zinc naphthalocyanine with bulky 2-naphthyl groups was obtained. Aggregation drastically influences its optical and electrochemical behavior. Spectroelectrochemistry helps to establish the oxidation potential and reveals unusual color change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000536157700023 Publication Date 2020-04-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited 1 Open Access
Notes ; Synthesis, identification and optical studies of target compounds were supported by the Russian Science Foundation Grant No 19-73-00099. Electrochemical and spectroelectrochemical measurements were supported by ERA.Net RUS Plus Plasmon Electrolight and FWO funding (RFBR No 18-53-76006 ERA). Fluorescence studies were supported by the Council under the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (Grant MD-3847.2019.3). The NMR spectroscopic measurements were carried out in the Laboratory of Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine of Moscow State University. ; Approved Most recent IF: 3.3; 2020 IF: 3.269
Call Number UA @ admin @ c:irua:168952 Serial 6570
Permanent link to this record
 

 
Author (down) Dubinina, T.; Maklakov, S.; Petrusevich, E.; Borisova, N.E.; Trashin, S.A.; De Wael, K.; Tomilova, L.G.
Title Photoactive layers for photovoltaics based on near-infrared absorbing aryl-substituted naphthalocyanine complexes : preparation and investigation of properties Type A1 Journal article
Year 2021 Publication New Journal Of Chemistry Abbreviated Journal New J Chem
Volume 45 Issue 32 Pages 14815-14821
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Photoactive layers based on aryl- and aryloxy-substituted naphthalocyanines and conductive polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) were prepared using the spin-coating technique and their conductivity was tested in dark and under illumination. For this purpose novel octa-2-naphthoxy-substituted naphthalocyanines were synthesized starting from 6,7-di(2-naphthoxy)naphthalene-2,3-dicarbonitrile. For those novel naphthalocyanine complexes, spectral and electrochemical data were measured and compared with corresponding ones for other aryl-substituted analogues. In comparison to the previously studied naphthalocyanines with alkyl- and phenyl- groups, the formal oxidation and reduction potentials were rather similar. All target complexes demonstrate intense near-infrared absorption at 760-790 nm, which is about 30 nm bathochromically shifted in thin films. The photo-resistive effect was found increasing from composites comprised of naphthoxy- to phenyl-substituted naphthalocyanines. This peculiarity was explained by using optical and atomic force microscopy in terms of different sizes of aggregates formed. The photo-response time for novel composited was approximately 3 s, which is about 20 times faster than measured previously for the films deposited via the drop-casting technique.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000680389800001 Publication Date 2021-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.269 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.269
Call Number UA @ admin @ c:irua:179884 Serial 8379
Permanent link to this record
 

 
Author (down) Du, G.H.; Van Tendeloo, G.
Title Cu(OH)2 nanowires, CuO nanowires and CuO nanobelts Type A1 Journal article
Year 2004 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
Volume 393 Issue 1/3 Pages 64-69
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000222887700012 Publication Date 2004-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.815 Times cited 145 Open Access
Notes Iuap P5/01 Approved Most recent IF: 1.815; 2004 IF: 2.438
Call Number UA @ lucian @ c:irua:54777 Serial 3525
Permanent link to this record
 

 
Author (down) Dragan, A.-M.; Truta, F.M.; Tertis, M.; Florea, A.; Schram, J.; Cernat, A.; Feier, B.; De Wael, K.; Cristea, C.; Oprean, R.
Title Electrochemical fingerprints of illicit drugs on graphene and multi-walled carbon nanotubes Type A1 Journal article
Year 2021 Publication Frontiers In Chemistry Abbreviated Journal Front Chem
Volume 9 Issue Pages 641147
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Illicit drugs use and abuse remains an increasing challenge for worldwide authorities and, therefore, it is important to have accurate methods to detect them in seized samples, biological fluids and wastewaters. They are recently classified as the latest group of emerging pollutants as their consumption increased tremendously in recent years. Nanomaterials have gained much attention over the last decade in the development of sensors for a myriad of applications. The applicability of these nanomaterials, functionalized or not, significantly increases and it is therefore highly suitable for use in the detection of illicit drugs. We have assessed the suitability of various nanoplatforms, such as graphene (GPH), multi-walled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs) for the electrochemical detection of illicit drugs. GPH and MWCNTs were chosen as the most suitable platforms and cocaine, 3,4-methylendioxymethamfetamine (MDMA), 3-methylmethcathinone (MMC) and alpha-pyrrolidinovalerophenone (PVP) were tested. Due to the hydrophobicity of the nanomaterials-based platforms which led to low signals, two strategies were followed namely, pretreatment of the electrodes in sulfuric acid by cyclic voltammetry and addition of Tween 20 to the detection buffer. Both strategies led to an increase in the oxidation signal of illicit drugs. Binary mixtures of illicit drugs with common adulterants found in street samples were also investigated. The proposed strategies allowed the sensitive detection of illicit drugs in the presence of most adulterants. The suitability of the proposed sensors for the detection of illicit drugs in spiked wastewaters was finally assessed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000634708900001 Publication Date 2021-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-2646 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.994 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.994
Call Number UA @ admin @ c:irua:177704 Serial 7861
Permanent link to this record
 

