|   | 
Details
   web
Records
Author (down) Živanić, M.; Espona‐Noguera, A.; Verswyvel, H.; Smits, E.; Bogaerts, A.; Lin, A.; Canal, C.
Title Injectable Plasma‐Treated Alginate Hydrogel for Oxidative Stress Delivery to Induce Immunogenic Cell Death in Osteosarcoma Type A1 Journal Article
Year 2023 Publication Advanced functional materials Abbreviated Journal Adv Funct Materials
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Cold atmospheric plasma (CAP) is a source of cell‐damaging oxidant molecules that may be used as low‐cost cancer treatment with minimal side effects. Liquids treated with cold plasma and enriched with oxidants are a modality for non‐invasive treatment of internal tumors with cold plasma via injection. However, liquids are easily diluted with body fluids which impedes high and localized delivery of oxidants to the target. As an alternative, plasma‐treated hydrogels (PTH) emerge as vehicles for the precise delivery of oxidants. This study reports an optimal protocol for the preparation of injectable alginate PTH that ensures the preservation of plasma‐generated oxidants. The generation, storage, and release of oxidants from the PTH are assessed. The efficacy of the alginate PTH in cancer treatment is demonstrated in the context of cancer cell cytotoxicity and immunogenicity–release of danger signals and phagocytosis by immature dendritic cells, up to now unexplored for PTH. These are shown in osteosarcoma, a hard‐to‐treat cancer. The study aims to consolidate PTH as a novel cold plasma treatment modality for non‐invasive or postoperative tumor treatment. The results offer a rationale for further exploration of alginate‐based PTHs as a versatile platform in biomedical engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001129424500001 Publication Date 2023-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X ISBN Additional Links UA library record; WoS full record
Impact Factor 19 Times cited Open Access
Notes Fonds Wetenschappelijk Onderzoek, 1S67621N ; European Cooperation in Science and Technology, COST Action CA20114 ; Agència de Gestió d'Ajuts Universitaris i de Recerca, SGR2022‐1368 ; Agencia Estatal de Investigación, PID2019‐ 103892RB‐I00/AEI/10.13039/501100011033 ; Instituto de Salud Carlos III, IHRC22/00003 ; Approved Most recent IF: 19; 2023 IF: 12.124
Call Number PLASMANT @ plasmant @c:irua:202030 Serial 8979
Permanent link to this record
 

 
Author (down) Živanić, M.; Espona‐Noguera, A.; Lin, A.; Canal, C.
Title Current State of Cold Atmospheric Plasma and Cancer‐Immunity Cycle: Therapeutic Relevance and Overcoming Clinical Limitations Using Hydrogels Type A1 Journal article
Year 2023 Publication Advanced Science Abbreviated Journal Adv Sci
Volume Issue Pages 2205803
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma (CAP) is a partially ionized gas that gains attention

as a well-tolerated cancer treatment that can enhance anti-tumor immune

responses, which are important for durable therapeutic effects. This review

offers a comprehensive and critical summary on the current understanding of

mechanisms in which CAP can assist anti-tumor immunity: induction of

immunogenic cell death, oxidative post-translational modifications of the

tumor and its microenvironment, epigenetic regulation of aberrant gene

expression, and enhancement of immune cell functions. This should provide

a rationale for the effective and meaningful clinical implementation of CAP. As

discussed here, despite its potential, CAP faces different clinical limitations

associated with the current CAP treatment modalities: direct exposure of

cancerous cells to plasma, and indirect treatment through injection of

plasma-treated liquids in the tumor. To this end, a novel modality is proposed:

plasma-treated hydrogels (PTHs) that can not only help overcome some of the

clinical limitations but also offer a convenient platform for combining CAP

with existing drugs to improve therapeutic responses and contribute to the

clinical translation of CAP. Finally, by integrating expertise in biomaterials and

plasma medicine, practical considerations and prospective for the

development of PTHs are offered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000918224200001 Publication Date 2023-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2198-3844 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes European Research Council, 714793 ; Fonds Wetenschappelijk Onderzoek, 12S9221N G044420N ; Ministerio de Economía y Competitividad, PID2019‐103892RB‐I00/AEI/10.13039/501100011033 ; Approved Most recent IF: 15.1; 2023 IF: 9.034
Call Number PLASMANT @ plasmant @c:irua:193166 Serial 7238
Permanent link to this record
 

 
Author (down) Zillner, J.; Boyen, H.-G.; Schulz, P.; Hanisch, J.; Gauquelin, N.; Verbeeck, J.; Kueffner, J.; Desta, D.; Eisele, L.; Ahlswede, E.; Powalla, M.
Title The role of SnF₂ additive on interface formation in all lead-free FASnI₃ perovskite solar cells Type A1 Journal article
Year 2022 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume Issue Pages 2109649-9
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Tin-based perovskites are promising alternative absorber materials for leadfree perovskite solar cells but need strategies to avoid fast tin (Sn) oxidation. Generally, this reaction can be slowed down by the addition of tin fluoride (SnF2) to the perovskite precursor solution, which also improves the perovskite layer morphology. Here, this work analyzes the spatial distribution of the additive within formamidinium tin triiodide (FASnI(3)) films deposited on top of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transporting layers. Employing time-of-flight secondary ion mass spectrometry and a combination of hard and soft X-ray photoelectron spectroscopy, it is found that Sn F2 preferably accumulates at the PEDOT:PSS/perovskite interface, accompanied by the formation of an ultrathin SnS interlayer with an effective thickness of approximate to 1.2 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000779891000001 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19 Times cited 22 Open Access OpenAccess
Notes J.Z. and H.-G.B. contributed equally to this work. This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 850937 (PERCISTAND). H.-G.B. and D.D. are very grateful to the Research Foundation Flanders (FWO) for funding the HAXPES-lab instrument within the HERCULES program for Large Research Infrastructure of the Flemish government. P.S. thanks the French Agence Nationale de la Recherche for funding under the contract number ANR-17-MPGA-0012. This work was supported by the Federal Ministry for Economic Affairs and Energy (BMWi) Germany under the contract number 03EE1038A (CAPITANO) and financed by the Ministry of Science, Research and the Arts of Baden-Württemberg as part of the sustainability financing of the projects of the Excellence Initiative II (KSOP). Approved Most recent IF: 19
Call Number UA @ admin @ c:irua:187969 Serial 7067
Permanent link to this record
 

