toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wolf, D.; Rodriguez, L.A.; Béché, A.; Javon, E.; Serrano, L.; Magen, C.; Gatel, C.; Lubk, A.; Lichte, H.; Bals, S.; Van Tendeloo, G.; Fernández-Pacheco, A.; De Teresa, J.M.; Snoeck, E. url  doi
openurl 
  Title 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 6771-6778  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap, and carries great potential to impact areas such as data storage, sensing and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nanometers by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic non-planar nanodevices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362920700037 Publication Date 2015-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 50 Open Access OpenAccess  
  Notes This work was supported by the European Union under the Seventh Framework Program under a contract for an Inte-grated Infrastructure Initiative Reference 312483-ESTEEM2. S.B. and A.B. gratefully acknowledge funding by ERC Starting grants number 335078 COLOURATOMS and number 278510 VORTEX. AF-P acknowledges an EPSRC Early Career fellowship and support from the Winton Foundation. E.S., C.G. and L.A. R. acknowledge the French ANR program for support though the project EMMA.; esteem2jra4; ECASJO;; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved (down) Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:129180 c:irua:129180 c:irua:129180 Serial 3950  
Permanent link to this record
 

 
Author Morozov, V.A.; Arakcheeva, A.V.; Pattison, P.; Meert, K.W.; Smet, P.F.; Poelman, D.; Gauquelin, N.; Verbeeck, J.; Abakumov, A.M.; Hadermann, J. pdf  url
doi  openurl
  Title KEu(MoO4)2 : polymorphism, structures, and luminescent properties Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 5519-5530  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper, with the example of two different polymorphs of KEu(MoO4)2, the influence of the ordering of the A-cations on the luminescent properties in scheelite related compounds (A′,A″)n[(B′,B″)O4]m is investigated. The polymorphs were synthesized using a solid state method. The study confirmed the existence of only two polymorphic forms at annealing temperature range 9231203 K and ambient pressure: a low temperature anorthic α-phase and a monoclinic high temperature β-phase with an incommensurately modulated structure. The structures of both polymorphs were solved using transmission electron microscopy and refined from synchrotron powder X-ray diffraction data. The monoclinic β-KEu(MoO4)2 has a (3+1)-dimensional incommensurately modulated structure (superspace group I2/b(αβ0)00, a = 5.52645(4) Å, b = 5.28277(4) Å, c = 11.73797(8) Å, γ = 91.2189(4)o, q = 0.56821(2)a*0.12388(3)b*), whereas the anorthic α-phase is (3+1)-dimensional commensurately modulated (superspace group I1̅(αβγ)0, a = 5.58727(22) Å, b = 5.29188(18)Å, c = 11.7120(4) Å, α = 90.485(3)o, β = 88.074(3)o, γ = 91.0270(23)o, q = 1/2a* + 1/2c*). In both cases the modulation arises due to Eu/K cation ordering at the A site: the formation of a 2-dimensional Eu3+ network is characteristic for the α-phase, while a 3-dimensional Eu3+-framework is observed for the β-phase structure. The luminescent properties of KEu(MoO4)2 samples prepared under different annealing conditions were measured, and the relation between their optical properties and their structures is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000360323700011 Publication Date 2015-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 26 Open Access  
  Notes 278510 Vortex; Fwo G039211n; G004413n ECASJO_; Approved (down) Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:127244 Serial 3537  
Permanent link to this record
 

 
Author Sun, M.; Rousse, G.; Abakumov, A.M.; Saubanere, M.; Doublet, M.-L.; Rodriguez-Carvajal, J.; Van Tendeloo, G.; Tarascon, J.-M. doi  openurl
  Title Li2Cu2O(SO4)2: a possible electrode for sustainable Li-based batteries showing a 4.7 V redox activity vs Li+/Li0 Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 3077-3087  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Li-ion batteries rely on the use of insertion positive electrodes with performances scaling with the redox potential of the 31) metals accompanying Liuptake/removal. Although not commonly studied, the Cu2+/Cu3+ redox potential has been predicted from theoretical calculations to possibly offer a high operating voltage redox couple. We herein report the synthesis and crystal structure of a hitherto-unknown oxysulfate phase, Li2Cu2O(SO4)(2), which contains infinite edgesharing CuO4 chains and presents attractive electrochemical redox activity with respect to Li+/Li, namely amphoteric characteristics. Li2Cu2O(SO4)(2) shows redox activity at 4.7 V vs Li+/Li corresponding to the oxidation of Cu2+ to Cu3+ enlisting ligand holes and associated with the reversible uptake-removal of 0.3 Li. Upon reduction, this compound reversibly uptakes similar to 2 Li at an average potential of about 2.5 V vs Li+/Li, associated with the Cu2+/Cu+ redox couple. The mechanism of the reactivity upon reduction is discussed in detail, with particular attention to the occasional appearance of an oscillation wave in the discharge profile. Our work demonstrates that Cu-based compounds can indeed be fertile scientific ground in the search for new high-energy-density electrodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000353865800043 Publication Date 2015-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 20 Open Access  
  Notes Approved (down) Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:126061 Serial 3541  
Permanent link to this record
 