 
Author (down) Drăgan, A.-M.; Parrilla, M.; Sleegers, N.; Slosse, A.; Van Durme, F.; van Nuijs, A.; Oprean, R.; Cristea, C.; De Wael, K.
Title Investigating the electrochemical profile of methamphetamine to enable fast on-site detection in forensic analysis Type A1 Journal article
Year 2023 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal
Volume 255 Issue Pages 124208-124211
Keywords A1 Journal article; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Methamphetamine (MA) is a synthetic psychoactive drug which is consumed both licitly and illicitly. In some countries it is prescribed for attention-deficit and hyperactivity disorder, and short-term treatment of obesity. More often though, it is abused for its psychostimulant properties. Unfortunately, the spread and abuse of this synthetic drug have increased globally, being reported as the most widely consumed synthetic psychoactive drug in the world in 2019. Attempting to overcome the shortcomings of the currently used on-site methods for MA detection in suspected cargos, the present study explores the potential of electrochemical identification of MA by means of square wave voltammetry on disposable graphite screen-printed electrodes. Hence, the analytical characterization of the method was evaluated under optimal conditions exhibiting a linear range between 50 mu M and 2.5 mM MA, a LOD of 16.7 mu M, a LOQ of 50.0 mu M and a sensitivity of 5.3 mu A mM-1. Interestingly, two zones in the potential window were identified for the detection of MA, depending on its concentration in solution. Furthermore, the oxidative pathway of MA was elucidated employing liquid chromatography – mass spectrometry to understand the change in the electrochemical profile. Thereafter, the selectivity of the method towards MA in mixtures with other drugs of abuse as well as common adulterants/cutting agents was evaluated. Finally, the described method was employed for the analysis of MA in confiscated samples and compared with forensic methods, displaying its potential as a fast and easy-to-use method for on-site analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000925076200001 Publication Date 2023-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.1 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.1; 2023 IF: 4.162
Call Number UA @ admin @ c:irua:194314 Serial 8890
Permanent link to this record
 

 
Author (down) Drăgan, A.-M.; Parrilla, M.; Feier, B.; Oprean, R.; Cristea, C.; De Wael, K.
Title Analytical techniques for the detection of amphetamine-type substances in different matrices : a comprehensive review Type A1 Journal article
Year 2021 Publication Trac-Trends In Analytical Chemistry Abbreviated Journal Trac-Trend Anal Chem
Volume 145 Issue Pages 116447
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract This current review focuses on contributions to amphetamine-type substances (ATS) analysis. This type of synthetic illicit drugs has been increasingly present worldwide reaching 5% of the market on illicit drugs in 2019. The increment of their production in many clandestine laboratories and easy distribution among society are two of the main concerns towards the battle against synthetic drugs. Therefore, the first part of this review details the classification and mechanism of action of ATS in the human body. Second, the pharmacological and toxicological effects of ATS on human health are described to motivate the need of early detection of ATS. Subsequently, the most used laboratory-based and portable methods are presented and critically discussed along the review. Finally, a careful discussion on the advantages and disadvantages of portable techniques employed on the field are addressed as potential tools for on-site ATS detection by law enforcement officers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000723747000009 Publication Date 2021-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-9936; 1879-3142 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.442 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.442
Call Number UA @ admin @ c:irua:183268 Serial 7460
Permanent link to this record
 

