|   | 
Details
   web
Records
Author Khalil-Allafi, J.; Amin-Ahmadi, B.; Zare, M.
Title Biocompatibility and corrosion behavior of the shape memory NiTi alloy in the physiological environments simulated with body fluids for medical applications Type A1 Journal article
Year 2010 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater
Volume 30 Issue 8 Pages 1112-1117
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Due to unique properties of NiTi shape memory alloys such as high corrosion resistance, biocompatibility, super elasticity and shape memory behavior, NiTi shape memory alloys are suitable materials for medical applications. Although TiO2 passive layer in these alloys can prevent releasing of nickel to the environment, high nickel content and stability of passive layer in these alloys are very debatable subjects. In this study a NiTi shape memory alloy with nominal composition of 50.7 atom% Ni was investigated by corrosion tests. Electrochemical tests were performed in two physiological environments of Ringer solution and NaCl 0.9% solution. Results indicate that the breakdown potential of the NiTi alloy in NaCl 0.9% solution is higher than that in Ringer solution. The results of Scanning Electron Microscope (SEM) reveal that low pitting corrosion occurred in Ringer solution compared with NaCl solution at potentiostatic tests. The pH value of the solutions increases after the electrochemical tests. The existence of hydride products in the X-ray diffraction analysis confirms the decrease of the concentration of hydrogen ion in solutions. Topographical evaluations show that corrosion products are nearly same in all samples. The biocompatibility tests were performed by reaction of mouse fibroblast cells (L929). The growth and development of cells for different times were measured by numbering the cells or statistics investigations. The figures of cells for different times showed natural growth of cells. The different of the cell numbers between the test specimen and control specimen was negligible; therefore it may be concluded that the NiTi shape memory alloy is not toxic in the physiological environments simulated with body fluids.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000282905600006 Publication Date 2010-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0928-4931; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.164 Times cited 34 Open Access
Notes Approved (down) Most recent IF: 4.164; 2010 IF: 2.180
Call Number UA @ lucian @ c:irua:122039 Serial 242
Permanent link to this record
 

 
Author Neira, I.S.; Kolen'ko, Y.V.; Lebedev, O.I.; Van Tendeloo, G.; Gupta, H.S.; Matsushita, N.; Yoshimura, M.; Guitian, F.
Title Rational synthesis of a nanocrystalline calcium phosphate cement exhibiting rapid conversion to hydroxyapatite Type A1 Journal article
Year 2009 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater
Volume 29 Issue 7 Pages 2124-2132
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The rational synthesis, comprehensive characterization, and mechanical and micromechanical properties of a calcium phosphate cement are presented. Hydroxyapatite cement biomaterial was synthesized from reactive sub-micrometer-sized dicalcium phosphate dihydrate and tetracalcium phosphate via a dissolution-precipitation reaction using water as the liquid phase. As a result nanostructured, Ca-deficient and carbonated B-type hydroxyapatite is formed. The cement shows good processibility, sets in 22 ± 2 min and entirely transforms to the end product after 6 h of setting reaction, one of the highest conversion rates among previously reported for calcium phosphate cements based on dicalcium and tetracalcium phosphates. The combination of all elucidated physical-chemical traits leads to an essential bioactivity and biocompatibility of the cement, as revealed by in vitro acellular simulated body fluid and cell culture studies. The compressive strength of the produced cement biomaterial was established to be 25 ± 3 MPa. Furthermore, nanoindentation tests were performed directly on the cement to probe its local elasticity and plasticity at sub-micrometer/micrometer level. The measured elastic modulus and hardness were established to be Es = 23 ± 3.5 and H = 0.7 ± 0.2 GPa, respectively. These values are in close agreement with those reported in literature for trabecular and cortical bones, reflecting good elastic and plastic coherence between synthesized cement biomaterial and human bones.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000270159200008 Publication Date 2009-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0928-4931; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.164 Times cited 18 Open Access
Notes Esteem 026019 Approved (down) Most recent IF: 4.164; 2009 IF: NA
Call Number UA @ lucian @ c:irua:79312 Serial 2812
Permanent link to this record
 

 
Author Voss, A.; Wei, H.Y.; Zhang, Y.; Turner, S.; Ceccone, G.; Reithmaier, J.P.; Stengl, M.; Popov, C.
Title Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces Type A1 Journal article
Year 2016 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater
Volume 64 Issue 64 Pages 278-285
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Diamond is a promising material for a number of bio-applications, including the fabrication of platforms for attachment and investigation of neurons and of neuroprostheses, such as retinal implants. In the current work ultrananocrystalline diamond (UNCD) films were deposited by microwave plasma chemical vapor deposition, modified by UV/O-3 treatment or NH3 plasma, and comprehensively characterized with respect to their bulk and surface properties, such as crystallinity, topography, composition and chemical bonding nature. The interactions of insect circadian pacemaker neurons with UNCD surfaces with H-, O- and NH2-terminations were investigated with respect to cell density and viability. The fast and strong attachment achieved without application of adhesion proteins allowed for advantageous modification of dispersion protocols for the preparation of primary cell cultures. Centrifugation steps, which are employed for pelletizing dispersed cells to separate them from dispersing enzymes, easily damage neurons. Now centrifugation can be avoided since dispersed neurons quickly and strongly attach to the UNCD surfaces. Enzyme solutions can be easily washed off without losing many of the dispersed cells. No adverse effects on the cell viability and physiological responses were observed as revealed by calcium imaging. Furthermore, the enhanced attachment of the neurons, especially on the modified UNCD surfaces, was especially advantageous for the immunocytochemical procedures with the cell cultures. The cell losses during washing steps were significantly reduced by one order of magnitude in comparison to controls. In addition, the integration of a titanium grid structure under the UNCD films allowed for individual assignment of physiologically characterized neurons to immunocytochemically stained cells. Thus, employing UNCD surfaces free of foreign proteins improves cell culture protocols and immunocytochemistry with cultured cells. The fast and strong attachment of neurons was attributed to a favorable combination of topography, surface chemistry and wettability. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000376547700033 Publication Date 2016-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0928-4931 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.164 Times cited 7 Open Access
Notes Approved (down) Most recent IF: 4.164
Call Number UA @ lucian @ c:irua:134164 Serial 4251
Permanent link to this record
 