 
Author Morozov, V.A.; Raskina, M.V.; Lazoryak, B.I.; Meert, K.W.; Korthout, K.; Smet, P.F.; Poelman, D.; Gauquelin, N.; Verbeeck, J.; Abakumov, A.M.; Hadermann, J.; pdf  doi
openurl 
  Title Crystal Structure and Luminescent Properties of R2-xEux(MoO4)(3) (R = Gd, Sm) Red Phosphors Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 24 Pages 7124-7136  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The R-2(MoO4)(3) (R = rare earth elements) molybdates doped with Eu3+ cations are interesting red-emitting materials for display and solid-state lighting applications. The structure and luminescent properties of the R2-xEux(MoO4)(3) (R = Gd, Sm) solid solutions have been investigated as a function of chemical composition and preparation conditions. Monoclinic (alpha) and orthorhombic (beta') R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) modifications were prepared by solid-state reaction, and their structures were investigated using synchrotron powder X-ray diffraction and transmission electron microscopy. The pure orthorhombic beta'-phases could be synthesized only by quenching from high temperature to room temperature for Gd2-xEux(MoO4)(3) in the Eu3+-rich part (x > 1) and for all Sm2-xEux(MoO4)(3) solid solutions. The transformation from the alpha-phase to the beta'-phase results in a notable increase (similar to 24%) of the unit cell volume for all R2-xEux(MoO4)(3) (R = Sm, Gd) solid solutions. The luminescent properties of all R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) solid solutions were measured, and their optical properties were related to their structural properties. All R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) phosphors emit intense red light dominated by the D-5(0)-> F-7(2) transition at similar to 616 nm. However, a change in the multiplet splitting is observed when switching from the monoclinic to the orthorhombic structure, as a consequence of the change in coordination polyhedron of the luminescent ion from RO8 to RO7 for the alpha- and beta'-modification, respectively. The Gd2-xEux(MoO4)(3) solid solutions are the most efficient emitters in the range of 0 < x < 1.5, but their emission intensity is comparable to or even significantly lower than that of Sm2-xEux(MoO4)(3) for higher Eu3+ concentrations (1.5 <= x <= 1.75). Electron energy loss spectroscopy (EELS) measurements revealed the influence of the structure and element content on the number and positions of bands in the ultraviolet-visible-infrared regions of the EELS spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347139700027 Publication Date 2014-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 24 Open Access  
  Notes Fwo G039211n; G004413n; 278510 Vortex ECASJO_; Approved (down) Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:122829UA @ admin @ c:irua:122829 Serial 558  
Permanent link to this record
 

 
Author Damm, H.; Adriaensens, P.; De Dobbelaere, C.; Capon, B.; Elen, K.; Drijkoningen, J.; Conings, B.; Manca, J.V.; D’Haen, J.; Detavernier, C.; Magusin, P.C.M.M.; Hadermann, J.; Hardy, A.; Van Bael, M.K.; doi  openurl
  Title Factors Influencing the Conductivity of Aqueous Sol(ution)-Gel-Processed Al-Doped ZnO Films Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 20 Pages 5839-5851  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343950300004 Publication Date 2014-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 24 Open Access  
  Notes Approved (down) Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:121211 Serial 1170  
Permanent link to this record
 