 
Author (down) Drăgan, A.-M.; Parrilla, M.; Cambré, S.; Domínguez-Robles, J.; Detamornrat, U.; Donnelly, R.F.; Oprean, R.; Cristea, C.; De Wael, K.
Title Microneedle array-based electrochemical sensor functionalized with SWCNTs for the highly sensitive monitoring of MDMA in interstitial fluid Type A1 Journal article
Year 2023 Publication Microchemical journal Abbreviated Journal
Volume 193 Issue Pages 109257-11
Keywords A1 Journal article; Pharmacology. Therapy; Nanostructured and organic optical and electronic materials (NANOrOPT); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Illicit drug consumption constitutes a great concern worldwide due to its increased spread and abuse, and the negative consequences exerted on society. For instance, 3,4-methylenedioxymethamphetamine (MDMA), a synthetic amphetamine-type substance, was abused by 20 million people worldwide in 2020. This psychoactive substance exerts a myriad of effects on the human body being dangerous for the consumer’s health. Besides, MDMA has been used in the treatment of some psychiatric conditions. Therefore, the development of wearable devices for MDMA sensing in biological fluids is of great importance for forensic toxicology (e.g., monitoring of patients with suspected or known MDMA consumption) as well as for therapeutic management of patients. Herein, we report the development of a wearable electrochemical platform based on a hollow microneedle (MN) array sensor for the monitoring of MDMA in the interstitial fluid by square-wave voltammetry. First, the holes of the MN array were modified with conductive pastes to devise a MN patch with a three-electrode system. Subsequently, the functionalization of the working electrode with nanomaterials enhanced MDMA detection. Thereafter, analytical parameters were evaluated exhibiting a slope of 0.05 µA µM−1 within a linear range from 1 to 50 µM and a limit of detection of 0.75 µM in artificial interstitial fluid. Importantly, critical parameters such as selectivity, piercing capability, temperature, reversibility and stability were assessed. Overall, the obtained MN sensor exhibited excellent analytical performance, making it a promising tool for MDMA tracking in interstitial fluid for individuals on probation or under therapeutic treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001067945900001 Publication Date 2023-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.8 Times cited Open Access Not_Open_Access: Available from 27.02.2024
Notes Approved Most recent IF: 4.8; 2023 IF: 3.034
Call Number UA @ admin @ c:irua:198183 Serial 8898
Permanent link to this record
 

 
Author (down) Dooley, K.A.; Chieli, A.; Romani, A.; Legrand, S.; Miliani, C.; Janssens, K.; Delaney, J.K.
Title Molecular fluorescence imaging spectroscopy for mapping low concentrations of red lake pigments : Van Gogh's painting The Olive Orchard Type A1 Journal article
Year 2020 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit
Volume Issue Pages
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Vincent van Gogh used fugitive red lake pigments that have faded in some paintings. Mapping their distribution is key to understanding how his paintings have changed with time. While red lake pigments can be identified from microsamples, in situ identification and mapping remain challenging. This paper explores the ability of molecular fluorescence imaging spectroscopy to identify and, more importantly, map residual non-degraded red lakes. The high sensitivity of this method enabled identification of the emission spectra of eosin (tetrabromine fluorescein) lake mixed with lead or zinc white at lower concentrations than elemental X-ray fluorescence (XRF) spectroscopy used on account of bromine. The molecular fluorescence mapping of residual eosin and two carmine red lakes in van Gogh's The Olive Orchard is demonstrated and compared with XRF imaging spectroscopy. The red lakes are consistent with the composition of paint tubes known to have been used by van Gogh.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000512477200001 Publication Date 2020-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 2 Open Access
Notes ; We thank Damon Conover and Roxanne Radpour for help with the fluorescence self-absorption correction, and Ella Hendricks for discussions about van Gogh~s letters and materials. K.J. and S.L. thank the Research Council of the University of Antwerp for financial support (ID grant 25805 to S.L. and GOA project SolarPaint). Also FWO, Brussels provided financial support (grants G056619N and G054719N). The European research project IPERION-CH, funded by the European Commission, H2020-INFRAIA-2014-2015 (Grant agreement n. 654028) is also acknowledged. ; Approved Most recent IF: 16.6; 2020 IF: 11.994
Call Number UA @ admin @ c:irua:166490 Serial 6563
Permanent link to this record
 

 
Author (down) Dong, Y.; Chen, S.-Y.; Lu, Y.; Xiao, Y.-X.; Hu, J.; Wu, S.-M.; Deng, Z.; Tian, G.; Chang, G.-G.; Li, J.; Lenaerts, S.; Janiak, C.; Yang, X.-Y.; Su, B.-L.
Title Hierarchical MoS2@TiO2 heterojunctions for enhanced photocatalytic performance and electrocatalytic hydrogen evolution Type A1 Journal article
Year 2018 Publication Chemistry: an Asian journal Abbreviated Journal Chem-Asian J
Volume 13 Issue 12 Pages 1609-1615
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Hierarchical MoS2@TiO2 heterojunctions were synthesized through a one-step hydrothermal method by using protonic titanate nanosheets as the precursor. The TiO2 nanosheets prevent the aggregation of MoS2 and promote the carrier transfer efficiency, and thus enhance the photocatalytic and electrocatalytic activity of the nanostructured MoS2. The obtained MoS2@TiO2 has significantly enhanced photocatalytic activity in the degradation of rhodamineB (over 5.2times compared with pure MoS2) and acetone (over 2.8times compared with pure MoS2). MoS2@TiO2 is also beneficial for electrocatalytic hydrogen evolution (26times compared with pure MoS2, based on the cathodic current density). This work offers a promising way to prevent the self-aggregation of MoS2 and provides a new insight for the design of heterojunctions for materials with lattice mismatches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000435773300011 Publication Date 2018-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1861-4728; 1861-471x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.083 Times cited 22 Open Access
Notes ; This work was supported by the National Key R&D Program of China (2017YFC1103800), PCSIRT (IRT15R52), NSFC (U1662134, U1663225, 51472190, 51611530672, 51503166, 21706199, 21711530705), ISTCP (2015DFE52870), HPNSF (2016CFA033, 2017CFB487), and SKLPPC (PPC2016007). ; Approved Most recent IF: 4.083
Call Number UA @ admin @ c:irua:151971 Serial 5956
Permanent link to this record
 