 
Author (down) Zhang, L.; Lin, B.-C.; Wu, Y.-F.; Wu, H.; Huang, T.-W.; Chang, C.-R.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Xu, J.; Yu, D.; Liao, Z.-M.
Title Electronic Coupling between Graphene and Topological Insulator Induced Anomalous Magnetotransport Properties Type A1 Journal article
Year 2017 Publication ACS nano Abbreviated Journal Acs Nano
Volume 11 Issue 11 Pages 6277-6285
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract It has been theoretically proposed that the spin textures of surface states in a topological insulator can be directly transferred to graphene by means of the proximity effect, which is very important for realizing the two-dimensional topological insulator based on graphene. Here we report the anomalous magnetotransport properties of graphene-topological insulator Bi2Se3 heterojunctions, which are sensitive to the electronic coupling between graphene and the topological surface state. The coupling between the p_z orbitals of graphene and the p orbitals of the surface states on the Bi2Se3 bottom surface can be enhanced by applying a perpendicular negative magnetic field, resulting in a giant negative magnetoresistance at the Dirac point up to about -91%. Obvious resistances dip in the transfer curve at the Dirac point is also observed in the hybrid devices, which is consistent with theoretical predictions of the distorted Dirac bands with nontrivial spin textures inherited from the Bi2Se3 surface states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404808000110 Publication Date 2017-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 12 Open Access OpenAccess
Notes ; This work was supported by National Key Research and Development Program of China (Nos. 2016YFA0300802, 2013CB934600) and NSFC (No. 11234001). ; Approved Most recent IF: 13.942
Call Number EMAT @ emat @ c:irua:143192 Serial 4569
Permanent link to this record
 

 
Author (down) Zhang, H.; Pryds, N.; Park, D.-S.; Gauquelin, N.; Santucci, S.; Christensen, D., V.; Jannis, D.; Chezganov, D.; Rata, D.A.; Insinga, A.R.; Castelli, I.E.; Verbeeck, J.; Lubomirsky, I.; Muralt, P.; Damjanovic, D.; Esposito, V.
Title Atomically engineered interfaces yield extraordinary electrostriction Type A1 Journal article
Year 2022 Publication Nature Abbreviated Journal
Volume 609 Issue 7928 Pages 695-700
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electrostriction is a property of dielectric materials whereby an applied electric field induces a mechanical deformation proportional to the square of that field. The magnitude of the effect is usually minuscule (<10(-19) m(2) V-2 for simple oxides). However, symmetry-breaking phenomena at the interfaces can offer an efficient strategy for the design of new properties(1,2). Here we report an engineered electrostrictive effect via the epitaxial deposition of alternating layers of Gd2O3-doped CeO2 and Er2O3-stabilized delta-Bi2O3 with atomically controlled interfaces on NdGaO3 substrates. The value of the electrostriction coefficient achieved is 2.38 x 10(-14) m(2) V-2, exceeding the best known relaxor ferroelectrics by three orders of magnitude. Our theoretical calculations indicate that this greatly enhanced electrostriction arises from coherent strain imparted by interfacial lattice discontinuity. These artificial heterostructures open a new avenue for the design and manipulation of electrostrictive materials and devices for nano/micro actuation and cutting-edge sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000859073900001 Publication Date 2022-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 12 Open Access OpenAccess
Notes This research was supported by the BioWings project, funded by the European Union’s Horizon 2020, Future and Emerging Technologies programme (grant no. 801267), and by the Danish Council for Independent Research Technology and Production Sciences for the DFF—Research Project 2 (grant no. 48293). N.P. and D.V.C. acknowledge funding from Villum Fonden for the NEED project (no. 00027993) and from the Danish Council for Independent Research Technology and Production Sciences for the DFF—Research Project 3 (grant no. 00069 B). V.E. acknowledges funding from Villum Fonden for the IRIDE project (no. 00022862). N.G. and J.V. acknowledge funding from the GOA project ('Solarpaint') of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. D.J. acknowledges funding from the FWO Project (no. G093417N) from the Flemish Fund for Scientific Research. D.C. acknowledges TOP/BOF funding from the University of Antwerp. This project has received funding from the European Union’s Horizon 2020 Research Infrastructure—Integrating Activities for Advanced Communities—under grant agreement no. 823717-ESTEEM3. We thank T. D. Pomar and A. J. Bergne for English proofreading.; esteem3reported; esteem3TA Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:190576 Serial 7129
Permanent link to this record
 

 
Author (down) Zhang, H.; Gauquelin, N.; McMahon, C.; Hawthorn, D.G.; Botton, G.A.; Wei, J.Y.T.
Title Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films Type A1 Journal article
Year 2018 Publication Physical review materials Abbreviated Journal
Volume 2 Issue 3 Pages 033803
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract It is known that solid-state reaction in high-pressure oxygen can stabilize high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial thin films of YBa2Cu3O7-delta grown by pulsed laser deposition are annealed at up to 700 atm O-2 and 900 degrees C, in conjunction with Cu enrichment by solid-state diffusion. The films show the clear formation of Y2Ba4Cu7O15-delta and Y2Ba4Cu8O16 as well as regions of YBa2Cu5O9-delta and YBa2Cu6O10-delta phases, according to scanning transmission electron microscopy, x-ray diffraction, and x-ray absorption spectroscopy. Similarly annealed YBa2Cu3O7-delta powders show no phase conversion. Our results demonstrate a route of synthesis towards discovering more complex phases of cuprates and other superconducting oxides.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication College Park, Md Editor
Language Wos 000428244900004 Publication Date 2018-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access Not_Open_Access
Notes ; This work is supported by NSERC, CFI-OIT, and CIFAR. The electron microscopy work was carried out at the Canadian Centre for Electron Microscopy, a National Facility supported by the Canada Foundation for Innovation under the Major Science Initiative program, McMaster University, and NSERC. The XAS work was performed at the Canadian Light Source, which is supported by NSERC, NRC, CIHR, and the University of Saskatchewan. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:150829 Serial 4982
Permanent link to this record
 

 
Author (down) Zeng, Y.I.; Menghini, M.; Li, D.Y.; Lin, S.S.; Ye, Z.Z.; Hadermann, J.; Moorkens, T.; Seo, J.W.; Locquet, J.-P.; van Haesendonck, C.
Title Unexpected optical response of single ZnO nanowires probed using controllable electrical contacts Type A1 Journal article
Year 2011 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 13 Issue 15 Pages 6931-6935
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Relying on combined electron-beam lithography and lift-off methods Au/Ti bilayer electrical contacts were attached to individual ZnO nanowires (NWs) that were grown by a vapor phase deposition method. Reliable Schottky-type as well as ohmic contacts were obtained depending on whether or not an ion milling process was used. The response of the ZnO NWs to ultraviolet light was found to be sensitive to the type of contacts. The intrinsic electronic properties of the ZnO NWs were studied in a field-effect transistor configuration. The transfer characteristics, including gate threshold voltage, hysteresis and operational mode, were demonstrated to unexpectedly respond to visible light. The origin of this effect could be accounted for by the presence of point defects in the ZnO NWs.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000288951000019 Publication Date 2011-03-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 7 Open Access
Notes Approved Most recent IF: 4.123; 2011 IF: 3.573
Call Number UA @ lucian @ c:irua:89378 Serial 3807
Permanent link to this record
 