 
Author Abakumov, A.M.; Tsirlin, A.A.; Bakaimi, I.; Van Tendeloo, G.; Lappas, A. doi  openurl
  Title Multiple twinning as a structure directing mechanism in layered rock-salt-type oxides : NaMnO2 polymorphism, redox potentials, and magnetism Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 10 Pages 3306-3315  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New polymorphs of NaMnO2 have been observed using transmission electron microscopy and synchrotron X-ray powder diffraction. Coherent twin planes confined to the (NaMnO2) layers, parallel to the (10 (1) over bar) crystallographic planes of the monoclinic layered rock-salt-type alpha-NaMnO2 (O3) structure, form quasi-periodic modulated sequences, with the known alpha-and beta-NaMnO2 polymorphs as the two limiting cases. The energy difference between the polymorphic forms, estimated using a DFT-based structure relaxation, is on the scale of the typical thermal energies that results in a high degree of stacking disorder in these compounds. The results unveil the remarkable effect of the twin planes on both the magnetic and electrochemical properties. The polymorphism drives the magnetic ground state from a quasi-1D spin system for the geometrically frustrated alpha-polymorph through a two-leg spin ladder for the intermediate stacking sequence toward a quasi-2D magnet for the beta-polymorph. A substantial increase of the equilibrium potential for Na deintercalation upon increasing the concentration of the twin planes is calculated, providing a possibility to tune the electrochemical potential of the layered rock-salt ABO(2) cathodes by engineering the materials with a controlled concentration of twins.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000336637000036 Publication Date 2014-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 35 Open Access  
  Notes Approved (down) Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:117766 Serial 2232  
Permanent link to this record
 

 
Author Volkova, N.E.; Lebedev, O.I.; Gavrilova, L.Y.; Turner, S.; Gauquelin, N.; Seikh, M.M.; Caignaert, V.; Cherepanov, V.A.; Raveau, B.; Van Tendeloo, G. doi  openurl
  Title Nanoscale ordering in oxygen deficient quintuple perovskite Sm2-\epsilonBa3+\epsilonFe5O15-\delta : implication for magnetism and oxygen stoichiometry Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 21 Pages 6303-6310  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The investigation of the system SmBaFe-O in air has allowed an oxygen deficient perovskite Sm2-epsilon Ba3+epsilon Fe5O15-delta (delta = 0.75, epsilon = 0.125) to be synthesized. In contrast to the XRPD pattern which gives a cubic symmetry (a(p) = 3.934 angstrom), the combined HREM/EELS study shows that this phase is nanoscale ordered with a quintuple tetragonal cell, a(p) X a(p) X 5(ap). The nanodomains exhibit a unique stacking sequence of the A-site cationic layers along the crystallographic c-axis, namely SmBaBa/SmBa/SmBaSm, and are chemically twinned in the three crystallographic directions. The nanoscale ordering of this perovskite explains its peculiar magnetic properties on the basis of antiferromagnetic interactions with spin blockade at the boundary between the nanodomains. The variation of electrical conductivity and oxygen content of this oxide versus temperature suggest potential SOFC applications. They may be related to the particular distribution of oxygen vacancies in the lattice and to the 3d(5)(L) under bar configuration of iron.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344905600029 Publication Date 2014-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 16 Open Access  
  Notes The UrFU authors were financially supported by the Ministry of Education and Science of Russian Federation (project N 4.1039.2014/K) and by UrFU under the Framework Program of development of UrFU through the «Young scientists UrFU» competition. The CRISMAT authors gratefully acknowledge the EC, the CNRS and the French Minister of Education and Research for financial support through their Research, Strategic and Scholarship programs. This work was supported by funding from the European Research Council under the Seventh Framework Program (FP7), ERC grant N°246791 – COUNTATOMS. S.T. gratefully acknowledges the fund for scientific research Flanders for a post-doctoral fellowship and for financial support under contract number G004413N. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC starting grant number 278510 – VORTEX; ECASJO_; Approved (down) Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:122137 Serial 2269  
Permanent link to this record
 

 
Author Abakumov, A.M.; Erni, R.; Tsirlin, A.A. doi  openurl
  Title Reply to Comment on “Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3-xTiO3 perovskites” Type Editorial
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 2 Pages 1288  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000330543600051 Publication Date 2014-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 1 Open Access  
  Notes Approved (down) Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:115730 Serial 2874  
Permanent link to this record
 