 
Author Bleiner, D.; Macri, M.; Gasser, P.; Sautter, V.; Maras, A.
Title FIB, TEM and LA-ICPMS investigations on melt inclusions in Martian meteorites – Analytical capabilities and geochemical insights Type A1 Journal article
Year 2006 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal Talanta
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In order to obtain full information coverage on melt inclusions in Martian meteorites (subgroup nakhlites) complementary micro-analytical techniques were used, i.e. focused ion beam, transmission electron microscopy and laser ablation. Using focused ion beam several lamellae for transmission electron microscopy were prepared and secondary electron images of cross-sections could be acquired. Laser ablation-inductively coupled plasma mass spectrometry analyses were performed on selected inclusions to obtain mass-oriented bulk composition of inclusions at depth. The differences in composition between melt inclusions in olivine and augite crystals would suggest a xenocrystic origin for olivine. Furthermore, electron diffraction patterns clearly indicated that the SiO2-rich phase in inclusions from augite in meteorites from Northwest Africa site is re-crystallized, whereas it is still vitreous in the inclusions from Nakhla sampling site. Therefore, different post-entrapment evolutions were active for the two nakhlite meteorite sets, the Nakhla and the NWA817 set. Melt inclusions in Nakhla olivine presented alteration veins, which were presumably produced before their landing on Earth. If this is the case, this would indicate a alteration stage already on Mars with all the consequence in terms of climate history. Melt inclusions in Nakhla augite resulted unaffected by any alteration or modification following the entrapment, and therefore represent the best candidate to indicate the pristine magma composition. (c) 2005 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Pergamon Place of Publication Oxford Editor
Language Wos 000235509900028 Publication Date 2005-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.162 Times cited 9 Open Access
Notes Approved (down) Most recent IF: 4.162; 2006 IF: 2.810
Call Number UA @ lucian @ c:irua:95092 Serial 4519
Permanent link to this record
 

 
Author Felipe Montiel, N.; Parrilla, M.; Beltrán, V.; Nuyts, G.; Van Durme, F.; De Wael, K.
Title The opportunity of 6-monoacetylmorphine to selectively detect heroin at preanodized screen printed electrodes Type A1 Journal Article
Year 2021 Publication Talanta Abbreviated Journal Talanta
Volume Issue Pages 122005
Keywords A1 Journal Article; Antwerp X-ray Analysis, Electrochemistry and Speciation (AXES) ;
Abstract The illicit consumption of heroin is an increasing concern in our society. For this reason, rapid analytical methods to seize heroin samples in the field are of paramount importance to hinder drug trafficking, and thus prevent the availability of heroin in the drug market. The present work reports on the enriched electrochemical fingerprint of heroin, allowing its selective detection in street samples, based on the use of electrochemical pretreated screen printed electrodes (p-SPE). The voltammetric identification is built on two oxidation peaks of both heroin and its degradation product 6-monoacetylmorphine (6-MAM), generated in alkaline conditions. Interestingly, an anodic pretreatment of the screen printed electrodes (SPE) shifts the peak potential of paracetamol (the most encountered cutting agent in heroin seizures), allowing the detection of 6-MAM peak, overlapping with the paracetamol signal in the case of untreated SPE. Subsequently, the characterization of the p-SPE with scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, Raman and Fourier transform infrared (FTIR) spectroscopy is provided to demonstrate local changes on the surface of the electrode. From an analytical perspective, p-SPE provide higher sensitivity (0.019 μA μM-1), excellent reproducibility (6-MAM, RSD = 2.85%, and heroin RSD = 0.91%, n = 5) and lower limits of detection (LOD) (5.2 μM) in comparison to untreated SPE. The proposed protocol which integrates a tailor-made script is interrogated against common cutting agents, and finally, validated with the screening of 14 street samples, also analyzed by standard methods. Besides, a comparison with portable spectroscopic techniques on the confiscated samples shows the better performance of the electrochemical strategy. Overall, this sensing approach offers promising results for the rapid on-site profiling of suspicious heroin samples, also in the presence of paracetamol.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000656959000033 Publication Date 2021-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.162 Times cited Open Access OpenAccess
Notes This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 833787, BorderSens. The authors acknowledge financial support from the University of Antwerp (IOF). Approved (down) Most recent IF: 4.162
Call Number AXES @ axes @c:irua:174844 Serial 6663
Permanent link to this record
 

 
Author Van Echelpoel, R.; de Jong, M.; Daems, D.; van Espen, P.; De Wael, K.
Title Unlocking the full potential of voltammetric data analysis : a novel peak recognition approach for (bio)analytical applications Type A1 Journal article
Year 2021 Publication Talanta Abbreviated Journal Talanta
Volume 233 Issue Pages 122605
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Bridging the gap between complex signal data output and clear interpretation by non-expert end-users is a major challenge many scientists face when converting their scientific technology into a real-life application. Currently, pattern recognition algorithms are the most frequently encountered signal data interpretation algorithms to close this gap, not in the least because of their straight-forward implementation via convenient software packages. Paradoxically, just because their implementation is so straight-forward, it becomes cumbersome to integrate the expert's domain-specific knowledge. In this work, a novel signal data interpretation approach is presented that uses this domain-specific knowledge as its fundament, thereby fully exploiting the unique expertise of the scientist. The new approach applies data preprocessing in an innovative way that transcends its usual purpose and is easy to translate into a software application. Multiple case studies illustrate the straight-forward application of the novel approach. Ultimately, the approach is highly suited for integration in various (bio)analytical applications that require interpretation of signal data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000668000500108 Publication Date 2021-06-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.162 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 4.162
Call Number UA @ admin @ c:irua:179417 Serial 8712
Permanent link to this record
 

 
Author Ryabova, A.S.; Bonnefont, A.; Zagrebin, P.; Poux, T.; Sena, R.P.; Hadermann, J.; Abakumov, A.M.; Kerangueven, G.; Istomin, S.Y.; Antipov, E.V.; Tsirlina, G.A.; Savinova, E.R.
Title Study of hydrogen peroxide reactions on manganese oxides as a tool to decode the oxygen reduction reaction mechanism Type A1 Journal article
Year 2016 Publication ChemElectroChem Abbreviated Journal Chemelectrochem
Volume 3 Issue 3 Pages 1667-1677
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hydrogen peroxide has been detected as a reaction intermediate in the electrochemical oxygen reduction reaction (ORR) on transition-metal oxides and other electrode materials. In this work, we studied the electrocatalytic and catalytic reactions of hydrogen peroxide on a set of Mn oxides, Mn2O3, MnOOH, LaMnO3, MnO2, and Mn3O4, that adopt different crystal structures to shed light on the mechanism of the ORR on these materials. We then combined experiment with kinetic modeling with the objective to correlate the differences in the ORR activity to the kinetics of the elementary reaction steps, and we uncovered the importance of structural and compositional factors in the catalytic activity of the Mn oxides. We concluded that the exceptional activity of Mn2O3 in the ORR is due to its high catalytic activity both in the reduction of oxygen to hydrogen peroxide and in the decomposition of the latter, and furthermore, we proposed a tentative link between crystal structure and reactivity.
Address
Corporate Author Thesis
Publisher Wiley Place of Publication Place of publication unknown Editor
Language Wos 000388377200019 Publication Date 2016-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.136 Times cited 20 Open Access
Notes Approved (down) Most recent IF: 4.136
Call Number UA @ lucian @ c:irua:139202 Serial 4449
Permanent link to this record
 