 
Author (down) Zeng, Y.-J.; Gauquelin, N.; Li, D.-Y.; Ruan, S.-C.; He, H.-P.; Egoavil, R.; Ye, Z.-Z.; Verbeeck, J.; Hadermann, J.; Van Bael, M.J.; Van Haesendonck, C.
Title Co-Rich ZnCoO Nanoparticles Embedded in Wurtzite Zn1-xCoxO Thin Films: Possible Origin of Superconductivity Type A1 Journal article
Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 7 Issue 7 Pages 22166-22171
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Co-rich ZnCoO nanoparticles embedded in wurtzite Zn0.7Co0.3O thin films are grown by pulsed laser deposition on a Si substrate. Local superconductivity with an onset Tc at 5.9 K is demonstrated in the hybrid system. The unexpected superconductivity probably results from Co(3+) in the Co-rich ZnCoO nanoparticles or from the interface between the Co-rich nanoparticles and the Zn0.7Co0.3O matrix.
Address Solid State Physics and Magnetism Section, KU Leuven , Celestijnenlaan 200 D, BE-3001 Leuven, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000363001500007 Publication Date 2015-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 13 Open Access
Notes This work has been supported by the Research Foundation − Flanders (FWO, Belgium) as well as by the Flemish Concerted Research Action program (BOF KU Leuven, GOA/14/007). N. G. and J. V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Flemish Hercules Foundation. The work at Shenzhen University was supported by National Natural Science Foundation of China under Grant No. 61275144 and Natural Science Foundation of SZU. Y.-J. Z. acknowledges funding under grant No. SKL2015-12 from the State Key Laboratory of Silicon Materials; ECASJO_; Approved Most recent IF: 7.504; 2015 IF: 6.723
Call Number c:irua:129195 c:irua:129195UA @ admin @ c:irua:129195 Serial 3949
Permanent link to this record
 

 
Author (down) Zaryouh, H.; Verswyvel, H.; Bauwens, M.; Van Haesendonck, G.; Deben, C.; Lin, A.; De Waele, J.; Vermorken, J.B.; Koljenovic, S.; Bogaerts, A.; Lardon, F.; Smits, E.; Wouters, A.
Title De belofte van hoofdhalskankerorganoïden in kankeronderzoek : een blik op de toekomst Type A2 Journal article
Year 2023 Publication Onco-hemato : multidisciplinair tijdschrift voor oncologie Abbreviated Journal
Volume 17 Issue 7 Pages 54-58
Keywords A2 Journal article; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Hoofd-halskanker vormt een aanzienlijke uitdaging met bijna 900.000 nieuwe diagnoses per jaar, waarbij de jaarlijkse incidentie blijft stijgen. Vaak wordt de diagnose pas in een laat stadium gesteld, wat complexe behandelingen noodzakelijk maakt. Terugval van patiënten is helaas een veelvoorkomend probleem. De gemiddelde overlevingsduur is beperkt tot enkele maanden. Daarom is er een dringende behoefte om nieuwe, veelbelovende behandelingen te ontwikkelen voor patiënten met hoofd-halskanker. Voor het bereiken van deze vooruitgang spelen innovatieve studiemodellen een cruciale rol. Het ontwikkelen van deze nieuwe behandelingen start met laboratoriumonderzoek, waarbij traditionele tweedimensionale celculturen hun beperkingen hebben. Daarom verschuiven onderzoekers hun aandacht meer en meer naar geavanceerdere driedimensionale modellen, met hoofd-halskankerorganoïden als beloftevol nieuw model. Dit model behoudt immers zowel het genetische profiel als de morfologische kenmerken van de originele tumor van de hoofd-halskankerpatiënt. Hoofdhalskankerorganoïden bieden daarom de mogelijkheid om innovatieve behandelingen te testen en kunnen mogelijk zelfs de respons van een patiënt op bepaalde therapieën voorspellen. Hoewel tumororganoïden als ‘patiënt-in-het-lab’ veelbelovend zijn, zijn er uitdagingen te overwinnen, zoals de ontwikkelingstijd en de toepasbaarheid bij alle tumortypes, evenals het ontbreken van immuuncellen en andere micro-omgevingscomponenten. Er is daarom een grote behoefte aan gestandaardiseerde protocollen voor de ontwikkeling van organoïden en verkorting van de ontwikkelingstijd. Concluderend bieden driedimensionale hoofd-halskankerorganoïden een veelbelovend perspectief voor de toekomst van kankerbehandelingen. Ze hebben het potentieel om bij te dragen aan de ontwikkeling van gepersonaliseerde behandelingen en zo de overlevingskansen van kankerpatiënten te verbeteren. Het is echter belangrijk om hun voorspellend vermogen en toepassingsmogelijkheden verder te onderzoeken, voordat ze op grote schaal worden geïmplementeerd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2030-2738 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202271 Serial 9004
Permanent link to this record
 

 
Author (down) Yin, C.; Krishnan, D.; Gauquelin, N.; Verbeeck, J.; Aarts, J.
Title Controlling the interfacial conductance in LaAlO3/SrTiO3 in 90 degrees off-axis sputter deposition Type A1 Journal article
Year 2019 Publication Physical review materials Abbreviated Journal
Volume 3 Issue 3 Pages 034002
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report on the fabrication of conducting interfaces between LaAlO3 and SrTiO3 by 90 degrees off-axis sputtering in an Ar atmosphere. At a growth pressure of 0.04 mbar the interface is metallic, with a carrier density of the order of 1 x 10(13) cm(-2) at 3 K. By increasing the growth pressure, we observe an increase of the out-of-plane lattice constants of the LaAlO3 films while the in-plane lattice constants do not change. Also, the low-temperature sheet resistance increases with increasing growth pressure, leading to an insulating interface when the growth pressure reaches 0.10 mbar. We attribute the structural variations to an increase of the La/Al ratio, which also explains the transition from metallic behavior to insulating behavior of the interfaces. Our research shows that the control which is furnished by the Ar pressure makes sputtering as versatile a process as pulsed laser deposition, and emphasizes the key role of the cation stoichiometry of LaAlO3 in the formation of the conducting interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461077100002 Publication Date 2019-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.926 Times cited 4 Open Access Not_Open_Access
Notes ; We thank Nikita Lebedev, Aymen Ben Hamida, and Prateek Kumar for useful discussions and Giordano Mattoni, Jun Wang, Vincent Joly, and Hozanna Miro for their technical assistance. We also thank Jean-Marc Triscone and his group for sharing their design of the sputtering system with us. This work is part of the FOM research programme DESCO with Project No. 149, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO). C.Y. is supported by China Scholarship Council (CSC) with Grant No. 201508110214. N.G., D.K., and J.V. acknowledge financial support from the GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:158547 Serial 5243
Permanent link to this record
 