 
Author (down) Dong, H.M.; Liang, H.P.; Tao, Z.H.; Duan, Y.F.; Milošević, M.V.; Chang, K.
Title Interface thermal conductivities induced by van der Waals interactions Type A1 Journal article
Year 2024 Publication Physical chemistry, chemical physics Abbreviated Journal
Volume 26 Issue 5 Pages 4047-4051
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The interface heat transfer of two layers induced by van der Waals (vdW) contacts is theoretically investigated, based on first-principles calculations at low temperatures. The results suggest that out-of-plane acoustic phonons with low frequencies dominate the interface thermal transport due to the vdW interaction. The interface thermal conductivity is proportional to the cubic of temperature at very low temperatures, but becomes linearly proportional to temperature as temperature increases. We show that manipulating the strain alters vdW coupling, leading to increased interfacial thermal conductivity at the interface. Our findings provide valuable insights into the interface heat transport in vdW heterostructures and support further design and optimization of electronic and optoelectronic nanodevices based on vdW contacts. The heat transfer induced by van der Waals contacts is dominated by ZA phonons. The interface thermal conductivity is proportional to the cubic of temperature, but becomes linearly proportional to temperature as temperature increases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001142323400001 Publication Date 2024-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.3; 2024 IF: 4.123
Call Number UA @ admin @ c:irua:202795 Serial 9050
Permanent link to this record
 

 
Author (down) Dombrovski, E.N.; Serov, T.V.; Abakumov, A.M.; Ardashnikova, E.I.; Dolgikh, V.A.; Van Tendeloo, G.
Title The structural investigation of Ba4Bi3F17 Type A1 Journal article
Year 2004 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 177 Issue 1 Pages 312-318
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000188534800041 Publication Date 2003-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 9 Open Access
Notes Approved Most recent IF: 2.299; 2004 IF: 1.815
Call Number UA @ lucian @ c:irua:54717 Serial 3239
Permanent link to this record
 

 
Author (down) Dixon, E.; Hadermann, J.; Ramos, S.; Goodwin, A.L.; Hayward, M.A.
Title Mn(I) in an extended oxide : the synthesis and characterization of La1-xCaxMnO2+\delta (0.6\leq x\leq1) Type A1 Journal article
Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 133 Issue 45 Pages 18397-18405
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Reduction of La1xCaxMnO3 (0.6 ≤ x ≤ 1) perovskite phases with sodium hydride yields materials of composition La1xCaxMnO2+δ. The calcium-rich phases (x = 0.9, 1) adopt (La0.9Ca0.1)0.5Mn0.5O disordered rocksalt structures. However local structure analysis using reverse Monte Carlo refinement of models against pair distribution functions obtained from neutron total scattering data reveals lanthanum-rich La1xCaxMnO2+δ (x = 0.6, 0.67, 0.7) phases adopt disordered structures consisting of an intergrowth of sheets of MnO6 octahedra and sheets of MnO4 tetrahedra. X-ray absorption data confirm the presence of Mn(I) centers in La1xCaxMnO2+δ phases with x < 1. Low-temperature neutron diffraction data reveal La1xCaxMnO2+δ (x = 0.6, 0.67, 0.7) phases become antiferromagnetically ordered at low temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000297381200065 Publication Date 2011-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 33 Open Access
Notes Approved Most recent IF: 13.858; 2011 IF: 9.907
Call Number UA @ lucian @ c:irua:94030 Serial 2094
Permanent link to this record
 

 
Author (down) Dixon, E.; Hadermann, J.; Hayward, M.A.
Title Structures and magnetism of La1-xSrxMnO3-(0.5+x)/2 (0.67\leq x\leq1) phases Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue 8 Pages 1486-1495
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Topotactic reduction of La1-xSrxMnO3 (0.67 <= x <= 1) phases with sodium hydride yields a series of isoelectronic materials of composition La1-xSrxMnO3-(0.5+x)/2. Lanthanum rich members of the series (0.67 <= x <= 0.83) adopt anion deficient perovskite structures with a 6-layer -OTOOT'O- stacking sequence of sheets of octahedra/square-based pyramids (O) and sheets of tetrahedra (T). The strontium rich members of the series (0.83 <= x <= 1) incorporate “step defects” into this 6-layer structure in which the OTOOT'O stacking sequence is converted into either OOTOOT' or TOOT'OO at a defect plane which runs perpendicular to the [201] lattice plane. The step defects appear to provide a mechanism to relieve lattice strain and accommodate additional anion deficiency in phases with x > 0.83. Magnetization and neutron diffraction data indicate La1-xSrxMnO3-(0.5+x)/2 phases adopt antiferromagnetically ordered states at low-temperature in which the ordered arrangement of magnetic spins is incommensurate with the crystallographic lattice.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000303092300011 Publication Date 2012-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 13 Open Access
Notes Esteem 026019 Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number UA @ lucian @ c:irua:98253 Serial 3318
Permanent link to this record
 