 
Author Trashin, S.; De Jong, M.; Meynen, V.; Dewilde, S.; De Wael, K.
Title Attaching redox proteins onto electrode surfaces by bis-silane Type A1 Journal article
Year 2016 Publication ChemElectroChem Abbreviated Journal Chemelectrochem
Volume 3 Issue 7 Pages 1035-1038
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Immobilization of redox proteins on electrode surfaces is of special interest for mechanistic studies and applications because of a well-controlled redox state of protein molecules by a polarized electrode and fast electron transfer kinetics, free from diffusion limitation. Here, bis-organosilane (1,2-bis(trimethoxysilyl)ethane) was applied as a fresh solution in a pH 7 phosphate buffer without use of any organic solvent, sol-gel or mesoporous bulk matrix. A short aging period of 30 minutes before deposition on the electrodes was optimal for the immobilization of proteins. Three redox proteins (cytochrome c, neuroglobin and GLB-12) were confined to the gold surface of electrodes with high coverages and stability, indicating that the suggested technique is simple, efficient and generic in nature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380043500001 Publication Date 2016-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.136 Times cited 4 Open Access
Notes ; The authors thank the Fund for Scientific Research-Flanders (FWO) (Grant G.0687.13) and the GOA-BOF UA 2013-2016 (project ID 28312) for funding. ; Approved (down) Most recent IF: 4.136
Call Number UA @ admin @ c:irua:132628 Serial 5485
Permanent link to this record
 

 
Author Thiruvottriyur Shanmugam, S.; Van Echelpoel, R.; Boeye, G.; Eliaerts, J.; Samanipour, M.; Ching, H.Y.V.; Florea, A.; Van Doorslaer, S.; Van Durme, F.; Samyn, N.; Parrilla, M.; De Wael, K.
Title Towards developing a screening strategy for ecstasy : revealing the electrochemical profile Type A1 Journal article
Year 2021 Publication Chemelectrochem Abbreviated Journal Chemelectrochem
Volume 8 Issue 24 Pages 4826-4834
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY); Applied Electrochemistry & Catalysis (ELCAT); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract This article describes the development of an electrochemical screening strategy for 3,4-methylenedioxymethamphetamine (MDMA), the regular psychoactive compound in ecstasy (XTC) pills. We have investigated the specific electrochemical profile of MDMA and its electro-oxidation mechanisms at disposable graphite screen-printed electrodes. We have proved that the formation of a radical cation and subsequent reactions are indeed responsible for the electrode surface passivation, as evidenced by using electron paramagnetic resonance spectroscopy and electrochemistry. Thereafter, pure cutting agents and MDMA as well as simulated binary mixtures of compounds with MDMA were subjected to square wave voltammetry at pH 7 to understand the characteristic electrochemical profile. An additional measurement at pH 12 was able to resolve false positives and negatives occurring at pH 7. Finally, validation of the screening strategy was done by measuring a set of ecstasy street samples. Overall, our proposed electrochemical screening strategy has been demonstrated for the rapid, sensitive, and selective detection of MDMA, resolving most of the false positives and negatives given by the traditional Marquis color tests, thus exhibiting remarkable promises for the on-site screening of MDMA.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000735883700020 Publication Date 2021-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.136 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 4.136
Call Number UA @ admin @ c:irua:184371 Serial 8680
Permanent link to this record
 

 
Author Trashin, S.; De Jong, M.; Luyckx, E.; Dewilde, S.; De Wael, K.
Title Electrochemical evidence for neuroglobin activity on NO at physiological concentrations Type A1 Journal article
Year 2016 Publication Journal of biological chemistry Abbreviated Journal J Biol Chem
Volume 291 Issue 36 Pages 18959-18966
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The true function of neuroglobin (Ngb) and, particularly, human Ngb (NGB) has been under debate since its discovery 15 years ago. It has been expected to play a role in oxygen binding/supply, but a variety of other functions have been put forward, including NO dioxygenase activity. However, in vitro studies that could unravel these potential roles have been hampered by the lack of an Ngb-specific reductase. In this work, we used electrochemical measurements to investigate the role of an intermittent internal disulfide bridge in determining NO oxidation kinetics at physiological NO concentrations. The use of a polarized electrode to efficiently interconvert the ferric (Fe3+) and ferrous (Fe2+) forms of an immobilized NGB showed that the disulfide bridge both defines the kinetics of NO dioxygenase activity and regulates appearance of the free ferrous deoxy-NGB, which is the redox active form of the protein in contrast to oxy-NGB. Our studies further identified a role for the distal histidine, interacting with the hexacoordinated iron atom of the heme, in oxidation kinetics. These findings may be relevant in vivo, for example in blocking apoptosis by reduction of ferric cytochrome c, and gentle tuning of NO concentration in the tissues.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383242300031 Publication Date 2016-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9258; 1083-351x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.125 Times cited 11 Open Access
Notes ; This work was supported by Fonds Wetenschappelijk Onderzoek (FWO) Grant G.0687.13 and Universiteit Antwerpen GOA BOF 28312. The authors declare that they have no conflicts of interest with the contents of this article. ; Approved (down) Most recent IF: 4.125
Call Number UA @ admin @ c:irua:134340 Serial 5590
Permanent link to this record
 