 
Author (down) Yang, T.; Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Nowik, I.; Stephens, P.W.; Hamberger, J.; Tsirlin, A.A.; Ramanujachary, K.V.; Lofland, S.; Croft, M.; Ignatov, A.; Sun, J.; Greenblatt, M.
Title _BiMnFe2O6, a polysynthetically twinned hcp MO structure Type A1 Journal article
Year 2010 Publication Chemical science Abbreviated Journal Chem Sci
Volume 1 Issue 6 Pages 751-762
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The most efficient use of spatial volume and the lowest potential energies in the metal oxide structures are based on cubic close packing (ccp) or hexagonal close packing (hcp) of anions with cations occupying the interstices. A promising way to tune the composition of close packed oxides and design new compounds is related to fragmenting the parent structure into modules by periodically spaced planar interfaces, such as twin planes at the unit cell scale. The unique crystal chemistry properties of cations with a lone electron pair, such as Bi3+ or Pb2+, when located at interfaces, enables them to act as chemical scissors, to help relieve configurational strain. With this approach, we synthesized a new oxide, BiMnFe2O6, where fragments of the hypothetical hcp oxygen-based MO structure (the NiAs structure type), for the first time, serve as the building modules in a complex transition metal oxide. Mn3+ and Fe3+ ions are randomly distributed in two crystallographically independent sites (M1 and M2). The structure consists of quasi two-dimensional blocks of the 2H hexagonal close packed MO structure cut along the (114) crystal plane of the hcp lattice and stacked along the c axis. The blocks are related by a mirror operation that allows BiMnFe2O6 to be considered as a polysynthetically twinned 2H hcp MO structure. The transition to an AFM state with an incommensurate spin configuration at [similar] 212 K is established by 57Fe Mössbauer spectroscopy, magnetic susceptibility, specific heat and low temperature powder neutron diffraction.
Address
Corporate Author Thesis
Publisher Royal Society of Chemistry Place of Publication Cambridge Editor
Language Wos 000283939200013 Publication Date 2010-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.668 Times cited 12 Open Access
Notes Approved Most recent IF: 8.668; 2010 IF: NA
Call Number UA @ lucian @ c:irua:85823 Serial 3517
Permanent link to this record
 

 
Author (down) Xu, H.; Li, H.; Gauquelin, N.; Chen, X.; Wu, W.-F.; Zhao, Y.; Si, L.; Tian, D.; Li, L.; Gan, Y.; Qi, S.; Li, M.; Hu, F.; Sun, J.; Jannis, D.; Yu, P.; Chen, G.; Zhong, Z.; Radovic, M.; Verbeeck, J.; Chen, Y.; Shen, B.
Title Giant tunability of Rashba splitting at cation-exchanged polar oxide interfaces by selective orbital hybridization Type A1 Journal article
Year 2024 Publication Advanced materials Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The 2D electron gas (2DEG) at oxide interfaces exhibits extraordinary properties, such as 2D superconductivity and ferromagnetism, coupled to strongly correlated electrons in narrow d-bands. In particular, 2DEGs in KTaO3 (KTO) with 5d t2g orbitals exhibit larger atomic spin-orbit coupling and crystal-facet-dependent superconductivity absent for 3d 2DEGs in SrTiO3 (STO). Herein, by tracing the interfacial chemistry, weak anti-localization magneto-transport behavior, and electronic structures of (001), (110), and (111) KTO 2DEGs, unambiguously cation exchange across KTO interfaces is discovered. Therefore, the origin of the 2DEGs at KTO-based interfaces is dramatically different from the electronic reconstruction observed at STO interfaces. More importantly, as the interface polarization grows with the higher order planes in the KTO case, the Rashba spin splitting becomes maximal for the superconducting (111) interfaces approximately twice that of the (001) interface. The larger Rashba spin splitting couples strongly to the asymmetric chiral texture of the orbital angular moment, and results mainly from the enhanced inter-orbital hopping of the t2g bands and more localized wave functions. This finding has profound implications for the search for topological superconductors, as well as the realization of efficient spin-charge interconversion for low-power spin-orbitronics based on (110) and (111) KTO interfaces. An unambiguous cation exchange is discovered across the interfaces of (001), (110), and (111) KTaO3 2D electron gases fabricated at room temperature. Remarkably, the (111) interfaces with the highest superconducting transition temperature also turn out to show the strongest electron-phonon interaction and the largest Rashba spin splitting. image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001219658400001 Publication Date 2024-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:206037 Serial 9152
Permanent link to this record
 

 
Author (down) Xu, B.; Milošević, M.V.; Lin, S.-H.; Peeters, F.M.; Jankó, B.
Title Formation of multiple-flux-quantum vortices in mesoscopic superconductors from simulations of calorimetric, magnetic, and transport properties Type A1 Journal article
Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 107 Issue 5 Pages 057002,1-057002,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Because of strong flux confinement in mesoscopic superconductors, a giant vortex may appear in the ground state of the system in an applied magnetic field. This multiquanta vortex can then split into individual vortices (and vice versa) as a function of, e.g., applied current, magnetic field, or temperature. Here we show that such transitions can be identified by calorimetry, as the formation or splitting of a giant vortex results in a clear jump in measured heat capacity versus external drive. We attribute this phenomenon to an abrupt change in the density of states of the quasiparticle excitations in the vortex core(s), and further link it to a sharp change of the magnetic susceptibility at the transitionproving that the formation of a giant vortex can also be detected by magnetometry.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000293333100006 Publication Date 2011-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 26 Open Access
Notes ; We thank O. Bourgeois, T. Yokoyama, M. Eschrig, and M. Ichioka for discussions. This work was supported by FWO-Vlaanderen, the Belgian Science Policy (IAP), the bilateral project Flanders-USA, NSF NIRT, ECS-0609249, and Institute of Theoretical Sciences, Notre Dame. ; Approved Most recent IF: 8.462; 2011 IF: 7.370
Call Number UA @ lucian @ c:irua:91237 Serial 1263
Permanent link to this record
 

 
Author (down) Wu, X.; Ding, J.; Cui, W.; Lin, W.; Xue, Z.; Yang, Z.; Liu, J.; Nie, X.; Zhu, W.; Van Tendeloo, G.; Sang, X.
Title Enhanced electrical properties of Bi2-xSbxTe3 nanoflake thin films through interface engineering Type A1 Journal article
Year 2024 Publication Energy & environment materials Abbreviated Journal
Volume Issue Pages e12755-8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The structure-property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure. Designing thermoelectric materials with a simple, structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties. Here, we synthesized Bi2-xSbxTe3 (x = 0, 0.1, 0.2, 0.4) nanoflakes using a hydrothermal method, and prepared Bi2-xSbxTe3 thin films with predominantly (0001) interfaces by stacking the nanoflakes through spin coating. The influence of the annealing temperature and Sb content on the (0001) interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy. Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the (0001) interface. As such it enhances interfacial connectivity and improves the electrical transport properties. Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient. Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient, the maximum power factor of the Bi1.8Sb0.2Te3 nanoflake films reaches 1.72 mW m(-1) K-2, which is 43% higher than that of a pure Bi2Te3 thin film.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001204495900001 Publication Date 2024-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205438 Serial 9148
Permanent link to this record
 