 
Author Abakumov, A.M.; Erni, R.; Tsirlin, A.A.; Rossell, M.D.; Batuk, D.; Nénert, G.; Van Tendeloo, G. pdf  doi
openurl 
  Title Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3-xTiO3 perovskites Type A1 Journal article
  Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 25 Issue 13 Pages 2670-2683  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Perovskite-structured titanates with layered A-site ordering form remarkably complex superstructures. Using transmission electron microscopy, synchrotron X-ray and neutron powder diffraction, and ab initio structure relaxation, we present the structural solution of the incommensurately modulated Li3xNd2/3xTiO3 perovskites (x = 0.05, superspace group Pmmm(α1,1/2,0)000(1/2,β2 0)000, a = 3.831048(5) Å, b = 3.827977(4) Å, c = 7.724356(8) Å, q1 = 0.45131(8)a* + 1/2b*, q2 = 1/2a* + 0.41923(4)b*). In contrast to earlier conjectures on the nanoscale compositional phase separation in these materials, all peculiarities of the superstructure can be understood in terms of displacive modulations related to an intricate octahedral tilting pattern. It involves fragmenting the pattern of the out-of-phase tilted TiO6 octahedra around the a- and b-axes into antiphase domains, superimposed on the pattern of domains with either pronounced or suppressed in-phase tilt component around the c-axis. The octahedral tilting competes with the second order JahnTeller distortion of the TiO6 octahedra. This competition is considered as the primary driving force for the modulated structure. The A cations are suspected to play a role in this modulation affecting it mainly through the tolerance factor and the size variance. The reported crystal structure calls for a revision of the structure models proposed for the family of layered A-site ordered perovskites exhibiting a similar type of modulated structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000321809700015 Publication Date 2013-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 23 Open Access  
  Notes Countatoms Approved (down) Most recent IF: 9.466; 2013 IF: 8.535  
  Call Number UA @ lucian @ c:irua:109216 Serial 1292  
Permanent link to this record
 

 
Author Morozov, V.A.; Bertha, A.; Meert, K.W.; Van Rompaey, S.; Batuk, D.; Martinez, G.T.; Van Aert, S.; Smet, P.F.; Raskina, M.V.; Poelman, D.; Abakumov, A.M.; Hadermann, J.; doi  openurl
  Title Incommensurate modulation and luminescence in the CaGd2(1-x)Eu2x(MoO4)4(1-y)(WO)4y (0\leq x\leq1, 0\leq y\leq1) red phosphors Type A1 Journal article
  Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 25 Issue 21 Pages 4387-4395  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Scheelite related compounds (A',A '') [(B',B '')O-4], with B', B '' = W and/or Mo are promising new light-emitting materials for photonic applications, including phosphor converted LEDs (light-emitting diodes). In this paper, the creation and ordering of A-cation vacancies and the effect of cation substitutions in the scheelite-type framework are investigated as a factor for controlling the scheelite-type structure and luminescent properties. CaGd2(1-x)Eu2x(MoO4)(4(1-y))(WO4)(4y) (0 <= x <= 1, 0 <= y <= 1) solid solutions with scheelite-type structure were synthesized by a solid state method, and their structures were investigated using a combination of transmission electron microscopy techniques and powder X-ray diffraction. Within this series all complex molybdenum oxides have (3 + 2)D incommensurately modulated structures with superspace group I4(1)/a(alpha,beta,0)00(-beta,alpha,0)00, while the structures of all tungstates are (3 + 1)D incommensurately modulated with superspace group I2/b(alpha beta 0)00. In both cases the modulation arises because of cation-vacancy ordering at the A site. The prominent structural motif is formed by columns of A-site vacancies running along the c-axis. These vacant columns occur in rows of two or three aligned along the [110] direction of the scheelite subcell. The replacement of the smaller Gd3+ by the larger Eu3+ at the A-sublattice does not affect the nature of the incommensurate modulation, but an increasing replacement of Mo6+ by W6+ switches the modulation from (3 + 2)D to (3 + 1)D regime. Thus, these solid solutions can be considered as a model system where the incommensurate modulation can be monitored as a function of cation nature while the number of cation vacancies at the A sites remain constant upon the isovalent cation replacement. All compounds' luminescent properties were measured, and the optical properties were related to the structural properties of the materials. CaGd2(1-x)(MoO4)(4(1-y))(WO4)(4y) phosphors emit intense red light dominated by the D-5(0)-F-7(2) transition at 612 nm, along with other transitions from the D-5(1) and D-5(0) excited states. The intensity of the 5D0-7F2 transition reaches a maximum at x = 0.5 for y = 0 and 1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000327045000030 Publication Date 2013-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 63 Open Access  
  Notes Approved (down) Most recent IF: 9.466; 2013 IF: 8.535  
  Call Number UA @ lucian @ c:irua:112776 Serial 1594  
Permanent link to this record
 