 
Author Çakir, D.; Kecik, D.; Sahin, H.; Durgun, E.; Peeters, F.M.
Title Realization of a p-n junction in a single layer boron-phosphide Type A1 Journal article
Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 17 Issue 17 Pages 13013-13020
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) materials have attracted growing interest due to their potential use in the next generation of nanoelectronic and optoelectronic applications. On the basis of first-principles calculations based on density functional theory, we first investigate the electronic and mechanical properties of single layer boron phosphide (h-BP). Our calculations show that h-BP is a mechanically stable 2D material with a direct band gap of 0.9 eV at the K-point, promising for both electronic and optoelectronic applications. We next investigate the electron transport properties of a p-n junction constructed from single layer boron phosphide (h-BP) using the non-equilibrium Green's function formalism. The n-and p-type doping of BP are achieved by substitutional doping of B with C and P with Si, respectively. C(Si) substitutional doping creates donor (acceptor) states close to the conduction (valence) band edge of BP, which are essential to construct an efficient p-n junction. By modifying the structure and doping concentration, it is possible to tune the electronic and transport properties of the p-n junction which exhibits not only diode characteristics with a large current rectification but also negative differential resistance (NDR). The degree of NDR can be easily tuned via device engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000354195300065 Publication Date 2015-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 104 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem foundation of the Flemish government and the Bilateral program FWO-TUBITAK (under the Project No. 113T050) between Flanders and Turkey. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship. E.D. acknowledges support from Bilim Akademisi – The Science Academy, Turkey under the BAGEP program. ; Approved (down) Most recent IF: 4.123; 2015 IF: 4.493
Call Number c:irua:126394 Serial 2835
Permanent link to this record
 

 
Author Amini, M.N.; Saniz, R.; Lamoen, D.; Partoens, B.
Title The role of the VZn-NO-H complex in the p-type conductivity in ZnO Type A1 Journal article
Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 17 Issue 17 Pages 5485-5489
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Past research efforts aiming at obtaining stable p-type ZnO have been based on complexes involving nitrogen doping. A recent experiment by (J. G. Reynolds et al., Appl. Phys. Lett., 2013, 102, 152114) demonstrated a significant ([similar]1018 cm−3) p-type behavior in N-doped ZnO films after appropriate annealing. The p-type conductivity was attributed to a VZnNOH shallow acceptor complex, formed by a Zn vacancy (VZn), N substituting O (NO), and H interstitial (Hi). We present here a first-principles hybrid functional study of this complex compared to the one without hydrogen. Our results confirm that the VZnNOH complex acts as an acceptor in ZnO. We find that H plays an important role, because it lowers the formation energy of the complex with respect to VZnNO, a complex known to exhibit (unstable) p-type behavior. However, this additional H atom also occupies the hole level at the origin of the shallow behavior of VZnNO, leaving only two states empty higher in the band gap and making the VZnNOH complex a deep acceptor. Therefore, we conclude that the cause of the observed p-type conductivity in experiment is not the presence of the VZnNOH complex, but probably the formation of the VZnNO complex during the annealing process.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000349616400080 Publication Date 2015-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 20 Open Access
Notes FWO G021614N; FWO G015013; FWO G018914N; GOA; Hercules Approved (down) Most recent IF: 4.123; 2015 IF: 4.493
Call Number c:irua:123218 Serial 3592
Permanent link to this record
 

 
Author Çakir, D.; Peeters, F.M.
Title Fluorographane : a promising material for bipolar doping of MoS2 Type A1 Journal article
Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 17 Issue 17 Pages 27636-27641
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first principles calculations we investigate the structural and electronic properties of interfaces between fluorographane and MoS2. Unsymmetrical functionalization of graphene with H and F results in an intrinsic dipole moment perpendicular to the plane of the buckled graphene skeleton. Depending on the orientation of this dipole moment, the electronic properties of a physically absorbed MoS2 monolayer can be switched from n-to p-type or vice versa. We show that one can realize vanishing n-type/p-type Schottky barrier heights when contacting MoS2 to fluorographane. By applying a perpendicular electric field, the size of the Schottky barrier and the degree of doping can be tuned. Our calculations indicate that a fluorographane monolayer is a promising candidate for bipolar doping of MoS2, which is vital in the design of novel technological applications based on two-dimensional materials.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000363193800043 Publication Date 2015-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 7 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. ; Approved (down) Most recent IF: 4.123; 2015 IF: 4.493
Call Number UA @ lucian @ c:irua:129477 Serial 4182
Permanent link to this record
 

 
Author Kang, J.; Sahin, H.; Peeters, F.M.
Title Mechanical properties of monolayer sulphides : a comparative study between MoS2, HfS2 and TiS3 Type A1 Journal article
Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 17 Issue 17 Pages 27742-27749
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The in-plane stiffness (C), Poisson's ratio (nu), Young's modulus and ultimate strength (sigma) along two different crystallographic orientations are calculated for the single layer crystals: MoS2, HfS2 and TiS3 in 1H, 1T and monoclinic phases. We find that MoS2 and HfS2 have isotropic in-plane stiffnesses of 124.24 N m(-1) and 79.86 N m(-1), respectively. While for TiS3 the in-plane stiffness is highly anisotropic due to its monoclinic structure, with C-x = 83.33 N m(-1) and C-y = 133.56 N m(-1) (x and y are parallel to its longer and shorter in-plane lattice vectors.). HfS2 which is in the 1T phase has the smallest anisotropy in its ultimate strength, whereas TiS3 in the monoclinic phase has the largest. Along the armchair direction MoS2 has the largest sigma of 23.48 GPa, whereas along y TiS3 has the largest sigma of 18.32 GPa. We have further analyzed the band gap response of these materials under uniaxial tensile strain, and find that they exhibit different behavior. Along both armchair and zigzag directions, the band gap of MoS2 (HfS2) decreases (increases) as strain increases, and the response is almost isotropic. For TiS3, the band gap decreases when strain is along x, while if strain is along y, the band gap increases first and then decreases beyond a threshold strain value. The different characteristics observed in these sulphides with different structures shed light on the relationship between the structure and properties, which is useful for applications in nanotechnology.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000363193800055 Publication Date 2015-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 83 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Super-computer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. by a FWO Pegasus-Short Marie Curie Fellowship. ; Approved (down) Most recent IF: 4.123; 2015 IF: 4.493
Call Number UA @ lucian @ c:irua:129478 Serial 4204
Permanent link to this record
 