 
Author (down) Woo, S.Y.; Gauquelin, N.; Nguyen, H.P.T.; Mi, Z.; Botton, G.A.
Title Interplay of strain and indium incorporation in InGaN/GaN dot-in-a-wire nanostructures by scanning transmission electron microscopy Type A1 Journal article
Year 2015 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 26 Issue 26 Pages 344002
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The interplay between strain and composition is at the basis of heterostructure design to engineer new properties. The influence of the strain distribution on the incorporation of indium during the formation of multiple InGaN/GaN quantum dots (QDs) in nanowire (NW) heterostructures has been investigated, using the combined techniques of geometric phase analysis of atomic-resolution images and quantitative elemental mapping from core-loss electron energy-loss spectroscopy within scanning transmission electron microscopy. The variation in In-content between successive QDs within individual NWs shows a dependence on the magnitude of compressive strain along the growth direction within the underlying GaN barrier layer, which affects the incorporation of In-atoms to minimize the local effective strain energy. Observations suggest that the interfacial misfit between InGaN/GaN within the embedded QDs is mitigated by strain partitioning into both materials, and results in normal stresses inflicted by the presence of the surrounding GaN shell. These experimental measurements are linked to the local piezoelectric polarization fields for individual QDs, and are discussed in terms of the photoluminescence from an ensemble of NWs.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000359079500003 Publication Date 2015-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 19 Open Access
Notes Approved Most recent IF: 3.44; 2015 IF: 3.821
Call Number UA @ lucian @ c:irua:136278 Serial 4504
Permanent link to this record
 

 
Author (down) Weiβ, R.; Gritsch, S.; Brader, G.; Nikolic, B.; Spiller, M.; Santolin, J.; Weber, H.K.; Schwaiger, N.; Pluchon, S.; Dietel, K.; Guebitz, G.; Nyanhongo, G.
Title A biobased, bioactive, low CO₂ impact coating for soil improvers Type A1 Journal article
Year 2021 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 23 Issue 17 Pages 6501-6514
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Lignosulfonate-based bioactive coatings as soil improvers for lawns were developed using laccase as a biocatalyst. Incorporation of glycerol, xylitol and sorbitol as plasticizers considerably reduced the brittleness of the synthesized coatings of marine carbonate granules while thermal enzyme inactivation at 100 degrees C enabled the production of stable coatings. Heat inactivation produced stable coatings with a molecular weight of 2000 kDa and a viscosity of 4.5 x 10(-3) Pas. The desired plasticity for the spray coating of soil improver granules was achieved by the addition of 2.7% of xylitol. Agriculture beneficial microorganisms (four different Bacillus species) were integrated into the coatings. The stable coatings protected the marine calcium carbonate granules, maintained the viability of the microorganisms and showed no toxic effects on the germination and growth of model plants including corn, wheat, salad, and tomato despite a slight delay in germination. Moreover, the coatings reduced the dust formation of soil improvers by 70%. CO2 emission analysis showed potential for the reduction of up to 3.4 kg CO2-eq. kg(-1) product, making it a viable alternative to fossil-based coatings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000683056500001 Publication Date 2021-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.125 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 9.125
Call Number UA @ admin @ c:irua:180511 Serial 7558
Permanent link to this record
 

 
Author (down) Wang, Z.; Wang, Y.B.; Yin, J.; Tovari, E.; Yang, Y.; Lin, L.; Holwill, M.; Birkbeck, J.; Perello, D.J.; Xu, S.; Zultak, J.; Gorbachev, R.V.; Kretinin, A.V.; Taniguchi, T.; Watanabe, K.; Morozov, S.V.; Andelkovic, M.; Milovanović, S.P.; Covaci, L.; Peeters, F.M.; Mishchenko, A.; Geim, A.K.; Novoselov, K.S.; Fal'ko, V.I.; Knothe, A.; Woods, C.R.
Title Composite super-moiré lattices in double-aligned graphene heterostructures = Composite super-moire lattices in double-aligned graphene heterostructures Type A1 Journal article
Year 2019 Publication Science Advances Abbreviated Journal
Volume 5 Issue 12 Pages eaay8897
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract When two-dimensional (2D) atomic crystals are brought into close proximity to form a van der Waals heterostructure, neighbouring crystals may influence each other's properties. Of particular interest is when the two crystals closely match and a moire pattern forms, resulting in modified electronic and excitonic spectra, crystal reconstruction, and more. Thus, moire patterns are a viable tool for controlling the properties of 2D materials. However, the difference in periodicity of the two crystals limits the reconstruction and, thus, is a barrier to the low-energy regime. Here, we present a route to spectrum reconstruction at all energies. By using graphene which is aligned to two hexagonal boron nitride layers, one can make electrons scatter in the differential moire pattern which results in spectral changes at arbitrarily low energies. Further, we demonstrate that the strength of this potential relies crucially on the atomic reconstruction of graphene within the differential moire super cell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000505069600089 Publication Date 2019-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 49 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:165754 Serial 6289
Permanent link to this record
 

 
Author (down) Wang, Q.; Lin, S.; Liu, X.; Xu, W.; Xiao, Y.; Liang, C.; Ding, L.; Peeters, F.M.
Title Photoluminescence and electronic transition behaviors of single-stranded DNA Type A1 Journal article
Year 2021 Publication Physical Review E Abbreviated Journal Phys Rev E
Volume 104 Issue 3 Pages 034412
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Due to the potential application of DNA for biophysics and optoelectronics, the electronic energy states and transitions of this genetic material have attracted a great deal of attention recently. However, the fluorescence and corresponding physical process of DNA under optical excitation with photon energies below ultraviolet are still not fully clear. In this work, we experimentally investigate the photoluminescence (PL) properties of single-stranded DNA (ssDNA) samples under near-ultraviolet (NUV) and visible excitations (270 similar to 440 nm). Based on the dependence of the PL peak wavelength (lem) upon the excitation wavelength (lex), the PL behaviors of ssDNA can be approximately classified into two categories. In the relatively short excitation wavelength regime, lem is nearly constant due to exciton-like transitions associated with delocalized excitonic states and excimer states. In the relatively long excitation wavelength range, a linear relation of lem = Alex + B with A 0 or A < 0 can be observed, which comes from electronic transitions related to coupled vibrational-electronic levels. Moreover, the transition channels in different excitation wavelength regimes and the effects of strand length and base type can be analyzed on the basis of these results. These important findings not only can give a general description of the electronic energy states and transitional behaviors of ssDNA samples under NUV and visible excitations, but also can be the basis for the application of DNA in nanoelectronics and optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000703562300002 Publication Date 2021-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0053 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.366 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.366
Call Number UA @ admin @ c:irua:182517 Serial 7009
Permanent link to this record
 