 
Author Retuerto, M.; Emge, T.; Hadermann, J.; Stephens, P.W.; Li, M.R.; Yin, Z.P.; Croft, M.; Ignatov, A.; Zhang, S.J.; Yuan, Z.; Jin, C.; Simonson, J.W.; Aronson, M.C.; Pan, A.; Basov, D.N.; Kotliar, G.; Greenblatt, M.; doi  openurl
  Title Synthesis and properties of charge-ordered thallium halide perovskites, CsTl0.5+Tl0.53+X3 (X = F or Cl) : theoretical precursors for superconductivity? Type A1 Journal article
  Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 25 Issue 20 Pages 4071-4079  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Recently, CsTlCl3 and CsTlF3 perovskites were theoretically predicted to be potential superconductors if they were optimally doped. The syntheses of these two compounds together with a complete characterization of the samples are reported. CsTlCl3 was obtained as orange crystals in two different polymorphs: a tetragonal phase (I4/m) and a cubic phase (Fm (3) over barm). CsTlF3 was formed as a light brown powder, and also as a double cubic perovskite (Fm (3) over barm). In all three CsTlX3 phases, Tl+ and Tl3+ were located in two different crystallographic positions that accommodate their different bond lengths. In CsTlCl3, some Tl vacancies were found in the Tl+ position. The charge ordering between Tl+ and Tl3+ was confirmed by X-ray absorption and Raman spectroscopy. The Raman spectroscopy of CsTlCl3 at high pressure (58 GPa) did not indicate any phase transition to a possible single Tl2+ state. However, the highly insulating material became less resistive with an increasing high pressure, while it underwent a change in its optical properties, from transparent to deeply opaque red, indicative of a decrease in the magnitude of the band gap. The theoretical design and experimental validation of the existence of CsTlF3 and CsTlCl3 cubic perovskites are the necessary first steps in confirming the theoretical prediction of superconductivity in these materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000326209200017 Publication Date 2013-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 28 Open Access  
  Notes Approved (down) Most recent IF: 9.466; 2013 IF: 8.535  
  Call Number UA @ lucian @ c:irua:112248 Serial 3434  
Permanent link to this record
 

 
Author Casavola, M.; van Huis, M.A.; Bals, S.; Lambert, K.; Hens, Z.; Vanmaekelbergh, D. pdf  doi
openurl 
  Title Anisotropic cation exchange in PbSe/CdSe core/shell nanocrystals of different geometry Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 2 Pages 294-302  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present a study of Cd2+-for-Pb2+ exchange in PbSe nanocrystals (NCs) with cube, star, and rod shapes. Prolonged temperature-activated cation exchange results in PbSe/CdSe heterostructured nanocrystals (HNCs) that preserve their specific overall shape, whereas the PbSe core is strongly faceted with dominance of {111} facets. Hence, cation exchange proceeds while the Se anion lattice is preserved, and well-defined {111}/{111} PbSe/CdSe interfaces develop. Interestingly, by quenching the reaction at different stages of the cation exchange new structures have been isolated, such as coreshell nanorods, CdSe rods that contain one or two separated PbSe dots and fully zinc blende CdSe nanorods. The crystallographically anisotropic cation exchange has been characterized by a combined HRTEM/HAADF-STEM study of heterointerface evolution over reaction time and temperature. Strikingly, Pb and Cd are only intermixed at the PbSe/CdSe interface. We propose a plausible model for the cation exchange based on a layer-by-layer replacement of Pb2+ by Cd2+ enabled by a vacancy-assisted cation migration mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000299367500008 Publication Date 2011-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 136 Open Access  
  Notes Esteem 026019 Approved (down) Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:94211 Serial 124  
Permanent link to this record
 