 
Author Çakir, D.; Sahin, H.; Peeters, F.M.
Title Doping of rhenium disulfide monolayers : a systematic first principles study Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 16 Issue 31 Pages 16771-16779
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The absence of a direct-to-indirect band gap transition in ReS2 when going from the monolayer to bulk makes it special among the other semiconducting transition metal dichalcogenides. The functionalization of this promising layered material emerges as a necessity for the next generation technological applications. Here, the structural, electronic, and magnetic properties of substitutionally doped ReS2 monolayers at either the S or Re site were systematically studied by using first principles density functional calculations. We found that substitutional doping of ReS2 depends sensitively on the growth conditions of ReS2. Among the large number of non-metallic atoms, namely H, B, C, Se, Te, F, Br, Cl, As, P. and N, we identified the most promising candidates for n-type and p-type doping of ReS2. While Cl is an ideal candidate for n-type doping, P appears to be the most promising candidate for p-type doping of the ReS2 monolayer. We also investigated the doping of ReS2 with metal atoms, namely Mo, W, Ti, V. Cr, Co, Fe, Mn, Ni, Cu, Nb, Zn, Ru, Os and Pt. Mo, Nb, Ti, and V atoms are found to be easily incorporated in a single layer of ReS2 as substitutional impurities at the Re site for all growth conditions considered in this work. Tuning chemical potentials of dopant atoms energetically makes it possible to dope ReS2 with Fe, Co, Cr, Mn, W, Ru, and Os at the Re site. We observe a robust trend for the magnetic moments when substituting a Re atom with metal atoms such that depending on the electronic configuration of dopant atoms, the net magnetic moment of the doped ReS2 becomes either 0 or 1 mu(B). Among the metallic dopants, Mo is the best candidate for p-type doping of ReS2 owing to its favorable energetics and promising electronic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000340075700048 Publication Date 2014-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 58 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved (down) Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:118742 Serial 752
Permanent link to this record
 

 
Author Amini, M.N.; Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B.
Title The origin of p-type conductivity in ZnM2O4 (M = Co, Rh, Ir) spinels Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 16 Issue 6 Pages 2588-2596
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract ZnM2O4 (M = Co, Rh, Ir) spinels are considered as a class of potential p-type transparent conducting oxides (TCOs). We report the formation energy of acceptor-like defects using first principles calculations with an advanced hybrid exchange-correlation functional (HSE06) within density functional theory (DFT). Due to the discrepancies between the theoretically obtained band gaps with this hybrid functional and the – scattered – experimental results, we also perform GW calculations to support the validity of the description of these spinels with the HSE06 functional. The considered defects are the cation vacancy and antisite defects, which are supposed to be the leading source of disorder in the spinel structures. We also discuss the band alignments in these spinels. The calculated formation energies indicate that the antisite defects ZnM (Zn replacing M, M = Co, Rh, Ir) and VZn act as shallow acceptors in ZnCo2O4, ZnRh2O4 and ZnIr2O4, which explains the experimentally observed p-type conductivity in those systems. Moreover, our systematic study indicates that the ZnIr antisite defect has the lowest formation energy in the group and it corroborates the highest p-type conductivity reported for ZnIr2O4 among the group of ZnM2O4 spinels. To gain further insight into factors affecting the p-type conductivity, we have also investigated the formation of localized small polarons by calculating the self-trapping energy of the holes.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000329926700040 Publication Date 2013-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 47 Open Access
Notes Fwo; Goa; Hercules Approved (down) Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:114829 Serial 2525
Permanent link to this record
 

 
Author Mees, M.J.; Pourtois, G.; Rosciano, F.; Put, B.; Vereecken, P.M.; Stesmans, A.
Title First-principles material modeling of solid-state electrolytes with the spinel structure Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ionic diffusion through the novel (AlxMg1-2xLix)Al2O4 spinel electrolyte is investigated using first-principles calculations, combined with the Kinetic Monte Carlo algorithm. We observe that the ionic diffusion increases with the lithium content x. Furthermore, the structural parameters, formation enthalpies and electronic structures of (AlxMg1-2xLix)Al2O4 are calculated for various stoichiometries. The overall results indicate the (AlxMg1-2xLix)Al2O4 stoichiometries x = 0.2...0.3 as most promising. The (AlxMg1-2xLix)Al2O4 electrolyte is a potential candidate for the all-spinel solid-state battery stack, with the material epitaxially grown between well-known spinel electrodes, such as LiyMn2O4 and Li4+3yTi5O12 (y = 0...1). Due to their identical crystal structure, a good electrolyte-electrode interface is expected.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000332395700048 Publication Date 2014-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 8 Open Access
Notes Approved (down) Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:128893 Serial 4520
Permanent link to this record
 

 
Author Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title An electric field tunable energy band gap at silicene/(0001) ZnS interfaces Type A1 Journal article
Year 2013 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 15 Issue 11 Pages 3702-3705
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The interaction of silicene, the silicon counterpart of graphene, with (0001) ZnS surfaces is investigated theoretically, using first-principles simulations. The charge transfer occurring at the silicene/(0001) ZnS interface leads to the opening of an indirect energy band gap of about 0.7 eV in silicene. Remarkably, the nature (indirect or direct) and magnitude of the energy band gap of silicene can be controlled by an external electric field: the energy gap is predicted to become direct for electric fields larger than about 0.5 V angstrom(-1), and the direct energy gap decreases approximately linearly with the applied electric field. The predicted electric field tunable energy band gap of the silicene/(0001) ZnS interface is very promising for its potential use in nanoelectronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000315165100002 Publication Date 2013-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 74 Open Access
Notes Approved (down) Most recent IF: 4.123; 2013 IF: 4.198
Call Number UA @ lucian @ c:irua:107702 Serial 94
Permanent link to this record
 