 
Author (down) Wang, J.; Shin, Y.; Gauquelin, N.; Yang, Y.; Lee, C.; Jannis, D.; Verbeeck, J.; Rondinelli, J.M.; May, S.J.
Title Physical properties of epitaxial SrMnO2.5−δFγoxyfluoride films Type A1 Journal article
Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 31 Issue 36 Pages 365602
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Recently, topotactic fluorination has become an alternative way of doping epitaxial perovskite oxides through anion substitution to engineer their electronic properties instead of the more commonly used cation substitution. In this work, epitaxial oxyfluoride SrMnO2.5−δ F γ films were synthesized via topotactic fluorination of SrMnO2.5 films using polytetrafluoroethylene as the fluorine source. Oxidized SrMnO3 films were also prepared for comparison with the fluorinated samples. The F content, probed by x-ray photoemission spectroscopy, was systematically controlled by adjusting fluorination conditions. Electronic transport measurements reveal that increased F content (up to γ  =  0.14) systematically increases the electrical resistivity, despite the nominal electron-doping induced by F substitution for O in these films. In contrast, oxidized SrMnO3 exhibits a decreased resistivity and conduction activation energy. A blue-shift of optical absorption features occurs with increasing F content. Density functional theory calculations indicate that F acts as a scattering center for electronic transport, controls the observed weak ferromagnetic behavior of the films, and reduces the inter-band optical transitions in the manganite films. These results stand in contrast to bulk electron-doped La1−x Ce x MnO3, illustrating how aliovalent anionic substitutions can yield physical behavior distinct from A-site substituted perovskites with the same nominal B-site oxidation states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472232000002 Publication Date 2019-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 5 Open Access
Notes Work at Drexel was supported by the National Science Foundation (NSF), grant number CMMI-1562223. Thin film synthesis utilized deposition instrumentation acquired through an Army Research Office DURIP grant (W911NF-14-1-0493). Y.S and J.M.R. were supported by NSF (Grant No. DMR-1454688). Calculations were performed using the QUEST HPC Facility at Northwestern, the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF Grant No. ACI-1053575, and the Center for Nanoscale Materials (Carbon Cluster). Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. J.V. and N. G. acknowledge funding from a GOA project “Solarpaint” of the University of Antwerp. D.J. acknowledges funding from FWO project G093417N from the Flemish fund for scientific research. Approved Most recent IF: 2.649
Call Number EMAT @ emat @UA @ admin @ c:irua:161174 Serial 5293
Permanent link to this record
 

 
Author (down) Wang, J.; Nguyen, M.D.; Gauquelin, N.; Verbeeck, J.; Do, M.T.; Koster, G.; Rijnders, G.; Houwman, E.
Title On the importance of the work function and electron carrier density of oxide electrodes for the functional properties of ferroelectric capacitors Type A1 Journal article
Year 2020 Publication Physica Status Solidi-Rapid Research Letters Abbreviated Journal Phys Status Solidi-R
Volume 14 Issue 14 Pages 1900520
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract It is important to understand the effect of the interfaces between the oxide electrode layers and the ferroelectric layer on the polarization response for optimizing the device performance of all-oxide ferroelectric devices. Herein, the effects of the oxide La0.07Ba0.93SnO3 (LBSO) as an electrode material in an PbZr0.52Ti0.48O3 (PZT) ferroelectric capacitor are compared with those of the more commonly used SrRuO3 (SRO) electrode. SRO (top)/PZT/SRO (bottom), SRO/PZT/LBSO, and SRO/PZT/2 nm SRO/LBSO devices are fabricated. Only marginal differences in crystalline properties, determined by X-ray diffraction and scanning transmission electron microscopy, are found. High-quality polarization loops are obtained, but with a much larger coercive field for the SRO/PZT/LBSO device. In contrast to the SRO/PZT/SRO device, the polarization decreases strongly with increasing field cycling. This fatigue problem can be remedied by inserting a 2 nm SRO layer between PZT and LBSO. It is argued that strongly increased charge injection into the PZT occurs at the bottom interface, because of the low PZT/LBSO interfacial barrier and the much lower carrier density in LBSO, as compared with that in SRO, causing a low dielectric constant, depleted layer in LBSO. The charge injection creates a trapped space charge in the PZT, causing the difference in fatigue behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000506195600001 Publication Date 2019-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 6 Open Access OpenAccess
Notes ; This work was supported by Nederlandse Organisatie voor Wetenschappelijk Onderzoek through grant no.13HTSM01. ; Approved Most recent IF: 2.8; 2020 IF: 3.032
Call Number UA @ admin @ c:irua:165681 Serial 6316
Permanent link to this record
 

 
Author (down) Wang, J.; Gauquelin, N.; Huijben, M.; Verbeeck, J.; Rijnders, G.; Koster, G.
Title Metal-insulator transition of SrVO 3 ultrathin films embedded in SrVO 3 / SrTiO 3 superlattices Type A1 Journal article
Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 117 Issue 13 Pages 133105
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The metal-insulator transition (MIT) in strongly correlated oxides is a topic of great interest for its potential applications, such as Mott field effect transistors and sensors. We report that the MIT in high quality epitaxial SrVO3 (SVO) thin films is present as the film thickness is reduced, lowering the dimensionality of the system, and electron-electron correlations start to become the dominant interactions. The critical thickness of 3 u.c is achieved by avoiding effects due to off-stoichiometry using optimal growth conditions and excluding any surface effects by a STO capping layer. Compared to the single SVO thin films, conductivity enhancement in SVO/STO superlattices is observed. This can be explained by the interlayer coupling effect between SVO sublayers in the superlattices. Magnetoresistance and Hall measurements indicate that the dominant driving force of MIT is the electron–electron interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000577126100001 Publication Date 2020-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited 8 Open Access OpenAccess
Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 13HTSM01 ; Approved Most recent IF: 4; 2020 IF: 3.411
Call Number EMAT @ emat @c:irua:172461 Serial 6415
Permanent link to this record
 