 
Author (down) Dixon, E.; Hadermann, J.; Hayward, M.A.
Title The synthesis and complex anion-vacancy ordered structure of La0.33Sr0.67MnO2.42 Type A1 Journal article
Year 2011 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 184 Issue 7 Pages 1791-1799
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The low-temperature topotactic reduction of La0.33Sr0.67MnO3 with NaH results in the formation of La0.33Sr0.67MnO2.42. A combination of neutron powder and electron diffraction data show that La0.33Sr0.67MnO2.42 adopts a novel anion-vacancy ordered structure with a 6-layer OOTOOT' stacking sequence of the octahedral and tetrahedral layers (Pcmb, a=5.5804(1) Å, b=23.4104(7) Å, c=11.2441(3) Å). A significant concentration of anion vacancies at the anion site, which links neighbouring octahedral layers means that only 25% of the octahedral manganese coordination sites actually have 6-fold MnO6 coordination, the remainder being MnO5 square-based pyramidal sites. The chains of cooperatively twisted apex-linked MnO4 tetrahedra adopt an ordered -LRLR- arrangement within each tetrahedral layer. This is the first published example of a fully refined structure of this type which exhibits such intralayer ordering of the twisted tetrahedral chains. The rationale behind the contrasting structures of La0.33Sr0.67MnO2.42 and other previously reported reduced La1−xSrxMnO3−y phases is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000292718500032 Publication Date 2011-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 8 Open Access
Notes Approved Most recent IF: 2.299; 2011 IF: 2.159
Call Number UA @ lucian @ c:irua:90885 Serial 3600
Permanent link to this record
 

 
Author (down) Dingenen, F.; Borah, R.; Ninakanti, R.; Verbruggen, S.W.
Title Probing oxygen activation on plasmonic photocatalysts Type A1 Journal article
Year 2022 Publication Frontiers in Chemistry Abbreviated Journal Front Chem
Volume 10 Issue Pages 988542-10
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this work we present an assay to probe the oxygen activation rate on plasmonic nanoparticles under visible light. Using a superoxide-specific XTT molecular probe, the oxygen activation rate on bimetallic gold-silver “rainbow” nanoparticles with a broadband visible light (> 420 nm) response, is determined at different light intensities by measuring its conversion into the colored XTT-formazan derivate. A kinetic model is applied to enable a quantitative estimation of the rate constant, and is shown to match almost perfectly with the experimental data. Next, the broadband visible light driven oxygen activation capacity of this plasmonic rainbow system, supported on nano-sized SiO 2 , is demonstrated towards the oxidation of aniline to azobenzene in DMSO. To conclude, a brief theoretical discussion is devoted to the possible mechanisms behind such plasmon-driven reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000860818400001 Publication Date 2022-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-2646 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.5
Call Number UA @ admin @ c:irua:190868 Serial 7197
Permanent link to this record
 

 
Author (down) Dillen, A.; Vandezande, W.; Daems, D.; Lammertyn, J.
Title Unraveling the effect of the aptamer complementary element on the performance of duplexed aptamers : a thermodynamic study Type A1 Journal article
Year 2021 Publication Analytical And Bioanalytical Chemistry Abbreviated Journal Anal Bioanal Chem
Volume 413 Issue 19 Pages 4739-4750
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Duplexed aptamers (DAs) are widespread aptasensor formats that simultaneously recognize and signal the concentration of target molecules. They are composed of an aptamer and aptamer complementary element (ACE) which consists of a short oligonucleotide that partially inhibits the aptamer sequence. Although the design principles to engineer DAs are straightforward, the tailored development of DAs for a particular target is currently based on trial and error due to limited knowledge of how the ACE sequence affects the final performance of DA biosensors. Therefore, we have established a thermodynamic model describing the influence of the ACE on the performance of DAs applied in equilibrium assays and demonstrated that this relationship can be described by the binding strength between the aptamer and ACE. To validate our theoretical findings, the model was applied to the 29-mer anti-thrombin aptamer as a case study, and an experimental relation between the aptamer-ACE binding strength and performance of DAs was established. The obtained results indicated that our proposed model could accurately describe the effect of the ACE sequence on the performance of the established DAs for thrombin detection, applied for equilibrium assays. Furthermore, to characterize the binding strength between the aptamer and ACEs evaluated in this work, a set of fitting equations was derived which enables thermodynamic characterization of DNA-based interactions through thermal denaturation experiments, thereby overcoming the limitations of current predictive software and chemical denaturation experiments. Altogether, this work encourages the development, characterization, and use of DAs in the field of biosensing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000659366300001 Publication Date 2021-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-2642; 1618-2650 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.431 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.431
Call Number UA @ admin @ c:irua:179163 Serial 8713
Permanent link to this record
 