 
Author Sliem, M.A.; Turner, S.; Heeskens, D.; Kalidindi, S.B.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A.
Title Preparation, microstructure characterization and catalytic performance of Cu/ZnO and ZnO/Cu composite nanoparticles for liquid phase methanol synthesis Type A1 Journal article
Year 2012 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 14 Issue 22 Pages 8170-8178
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Stearate@Cu/ZnO nanocomposite particles with molar ratios of ZnO ∶ Cu = 2 and 5 are synthesized by reduction of the metalorganic Cu precursor [Cu{(OCH(CH3)CH2N(CH3)2)}2] in the presence of stearate@ZnO nanoparticles. In the case of ZnO ∶ Cu = 5, high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) combined with electron-energy-loss-spectroscopy (EELS) as well as attenuated total reflection Fourier transform infrared (ATR-IR) spectroscopy are used to localize the small amount of Cu deposited on the surface of 35 nm sized stearate@ZnO particles. For ZnO ∶ Cu = 2, the microstructure of the nanocomposites after catalytic activity testing is characterized by HAADF-STEM techniques. This reveals the construction of large Cu nanoparticles (2050 nm) decorated by small ZnO nanoparticles (35 nm). The catalytic activity of both composites for the synthesis of methanol from syn gas is evaluated.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000304102200033 Publication Date 2012-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 16 Open Access
Notes Fwo Approved (down) Most recent IF: 4.123; 2012 IF: 3.829
Call Number UA @ lucian @ c:irua:98377 Serial 2702
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S.
Title The electric field as a novel switch for uptake/release of hydrogen for storage in nitrogen doped graphene Type A1 Journal article
Year 2012 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 14 Issue 4 Pages 1463-1467
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nitrogen-doped graphene was recently synthesized and was reported to be a catalyst for hydrogen dissociative adsorption under a perpendicular applied electric field (F). In this work, the diffusion of H atoms on N-doped graphene, in the presence and absence of an applied perpendicular electric field, is studied using density functional theory. We demonstrate that the applied field can significantly facilitate the binding of hydrogen molecules on N-doped graphene through dissociative adsorption and diffusion on the surface. By removing the applied field the absorbed H atoms can be released efficiently. Our theoretical calculation indicates that N-doped graphene is a promising hydrogen storage material with reversible hydrogen adsorption/desorption where the applied electric field can act as a switch for the uptake/release processes.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000298754500018 Publication Date 2011-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 67 Open Access
Notes ; Financial support of the Vice-Chancellor's Postdoctoral Research Fellowship Program (SIR50/PS19184) and the ECR grant (SIR30/PS24201) from the University of New South Wales are acknowledged. This work is also supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved (down) Most recent IF: 4.123; 2012 IF: 3.829
Call Number UA @ lucian @ c:irua:96266 Serial 3578
Permanent link to this record
 

 
Author Zeng, Y.I.; Menghini, M.; Li, D.Y.; Lin, S.S.; Ye, Z.Z.; Hadermann, J.; Moorkens, T.; Seo, J.W.; Locquet, J.-P.; van Haesendonck, C.
Title Unexpected optical response of single ZnO nanowires probed using controllable electrical contacts Type A1 Journal article
Year 2011 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 13 Issue 15 Pages 6931-6935
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Relying on combined electron-beam lithography and lift-off methods Au/Ti bilayer electrical contacts were attached to individual ZnO nanowires (NWs) that were grown by a vapor phase deposition method. Reliable Schottky-type as well as ohmic contacts were obtained depending on whether or not an ion milling process was used. The response of the ZnO NWs to ultraviolet light was found to be sensitive to the type of contacts. The intrinsic electronic properties of the ZnO NWs were studied in a field-effect transistor configuration. The transfer characteristics, including gate threshold voltage, hysteresis and operational mode, were demonstrated to unexpectedly respond to visible light. The origin of this effect could be accounted for by the presence of point defects in the ZnO NWs.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000288951000019 Publication Date 2011-03-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 7 Open Access
Notes Approved (down) Most recent IF: 4.123; 2011 IF: 3.573
Call Number UA @ lucian @ c:irua:89378 Serial 3807
Permanent link to this record
 

 
Author Filez, M.; Redekop, E.A.; Galvita, V.V.; Poelman, H.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Bell, A.T.; Marin, G.B.
Title The role of hydrogen during Pt-Ga nanocatalyst formation Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 3234-3243
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hydrogen plays an essential role during the in situ assembly of tailored catalytic materials, and serves as key ingredient in multifarious chemical reactions promoted by these catalysts. Despite intensive debate for several decades, the existence and nature of hydrogen-involved mechanisms – such as hydrogen-spillover, surface migration – have not been unambiguously proven and elucidated up to date. Here, Pt-Ga alloy formation is used as a probe reaction to study the behavior and atomic transport of H and Ga, starting from Pt nanoparticles on hydrotalcite-derived Mg(Ga)(Al)Ox supports. In situ XANES spectroscopy, time-resolved TAP kinetic experiments, HAADF-STEM imaging and EDX mapping are combined to probe Pt, Ga and H in a series of H2 reduction experiments up to 650 degrees C. Mg(Ga)(Al)Ox by itself dissociates hydrogen, but these dissociated hydrogen species do not induce significant reduction of Ga3+ cations in the support. Only in the presence of Pt, partial reduction of Ga3+ into Gadelta+ is observed, suggesting that different reaction mechanisms dominate for Pt- and Mg(Ga)(Al)Ox-dissociated hydrogen species. This partial reduction of Ga3+ is made possible by Pt-dissociated H species which spillover onto non-reducible Mg(Al)Ox or partially reducible Mg(Ga)(Al)Ox and undergo long-range transport over the support surface. Moderately mobile Gadelta+Ox migrates towards Pt clusters, where Gadelta+ is only fully reduced to Ga0 on condition of immediate stabilization inside Pt-Ga alloyed nanoparticles.
Address Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Ghent, Belgium. hilde.poelman@ugent.be
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000369506000106 Publication Date 2016-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 10 Open Access
Notes This work was supported by the Fund for Scientific Research Flanders (FWO: G.0209.11), the ‘Long Term Structural Methusalem Funding by the Flemish Government’, the IAP 7/05 Interuniversity Attraction Poles Programme – Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) in supplying financing of beam time at the DUBBLE beam line of the ESRF and travel costs and a postdoctoral fellowship for S.T. The authors acknowledge the assistance from D. Banerjee (XAS campaign 26-01-979) at DUBBLE. E. A. Redekop acknowledges the Marie Curie International Incoming Fellowship granted by the European Commission (Grant Agreement No. 301703). The authors also express their gratitude to V. Bliznuk for acquisition of the TEM images. Approved (down) Most recent IF: 4.123
Call Number c:irua:132315 Serial 4000
Permanent link to this record
 