 
Author (down) Volkova, N.E.; Lebedev, O.I.; Gavrilova, L.Y.; Turner, S.; Gauquelin, N.; Seikh, M.M.; Caignaert, V.; Cherepanov, V.A.; Raveau, B.; Van Tendeloo, G.
Title Nanoscale ordering in oxygen deficient quintuple perovskite Sm2-\epsilonBa3+\epsilonFe5O15-\delta : implication for magnetism and oxygen stoichiometry Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 21 Pages 6303-6310
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The investigation of the system SmBaFe-O in air has allowed an oxygen deficient perovskite Sm2-epsilon Ba3+epsilon Fe5O15-delta (delta = 0.75, epsilon = 0.125) to be synthesized. In contrast to the XRPD pattern which gives a cubic symmetry (a(p) = 3.934 angstrom), the combined HREM/EELS study shows that this phase is nanoscale ordered with a quintuple tetragonal cell, a(p) X a(p) X 5(ap). The nanodomains exhibit a unique stacking sequence of the A-site cationic layers along the crystallographic c-axis, namely SmBaBa/SmBa/SmBaSm, and are chemically twinned in the three crystallographic directions. The nanoscale ordering of this perovskite explains its peculiar magnetic properties on the basis of antiferromagnetic interactions with spin blockade at the boundary between the nanodomains. The variation of electrical conductivity and oxygen content of this oxide versus temperature suggest potential SOFC applications. They may be related to the particular distribution of oxygen vacancies in the lattice and to the 3d(5)(L) under bar configuration of iron.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344905600029 Publication Date 2014-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 16 Open Access
Notes The UrFU authors were financially supported by the Ministry of Education and Science of Russian Federation (project N 4.1039.2014/K) and by UrFU under the Framework Program of development of UrFU through the «Young scientists UrFU» competition. The CRISMAT authors gratefully acknowledge the EC, the CNRS and the French Minister of Education and Research for financial support through their Research, Strategic and Scholarship programs. This work was supported by funding from the European Research Council under the Seventh Framework Program (FP7), ERC grant N°246791 – COUNTATOMS. S.T. gratefully acknowledges the fund for scientific research Flanders for a post-doctoral fellowship and for financial support under contract number G004413N. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC starting grant number 278510 – VORTEX; ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:122137 Serial 2269
Permanent link to this record
 

 
Author (down) Volkov, V.V.; Van Tendeloo, G.; Tsirkov, G.A.; Cherkashina, N.V.; Vargaftik, M.N.; Moiseev, I.I.; Novotortsev, V.M.; Kvit, A.V.; Chuvilin, A.L.
Title Long- and short-distance ordering of the metal cores of giant Pd clusters Type A1 Journal article
Year 1996 Publication Journal of crystal growth Abbreviated Journal J Cryst Growth
Volume 163 Issue Pages 377-387
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1996UW51100006 Publication Date 2003-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.698 Times cited 28 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:16866 Serial 1834
Permanent link to this record
 

 
Author (down) Villarreal, R.; Lin, P.-C.; Faraji, F.; Hassani, N.; Bana, H.; Zarkua, Z.; Nair, M.N.; Tsai, H.-C.; Auge, M.; Junge, F.; Hofsaess, H.C.; De Gendt, S.; De Feyter, S.; Brems, S.; Ahlgren, E.H.; Neyts, E.C.; Covaci, L.; Peeters, F.M.; Neek-Amal, M.; Pereira, L.M.C.
Title Breakdown of universal scaling for nanometer-sized bubbles in graphene Type A1 Journal article
Year 2021 Publication Nano Letters Abbreviated Journal Nano Lett
Volume 21 Issue 19 Pages 8103-8110
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We report the formation of nanobubbles on graphene with a radius of the order of 1 nm, using ultralow energy implantation of noble gas ions (He, Ne, Ar) into graphene grown on a Pt(111) surface. We show that the universal scaling of the aspect ratio, which has previously been established for larger bubbles, breaks down when the bubble radius approaches 1 nm, resulting in much larger aspect ratios. Moreover, we observe that the bubble stability and aspect ratio depend on the substrate onto which the graphene is grown (bubbles are stable for Pt but not for Cu) and trapped element. We interpret these dependencies in terms of the atomic compressibility of the noble gas as well as of the adhesion energies between graphene, the substrate, and trapped atoms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000709549100026 Publication Date 2021-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 12 Open Access OpenAccess
Notes Approved Most recent IF: 12.712
Call Number UA @ admin @ c:irua:184137 Serial 6857
Permanent link to this record
 

 
Author (down) Verswyvel, H.; Deben, C.; Wouters, A.; Lardon, F.; Bogaerts, A.; Smits, E.; Lin, A.
Title Phototoxicity and cell passage affect intracellular reactive oxygen species levels and sensitivity towards non-thermal plasma treatment in fluorescently-labeled cancer cells Type A1 Journal article
Year 2023 Publication Journal of physics: D: applied physics Abbreviated Journal
Volume 56 Issue 29 Pages 294001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Live-cell imaging with fluorescence microscopy is a powerful tool, especially in cancer research, widely-used for capturing dynamic cellular processes over time. However, light-induced toxicity (phototoxicity) can be incurred from this method, via disruption of intracellular redox balance and an overload of reactive oxygen species (ROS). This can introduce confounding effects in an experiment, especially in the context of evaluating and screening novel therapies. Here, we aimed to unravel whether phototoxicity can impact cellular homeostasis and response to non-thermal plasma (NTP), a therapeutic strategy which specifically targets the intracellular redox balance. We demonstrate that cells incorporated with a fluorescent reporter for live-cell imaging have increased sensitivity to NTP, when exposed to ambient light or fluorescence excitation, likely through altered proliferation rates and baseline intracellular ROS levels. These changes became even more pronounced the longer the cells stayed in culture. Therefore, our results have important implications for research implementing this analysis technique and are particularly important for designing experiments and evaluating redox-based therapies like NTP.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000978180500001 Publication Date 2023-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access OpenAccess
Notes This work was partially funded by the Research Foundation— Flanders (FWO) and supported by the following Grants: 1S67621N (H V), 12S9221N (A L), and G044420N (A B and A L). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. Approved Most recent IF: 3.4; 2023 IF: 2.588
Call Number PLASMANT @ plasmant @c:irua:196441 Serial 7381
Permanent link to this record
 

 
Author (down) Verdierre, G.; Gauquelin, N.; Jannis, D.; Birkhölzer, Y.A.; Mallik, S.; Verbeeck, J.; Bibes, M.; Koster, G.
Title Epitaxial growth of the candidate ferroelectric Rashba material SrBiO3by pulsed laser deposition Type A1 Journal article
Year 2023 Publication APL materials Abbreviated Journal
Volume 11 Issue 3 Pages 031109
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Among oxides, bismuthates have been gaining much interest due to their unique features. In addition to their superconducting properties, they show potential for applications as topological insulators and as possible spin-to-charge converters. After being first investigated in their bulk form in the 1980s, bismuthates have been successfully grown as thin films. However, most efforts have focused on BaBiO<sub>3</sub>, with SrBiO<sub>3</sub>receiving only little attention. Here, we report the growth of epitaxial films of SrBiO<sub>3</sub>on both TiO<sub>2</sub>-terminated SrTiO<sub>3</sub>and NdO-terminated NdScO<sub>3</sub>substrates by pulsed laser deposition. SrBiO<sub>3</sub>has a pseudocubic lattice constant of ∼4.25 Å and grows relaxed on NdScO<sub>3</sub>. Counter-intuitively, it grows with a slight tensile strain on SrTiO<sub>3</sub>despite a large lattice mismatch, which should induce compressive strain. High-resolution transmission electron microscopy reveals that this occurs as a consequence of structural domain matching, with blocks of 10 SrBiO<sub>3</sub>unit planes matching blocks of 11 SrTiO<sub>3</sub>unit planes. This work provides a framework for the synthesis of high quality perovskite bismuthates films and for the understanding of their interface interactions with homostructural substrates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000953363800004 Publication Date 2023-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X ISBN Additional Links UA library record; WoS full record
Impact Factor 6.1 Times cited Open Access OpenAccess
Notes This work received support from the ERC Advanced grant (Grant No. 833973) “FRESCO” and funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 823717—ESTEEM3, Van Gogh travel grant, Nuffic, The Netherlands (CF No. 42582SB).; esteem3reported; esteem3TA Approved Most recent IF: 6.1; 2023 IF: 4.335
Call Number EMAT @ emat @c:irua:196135 Serial 7377
Permanent link to this record
 