 
Author (down) Dik, J.; Janssens, K.; van der Snickt, G.; van der Loeff, L.; Rickers, K.; Cotte, M.
Title Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping Type A1 Journal article
Year 2008 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 80 Issue 16 Pages 6436-6442
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Vincent van Gogh (1853−1890), one of the founding fathers of modern painting, is best known for his vivid colors, his vibrant painting style, and his short but highly productive career. His productivity is even higher than generally realized, as many of his known paintings cover a previous composition. This is thought to be the case in one-third of his early period paintings. Van Gogh would often reuse the canvas of an abandoned painting and paint a new or modified composition on top. These hidden paintings offer a unique and intimate insight into the genesis of his works. Yet, current museum-based imaging tools are unable to properly visualize many of these hidden images. We present the first-time use of synchrotron radiation based X-ray fluorescence mapping, applied to visualize a womans head hidden under the work Patch of Grass by Van Gogh. We recorded decimeter-scale, X-ray fluorescence intensity maps, reflecting the distribution of specific elements in the paint layers. In doing so we succeeded in visualizing the hidden face with unprecedented detail. In particular, the distribution of Hg and Sb in the red and light tones, respectively, enabled an approximate color reconstruction of the flesh tones. This reconstruction proved to be the missing link for the comparison of the hidden face with Van Goghs known paintings. Our approach literally opens up new vistas in the nondestructive study of hidden paint layers, which applies to the oeuvre of Van Gogh in particular and to old master paintings in general.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000258448100039 Publication Date 2008-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 178 Open Access
Notes Approved Most recent IF: 6.32; 2008 IF: 5.712
Call Number UA @ admin @ c:irua:74466 Serial 5906
Permanent link to this record
 

 
Author (down) Dharanipragada, N.V.R.A.; Meledina, M.; Galvita, V.V.; Poelman, H.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B.
Title Deactivation study of Fe2O3-CeO2 during redox cycles for CO production from CO2 Type A1 Journal article
Year 2016 Publication Industrial and engineering chemistry research Abbreviated Journal Ind Eng Chem Res
Volume 55 Issue 55 Pages 5911-5922
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Deactivation was investigated in Fe2O3-CeO2 oxygen storage materials during repeated H-2-reduction and CO2-reoxidation. In situ XRD, XAS, and TEM were used to identify phases, crystallite sizes, and morphological changes upon cycling operation. The effect of redox cycling was investigated both in Fe-rich (80 wt % Fe2O3-CeO2) and Ce-rich (10 wt %Fe2O3-CeO2) materials. The former consisted of 100 nm Fe2O3 particles decorated with 5-10 nm Ce1-xFexO2-x. The latter presented CeO2 with incorporated Fe, i.e. a solid solution of Ce1-xFexO2-x, as the main oxygen carrier. By modeling the EXAFS Ce-K signal for as-prepared 10 wt %Fe2O3-CeO2, the amount of Fe in CeO2 was determined as 21 mol %, corresponding to 86% of the total iron content. Sintering and solid solid transformations, the latter including both new phase formation and element segregation, were identified as deactivation pathways upon redox cycling. In Ce-rich material, perovskite (CeFeO3) was identified by XRD. This phase remained inert during reduction and reoxidation, resulting in an overall lower oxygen storage capacity. Further, Fe segregated from the solid solution, thereby decreasing its reducibility. In addition, an increase in crystallite size occurred for all phases. In Fe-rich material, sintering is the main deactivation pathway, although Fe segregation from the solid solution and perovskite formation cannot be excluded.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000376825300013 Publication Date 2016-04-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 26 Open Access
Notes Approved Most recent IF: 2.843
Call Number UA @ lucian @ c:irua:134214 Serial 4158
Permanent link to this record
 