 
Author Bercx, M.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.
Title First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 20542-20549
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Chalcopyrite semiconductors are of considerable interest for application as absorber layers in thin-film photovoltaic cells. When growing films of these compounds, however, they are often found to contain CuAu-like domains, a metastable phase of chalcopyrite. It has been reported that for CuInS2, the presence of the CuAu-like phase improves the short circuit current of the chalcopyrite-based photovoltaic cell. We investigate the thermodynamic stability of both phases for a selected list of I-III-VI2 materials using a first-principles density functional theory approach. For the CuIn-VI2 compounds, the difference in formation energy between the chalcopyrite and CuAu-like phase is found to be close to 2 meV per atom, indicating a high likelihood of the presence of CuAu-like domains. Next, we calculate the spectroscopic limited maximum efficiency (SLME) of the CuAu-like phase and compare the results with those of the corresponding chalcopyrite phase. We identify several candidates with a high efficiency, such as CuAu-like CuInS2, for which we obtain an SLME of 29% at a thickness of 500 nm. We observe that the SLME can have values above the Shockley-Queisser (SQ) limit, and show that this can occur because the SQ limit assumes the absorptivity to be a step function, thus overestimating the radiative recombination in the detailed balance approach. This means that it is possible to find higher theoretical efficiencies within this framework simply by calculating the J-V characteristic with an absorption spectrum. Finally, we expand our SLME analysis to indirect band gap absorbers by studying silicon, and find that the SLME quickly overestimates the reverse saturation current of indirect band gap materials, drastically lowering their calculated efficiency.
Address EMAT & CMT groups, Department of Physics, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerp, Belgium. marnik.bercx@uantwerpen.be
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000381428600058 Publication Date 2016-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 34 Open Access
Notes We acknowledge financial support of FWO-Vlaanderen through projects G.0150.13N and G.0216.14N and ERA-NET RUS Plus/FWO, Grant G0D6515N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO FWOVlaanderen. Approved (down) Most recent IF: 4.123
Call Number c:irua:135091 Serial 4112
Permanent link to this record
 

 
Author Aierken, Y.; Leenaerts, O.; Peeters, F.M.
Title A first-principles study of stable few-layer penta-silicene Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 18486-18492
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently penta-graphene was proposed as a stable two-dimensional carbon allotrope consisting of a single layer of interconnected carbon pentagons [Zhang et al., PNAS, 2015, 112, 2372]. Its silicon counterpart, penta-silicene, however, is not stable. In this work, we show that multilayers of penta-silicene form stable materials with semiconducting or metallic properties, depending on the stacking mode. We demonstrate their dynamic stability through their phonon spectrum and using molecular dynamics. A particular type of bilayer penta-silicene is found to have lower energy than all of the known hexagonal silicene bilayers and forms therefore the most stable bilayer silicon material predicted so far. The electronic and mechanical properties of these new silicon allotropes are studied in detail and their behavior under strain is investigated. We demonstrate that strain can be used to tune its band gap.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000379486200077 Publication Date 2016-06-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 42 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI. ; Approved (down) Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:134942 Serial 4132
Permanent link to this record
 

 
Author Calizzi, M.; Venturi, F.; Ponthieu, M.; Cuevas, F.; Morandi, V.; Perkisas, T.; Bals, S.; Pasquini, L.
Title Gas-phase synthesis of Mg-Ti nanoparticles for solid-state hydrogen storage Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 141-148
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract Mg-Ti nanostructured samples with different Ti contents were prepared via compaction of nanoparticles grown by inert gas condensation with independent Mg and Ti vapour sources. The growth set-up offered the option to perform in situ hydrogen absorption before compaction. Structural and morphological characterisation was carried out by X-ray diffraction, energy dispersive spectroscopy and electron microscopy. The formation of an extended metastable solid solution of Ti in hcp Mg was detected up to 15 at% Ti in the as-grown nanoparticles, while after in situ hydrogen absorption, phase separation between MgH2 and TiH2 was observed. At a Ti content of 22 at%, a metastable Mg-Ti-H fcc phase was observed after in situ hydrogen absorption. The co-evaporation of Mg and Ti inhibited nanoparticle coalescence and crystallite growth in comparison with the evaporation of Mg only. In situ hydrogen absorption was beneficial to subsequent hydrogen behaviour, studied by high pressure differential scanning calorimetry and isothermal kinetics. A transformed fraction of 90% was reached within 100 s at 300 degrees C during both hydrogen absorption and desorption. The enthalpy of hydride formation was not observed to differ from bulk MgH2.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000368755500014 Publication Date 2015-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 31 Open Access Not_Open_Access
Notes ; Part of this work was supported by the COST Action MP1103 “Nanostructured materials for solid-state hydrogen storage”. ; Approved (down) Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:131589 Serial 4184
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Horzum, S.; Torun, E.; Peeters, F.M.; Senger, R.T.
Title Nitrogenated, phosphorated and arsenicated monolayer holey graphenes Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 3144-3150
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by a recent experiment that reported the synthesis of a new 2D material nitrogenated holey graphene (C2N) [Mahmood et al., Nat. Commun., 2015, 6, 6486], the electronic, magnetic, and mechanical properties of nitrogenated (C2N), phosphorated (C2P) and arsenicated (C2As) monolayer holey graphene structures are investigated using first-principles calculations. Our total energy calculations indicate that, similar to the C2N monolayer, the formation of the other two holey structures are also energetically feasible. Calculated cohesive energies for each monolayer show a decreasing trend going from the C2N to C2As structure. Remarkably, all the holey monolayers considered are direct band gap semiconductors. Regarding the mechanical properties (in-plane stiffness and Poisson ratio), we find that C2N has the highest in-plane stiffness and the largest Poisson ratio among the three monolayers. In addition, our calculations reveal that for the C2N, C2P and C2As monolayers, creation of N and P defects changes the semiconducting behavior to a metallic ground state while the inclusion of double H impurities in all holey structures results in magnetic ground states. As an alternative to the experimentally synthesized C2N, C2P and C2As are mechanically stable and flexible semiconductors which are important for potential applications in optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000369506000095 Publication Date 2015-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 36 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). ; Approved (down) Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:132313 Serial 4214
Permanent link to this record
 

 
Author Matsubara, M.; Saniz, R.; Partoens, B.; Lamoen, D.
Title Doping anatase TiO2with group V-b and VI-b transition metal atoms: a hybrid functional first-principles study Type A1 Journal article
Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 19 Issue 19 Pages 1945-1952
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We investigate the role of transition metal atoms of group V-b (V, Nb, Ta) and VI-b (Cr, Mo, W) as n- or p-type dopants in anatase TiO$2$ using thermodynamic

principles and density functional theory with the Heyd-Scuseria-Ernzerhof HSE06 hybrid functional. The HSE06 functional provides a realistic value for the band gap, which ensures a correct classification of dopants as shallow or deep donors or acceptors. Defect formation energies and thermodynamic transition levels are calculated taking into account the constraints imposed by the stability of TiO$
2$ and the solubility limit of the impurities.