 
Author (down) Verchenko, V.Y.; Wei, Z.; Tsirlin, A.A.; Callaert, C.; Jesche, A.; Hadermann, J.; Dikarev, E.V.; Shevelkov, A.V.
Title Crystal growth of the Nowotny chimney ladder phase Fe2Ge3 : exploring new Fe-based narrow-gap semiconductor with promising thermoelectric performance Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 23 Pages 9954-9963
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('A new synthetic approach based on chemical transport reactions has been introduced to obtain the Nowotny chimney ladder phase Fe2Ge3 in the form of single crystals and polycrystalline powders. The single crystals possess the stoichiometric composition and the commensurate chimney ladder structure of the Ru2Sn3 type in contrast to the polycrystalline samples that are characterized by a complex microstructure. In compliance with the 18-n electron counting rule formulated for T-E intermetallics, electronic structure calculations reveal a narrow-gap semiconducting behavior of Fe2Ge3 favorable for high thermoelectric performance. Measurements of transport and thermoelectric properties performed on the polycrystalline samples confirm the formation of a narrow band gap of similar to 30 meV and reveal high absolute values of the Seebeck coefficient at elevated temperatures. Low glass-like thermal conductivity is observed in a wide temperature range that might be caused by the underlying complex microstructure.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000418206600013 Publication Date 2017-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access OpenAccess
Notes ; The authors thank Dr. Sergey Kazakov and Oleg Tyablikov for their help with the PXRD experiments. V.Y.V. appreciates the help of Dr. Sergey Dorofeev in provision and handling of the Mo(CO)<INF>6</INF> reagent. The work is supported by the Russian Science Foundation, Grant No. 17-13-01033. V.Y.V. appreciates the support from the European Regional Development Fund, Project No. TK134. A.A.T. acknowledges financial support by the Federal Ministry for Education and Research under the Sofia Kovalevskaya Award of the Alexander von Humboldt Foundation. E.V.D. thanks the National Science Foundation, Grant No. CHE-1152441. C.C. acknowledges the support from the University of Antwerp through the BOF Grant No. 31445. ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:148531 Serial 4869
Permanent link to this record
 

 
Author (down) van Vaeck, L.; Poels, K.; de Nollin, S.; Hachimi, A.; Gijbels, R.
Title Laser microprobe mass spectrometry: principle and applications in biology and medicine Type A1 Journal article
Year 1997 Publication Cell biology international Abbreviated Journal Cell Biol Int
Volume 21 Issue Pages 635-648
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000074882700003 Publication Date 2002-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1065-6995; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.831 Times cited 6 Open Access
Notes Approved Most recent IF: 1.831; 1997 IF: 1.124
Call Number UA @ lucian @ c:irua:20464 Serial 1797
Permanent link to this record
 

 
Author (down) van Thiel, T. c.; Brzezicki, W.; Autieri, C.; Hortensius, J. r.; Afanasiev, D.; Gauquelin, N.; Jannis, D.; Janssen, N.; Groenendijk, D. j.; Fatermans, J.; Van Aert, S.; Verbeeck, J.; Cuoco, M.; Caviglia, A. d.
Title Coupling Charge and Topological Reconstructions at Polar Oxide Interfaces Type A1 Journal article
Year 2021 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
Volume 127 Issue 12 Pages 127202
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion symmetry across the heterointerfaces. A notable example is the interface between polar and nonpolar materials, where valence discontinuities lead to otherwise inaccessible charge and spin states. This approach paved the way for the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wave functions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO3, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and

LaAlO3, a polar wide-band-gap insulator. Transmission electron microscopy reveals an atomically sharp LaO/RuO2/SrO interface configuration, leading to excess charge being pinned near the LaAlO3/SrRuO3 interface. We demonstrate through magneto-optical characterization, theoretical calculations and transport measurements that the real-space charge reconstruction drives a reorganization of the topological charges in the band structure, thereby modifying the momentum-space Berry curvature in SrRuO3. Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000704665000010 Publication Date 2021-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 17 Open Access OpenAccess
Notes The authors thank E. Lesne, M. Lee, H. Barakov, M. Matthiesen and U. Filippozzi for discussions. The authors are grateful to E.J.S. van Thiel for producing the illustration in Fig. 4a. This work was supported by the European Research Council under the European Unions Horizon 2020 programme/ERC Grant agreements No. [677458], [770887] and No. [731473] (Quantox of QuantERA ERA-NET Cofund in Quantum Technologies) and by the Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience (NanoFront) and VIDI program. The authors acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. [823717] – ESTEEM3. N. G., J. V., and S. V. A. acknowledge funding from the University of Antwerp through the Concerted Research Actions (GOA) project Solarpaint and the TOP project. C. A. and W. B. are supported by the Foundation for Polish Science through the International Research Agendas program co-financed by the European Union within the Smart Growth Operational Programme. C. A. acknowledges access to the computing facilities of the Interdisciplinary Center of Modeling at the University of Warsaw, Grant No. G73-23 and G75-10. W.B. acknowledges support from the Narodowe Centrum Nauk (NCN, National Science Centre, Poland) Project No. 2019/34/E/ST3/00404'; esteem3TA; esteem3reported Approved Most recent IF: 8.462
Call Number EMAT @ emat @c:irua:182595 Serial 6824
Permanent link to this record
 

 
Author (down) van Rossum, M.; Schoenmaker, W.; Magnus, W.; de Meyer, K.; Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.
Title Moore's law: new playground for quantum physics Type A1 Journal article
Year 2003 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 237 Issue Pages 426-432
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000182801800041 Publication Date 2003-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972;1521-3951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 2 Open Access
Notes Approved Most recent IF: 1.674; 2003 IF: 0.987
Call Number UA @ lucian @ c:irua:44284 Serial 2202
Permanent link to this record