 
Author (down) Desmet, N.J.S.; van Belleghem, S.; Seuntjens, P.; Bouma, T.J.; Buis, K.; Meire, P.
Title Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river Type A1 Journal article
Year 2011 Publication Physics and chemistry of the earth, parts A/B/C Abbreviated Journal
Volume 36 Issue 12 Pages 479-489
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract When macrophytes are growing in the river, the vegetation induces substantial changes to the water quality. Some effects are the result of direct interactions, such as photosynthetic activity or nutrient uptake, whereas others may be attributed to indirect effects of the water plants on hydrodynamics and river processes. This research focused on the direct effect of macrophytes on oxygen dynamics and nutrient cycling. Discharge, macrophyte biomass density, basic water quality, dissolved oxygen and nutrient concentrations were in situ monitored throughout the year in a lowland river (Nete catchment, Belgium). In addition, various processes were investigated in more detail in multiple ex situ experiments. The field and aquaria measurement results clearly demonstrated that aquatic plants can exert considerable impact on dissolved oxygen dynamics in a lowland river. When the river was dominated by macrophytes, dissolved oxygen concentrations varied from 5 to 10 mg l−1. Considering nutrient retention, it was shown that the investigated in-stream macrophytes could take up dissolved inorganic nitrogen (DIN) from the water column at rates of View the MathML source. And DIN fluxes towards the vegetation were found to vary from 0.03 to 0.19 g N ha−1 h−1 in spring and summer. Compared to the measured changes in DIN load over the river stretch, it means that about 313% of the DIN retention could be attributed to direct nitrogen uptake from the water by macrophytes. Yet, the role of macrophytes in rivers should not be underrated as aquatic vegetation also exerts considerable indirect effects that may have a greater impact than the direct fixation of nutrients into the plant biomass.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000295862600001 Publication Date 2008-06-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1474-7065 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:92439 Serial 8436
Permanent link to this record
 

 
Author (down) Denoyer, E.; Van Grieken, R.; Adams, F.; Ntausch, D.F.S.
Title Laser microprobe mass spectrometry : 1 : basic principles and performance characteristics Type A1 Journal article
Year 1982 Publication Analytical chemistry Abbreviated Journal
Volume 54 Issue 1 Pages 26a-33a
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2012-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116517 Serial 8164
Permanent link to this record
 

 
Author (down) Deng, S.; Kurttepeli, M.; Cott, D.J.; Bals, S.; Detavernier, C.
Title Porous nanostructured metal oxides synthesized through atomic layer deposition on a carbonaceous template followed by calcination Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages 2642-2649
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Porous metal oxides with nano-sized features attracted intensive interest in recent decades due to their high surface area which is essential for many applications, e.g. Li ion batteries, photocatalysts, fuel cells and dye-sensitized solar cells. Various approaches have so far been investigated to synthesize porous nanostructured metal oxides, including self-assembly and template-assisted synthesis. For the latter approach, forests of carbon nanotubes are considered as particularly promising templates, with respect to their one-dimensional nature and the resulting high surface area. In this work, we systematically investigate the formation of porous metal oxides (Al2O3, TiO2, V2O5 and ZnO) with different morphologies using atomic layer deposition on multi-walled carbon nanotubes followed by post-deposition calcination. X-ray diffraction, scanning electron microscopy accompanied by X-ray energy dispersive spectroscopy and transmission electron microscopy were used for the investigation of morphological and structural transitions at the micro- and nano-scale during the calcination process. The crystallization temperature and the surface coverage of the metal oxides and the oxidation temperature of the carbon nanotubes were found to produce significant influence on the final morphology.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000348990500019 Publication Date 2014-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 23 Open Access OpenAccess
Notes Fwo; 239865 Cocoon; 335078 Colouratoms; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number c:irua:125298 Serial 2673
Permanent link to this record
 

 
Author (down) Dendooven, J.; Goris, B.; Devloo-Casier, K.; Levrau, E.; Biermans, E.; Baklanov, M.R.; Ludwig, K.F.; van der Voort, P.; Bals, S.; Detavernier, C.
Title Tuning the pore size of ink-bottle mesopores by atomic layer deposition Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue 11 Pages 1992-1994
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000305092600002 Publication Date 2012-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 52 Open Access
Notes Fwo Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number UA @ lucian @ c:irua:99078 Serial 3760
Permanent link to this record
 