Nb, Ta, W and Mo are identified as shallow donors. Although W provides two electrons, Nb and Ta show a considerable lower formation energy, in particular under O-poor conditions. Mo donates in principle one electron, but under specific conditions can turn into a double donor. V impurities are deep donors and Cr

shows up as an amphoteric defect, thereby acting as an electron trapping center in n-type TiO$_2$ especially under O-rich conditions. A comparison with the available experimental data yields excellent agreement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000394426400027 Publication Date 2016-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 19 Open Access OpenAccess
Notes We gratefully acknowledge financial support from the IWTVlaanderenthrough projects G.0191.08 and G.0150.13, and the BOF-NOI of the University of Antwerp. This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, which is funded by the Hercules foundation. M. M. acknowledges financial support from the GOA project ‘‘XANES meets ELNES’’ of the University of Antwerp. Approved (down) Most recent IF: 4.123
Call Number EMAT @ emat @ c:irua:140835 Serial 4421
Permanent link to this record
 

 
Author Aierken, Y.; Çakir, D.; Peeters, F.M.
Title Strain enhancement of acoustic phonon limited mobility in monolayer TiS3 Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 14434-14441
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Strain engineering is an effective way to tune the intrinsic properties of a material. Here, we show by using first-principles calculations that both uniaxial and biaxial tensile strain applied to monolayer TiS3 are able to significantly modify its intrinsic mobility. From the elastic modulus and the phonon dispersion relation we determine the tensile strain range where structure dynamical stability of the monolayer is guaranteed. Within this region, we find more than one order of enhancement of the acoustic phonon limited mobility at 300 K (100 K), i.e. from 1.71 x 10(4) (5.13 x 10(4)) cm(2) V-1 s(-1) to 5.53 x 10(6) (1.66 x 10(6)) cm(2) V-1 s(-1). The degree of anisotropy in both mobility and effective mass can be tuned by using tensile strain. Furthermore, we can either increase or decrease the band gap of TiS3 monolayer by applying strain along different crystal directions. This property allows us to use TiS3 not only in electronic but also in optical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000378102700036 Publication Date 2016-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 24 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-V1). Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation and the Flemish Government-department EWI. ; Approved (down) Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:134628 Serial 4250
Permanent link to this record
 

 
Author Shirazi, M.; Bogaerts, A.; Neyts, E.C.
Title A DFT study of H-dissolution into the bulk of a crystalline Ni(111) surface: a chemical identifier for the reaction kinetics Type A1 Journal article
Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 19 Issue 19 Pages 19150-19158
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this study, we investigated the diffusion of H-atoms to the subsurface and their further diffusion into the bulk of a Ni(111) crystal by means of density functional theory calculations in the context of thermal and plasma-assisted catalysis. The H-atoms at the surface can originate from the dissociative adsorption of H2 or CH4 molecules, determining the surface H-coverage. When a threshold H-coverage is passed, corresponding to 1.00 ML for the crystalline Ni(111) surface, the surface-bound H-atoms start to diffuse to the subsurface. A similar threshold coverage is observed for the interstitial H-coverage. Once the interstitial sites are filled up with a coverage above 1.00 ML of H, dissolution of interstitial H-atoms to the layer below the interstitial sites will be initiated. Hence, by applying a high pressure or inducing a reactive plasma and high temperature, increasing the H-flux to the surface, a large amount of hydrogen can diffuse in a crystalline metal like Ni and can be absorbed. The formation of metal hydride may modify the entire reaction kinetics of the system. Equivalently, the H-atoms in the bulk can easily go back to the surface and release a large amount of heat. In a plasma process, H-atoms are formed in the plasma, and therefore the energy barrier for dissociative adsorption is dismissed, thus allowing achievement of the threshold coverage without applying a high pressure as in a thermal process. As a result, depending on the crystal plane and type of metal, a large number of H-atoms can be dissolved (absorbed) in the metal catalyst, explaining the high efficiency of plasma-assisted catalytic reactions. Here, the mechanism of H-dissolution is established as a chemical identifier for the investigation of the reaction kinetics of a chemical process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000406334300034 Publication Date 2017-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 10 Open Access OpenAccess
Notes Financial support from the Reactive Atmospheric Plasma processIng – eDucation (RAPID) network, through the EU 7th Framework Programme (grant agreement no. 606889), is gratefully acknowledged. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government department (EWI) and the Universiteit Antwerpen. Approved (down) Most recent IF: 4.123
Call Number PLASMANT @ plasmant @ c:irua:144794 Serial 4633
Permanent link to this record
 

 
Author Momot, A.; Amini, M.N.; Reekmans, G.; Lamoen, D.; Partoens, B.; Slocombe, D.R.; Elen, K.; Adriaensens, P.; Hardy, A.; Van Bael, M.K.
Title A novel explanation for the increased conductivity in annealed Al-doped ZnO: an insight into migration of aluminum and displacement of zinc Type A1 Journal article
Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 19 Issue 40 Pages 27866-27877
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A combined experimental and first-principles study is performed to study the origin of conductivity in

ZnO:Al nanoparticles synthesized under controlled conditions via a reflux route using benzylamine as a

solvent. The experimental characterization of the samples by Raman, nuclear magnetic resonance (NMR)

and conductivity measurements indicates that upon annealing in nitrogen, the Al atoms at interstitial

positions migrate to the substitutional positions, creating at the same time Zn interstitials. We provide

evidence for the fact that the formed complex of AlZn and Zni corresponds to the origin of the Knight

shifted peak (KS) we observe in 27Al NMR. As far as we know, the role of this complex has not been

discussed in the literature to date. However, our first-principles calculations show that such a complex is

indeed energetically favoured over the isolated Al interstitial positions. In our calculations we also

address the charge state of the Al interstitials. Further, Zn interstitials can migrate from Al_Zn and possibly

also form Zn clusters, leading to the observed increased conductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413290500073 Publication Date 2017-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 26 Open Access OpenAccess
Notes We want to thank the Interuniversity Attraction Poles Programme (P7/05) initiated by the Belgian Science Policy Office (BELSPO) for the financial support. We also acknowledge the Research Foundation Flanders (FWO-Vlaanderen) for support via the MULTIMAR WOG project and under project No. G018914. The computational parts were carried out using the HPC infrastructure at the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, supported financially by the Hercules foundation and the Flemish Government (EWI Department). Approved (down) Most recent IF: 4.123
Call Number EMAT @ emat @c:irua:146878 Serial 4760
Permanent link to this record