 
Author (down) Demiroglu, I.; Peeters, F.M.; Gulseren, O.; Cakir, D.; Sevik, C.
Title Alkali metal intercalation in MXene/graphene heterostructures : a new platform for ion battery applications Type A1 Journal article
Year 2019 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 10 Issue 4 Pages 727-734
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The adsorption and diffusion of Na, K, and Ca atoms on MXene/graphene heterostructures of MXene systems Sc2C(OH)(2), Ti2CO2, and V2CO2 are systematically investigated by using first-principles methods. We found that alkali metal intercalation is energetically favorable and thermally stable for Ti2CO2/graphene and V2CO2/graphene heterostructures but not for Sc2C(OH)(2). Diffusion kinetics calculations showed the advantage of MXene/graphene heterostructures over sole MXene systems as the energy barriers are halved for the considered alkali metals. Low energy barriers are found for Na and K ions, which are promising for fast charge/discharge rates. Calculated voltage profiles reveal that estimated high capacities can be fully achieved for Na ion in V2CO2/graphene and Ti2CO2/graphene heterostructures. Our results indicate that Ti2CO2/graphene and V2CO2/graphene electrode materials are very promising for Na ion battery applications. The former could be exploited for low voltage applications while the latter will be more appropriate for higher voltages.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459948800005 Publication Date 2019-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.353 Times cited 88 Open Access
Notes ; We acknowledge the support from the TUBITAK (116F080) and the BAGEP Award of the Science Academy. Part of this work was supported by the FLAG -ERA project TRANS-2D-TMD. A part of this work was supported by University of North Dakota Early Career Award (Grant number: 20622-4000-02624). We also acknowledge financial support from ND EPSCoR through NSF grant OIA-1355466. Computational resources were provided by the High Performance and Grid Computing Center (TRGrid e-Infrastructure) of TUBITAK ULAKBIM, the National Center for High Performance Computing (UHeM) of Istanbul Technical University, and Computational Research Center (HPC Linux cluster) at the University of North Dakota. This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, and supported by the U.S. Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357. ; Approved Most recent IF: 9.353
Call Number UA @ admin @ c:irua:158618 Serial 5194
Permanent link to this record
 

 
Author (down) Demiroglu, I.; Karaaslan, Y.; Kocabas, T.; Keceli, M.; Vazquez-Mayagoitia, A.; Sevik, C.
Title Computation of the thermal expansion coefficient of graphene with Gaussian approximation potentials Type A1 Journal article
Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 125 Issue 26 Pages 14409-14415
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Direct experimental measurement of thermal expansion coefficient without substrate effects is a challenging task for two-dimensional (2D) materials, and its accurate estimation with large-scale ab initio molecular dynamics is computationally very expensive. Machine learning-based interatomic potentials trained with ab initio data have been successfully used in molecular dynamics simulations to decrease the computational cost without compromising the accuracy. In this study, we investigated using Gaussian approximation potentials to reproduce the density functional theory-level accuracy for graphene within both lattice dynamical and molecular dynamical methods, and to extend their applicability to larger length and time scales. Two such potentials are considered, GAP17 and GAP20. GAP17, which was trained with pristine graphene structures, is found to give closer results to density functional theory calculations at different scales. Further vibrational and structural analyses verify that the same conclusions can be deduced with density functional theory level in terms of the reasoning of the thermal expansion behavior, and the negative thermal expansion behavior is associated with long-range out-of-plane phonon vibrations. Thus, it is argued that the enabled larger system sizes by machine learning potentials may even enhance the accuracy compared to small-size-limited ab initio molecular dynamics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000672734100027 Publication Date 2021-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:179850 Serial 7719
Permanent link to this record
 

 
Author (down) Demirkol, Ö.; Sevik, C.; Demiroğlu, I.
Title First principles assessment of the phase stability and transition mechanisms of designated crystal structures of pristine and Janus transition metal dichalcogenides Type A1 Journal article
Year 2022 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 24 Issue 12 Pages 7430-7441
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional Transition Metal Dichalcogenides (TMDs) possessing extraordinary physical properties at reduced dimensionality have attracted interest due to their promise in electronic and optical device applications. However, TMD monolayers can show a broad range of different properties depending on their crystal phase; for example, H phases are usually semiconductors, while the T phases are metallic. Thus, controlling phase transitions has become critical for device applications. In this study, the energetically low-lying crystal structures of pristine and Janus TMDs are investigated by using ab initio Nudged Elastic Band and molecular dynamics simulations to provide a general explanation for their phase stability and transition properties. Across all materials investigated, the T phase is found to be the least stable and the H phase is the most stable except for WTe2, while the T' and T '' phases change places according to the TMD material. The transition energy barriers are found to be large enough to hint that even the higher energy phases are unlikely to undergo a phase transition to a more stable phase if they can be achieved except for the least stable T phase, which has zero barrier towards the T ' phase. Indeed, in molecular dynamics simulations the thermodynamically least stable T phase transformed into the T ' phase spontaneously while in general no other phase transition was observed up to 2100 K for the other three phases. Thus, the examined T ', T '' and H phases were shown to be mostly stable and do not readily transform into another phase. Furthermore, so-called mixed phase calculations considered in our study explain the experimentally observed lateral hybrid structures and point out that the coexistence of different phases is strongly stable against phase transitions. Indeed, stable complex structures such as metal-semiconductor-metal architectures, which have immense potential to be used in future device applications, are also possible based on our investigation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000766791000001 Publication Date 2022-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.3
Call Number UA @ admin @ c:irua:187184 Serial 7164
Permanent link to this record