 
Author Dachraoui, W.; Hadermann, J.; Abakumov, A.M.; Tsirlin, A.A.; Batuk, D.; Glazyrin, K.; McCammon, C.; Dubrovinsky, L.; Van Tendeloo, G. pdf  doi
openurl 
  Title Local oxygen-vacancy ordering and twinned octahedral tilting pattern in the Bi0.81Pb0.19FeO2.905 cubic perovskite Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 7 Pages 1378-1385  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structure of Bi0.81Pb0.19FeO2.905 was investigated on different length scales using a combination of electron diffraction, high-resolution scanning transmission electron microscopy, synchrotron X-ray powder diffraction, and Mössbauer spectroscopy. In the 80300 K temperature range, the average crystal structure of Bi0.81Pb0.19FeO2.905 is a cubic Pm3̅m perovskite with a = 3.95368(3) Å at T = 300 K. The (Pb2+, Bi3+) cations and O2 anions are randomly displaced along the 110 cubic directions, indicating the steric activity of the lone pair on the Pb2+ and Bi3+ cations and a tilting distortion of the perovskite framework. The charge imbalance induced by the heterovalent Bi3+ → Pb2+ substitution is compensated by the formation of oxygen vacancies preserving the trivalent state of the Fe cations. On a short scale, oxygen vacancies are located in anion-deficient (FeO1.25) layers that are approximately 6 perovskite unit cells apart and transform every sixth layer of the FeO6 octahedra into a layer with a 1:1 mixture of corner-sharing FeO4 tetrahedra and FeO5 tetragonal pyramids. The anion-deficient layers act as twin planes for the octahedral tilting pattern of adjacent perovskite blocks. They effectively randomize the octahedral tilting and prevent the cooperative distortion of the perovskite framework. The disorder in the anion sublattice impedes cooperative interactions of the local dipoles induced by the off-center displacements of the Pb and Bi cations. Magnetic susceptibility measurements evidence the antiferromagnetic ordering in Bi0.81Pb0.19FeO2.905 at low temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000302487500018 Publication Date 2012-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 27 Open Access  
  Notes Approved (down) Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:97389 Serial 1829  
Permanent link to this record
 

 
Author Angelomé, P.C.; Heidari Mezerji, H.; Goris, B.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Liz-Marzán, L.M. pdf  doi
openurl 
  Title Seedless synthesis of single crystalline Au nanoparticles with unusual shapes and tunable LSPR in the near-IR Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 7 Pages 1393-1399  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The plasmonic properties of metal nanoparticles have acquired great importance because of their potential applications in very diverse fields. Metal nanoparticles with localized surface plasmon resonances (LSPR) in the near-infrared (NIR, 7501300 nm) are of particular interest because tissues, blood, and water display low absorption in this spectral range, thus facilitating biomedical applications. Cetyltrimethylammonium chloride (CTAC) was used to induce the seedless formation of highly anisotropic, twisted single crystalline Au nanoparticles in a single step. The LSPR of the obtained particles can be tuned from 600 nm up to 1400 nm by simply changing the reaction temperature or the reagents concentrations. The tunability of the LSPR is closely associated with significant changes in the final particle morphology, which was studied by advanced electron microscopy techniques (3D Tomography and HAADF-STEM). Kinetic experiments were carried out to establish the growth mechanism, suggesting that slow kinetics together with the complexation of the gold salt precursor to CTAC are key factors favoring the formation of these anisotropic particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000302487500020 Publication Date 2012-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 42 Open Access  
  Notes Fwo Approved (down) Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:97388 Serial 2959  
Permanent link to this record
 

 
Author Dixon, E.; Hadermann, J.; Hayward, M.A. pdf  doi
openurl 
  Title Structures and magnetism of La1-xSrxMnO3-(0.5+x)/2 (0.67\leq x\leq1) phases Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 8 Pages 1486-1495  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Topotactic reduction of La1-xSrxMnO3 (0.67 <= x <= 1) phases with sodium hydride yields a series of isoelectronic materials of composition La1-xSrxMnO3-(0.5+x)/2. Lanthanum rich members of the series (0.67 <= x <= 0.83) adopt anion deficient perovskite structures with a 6-layer -OTOOT'O- stacking sequence of sheets of octahedra/square-based pyramids (O) and sheets of tetrahedra (T). The strontium rich members of the series (0.83 <= x <= 1) incorporate “step defects” into this 6-layer structure in which the OTOOT'O stacking sequence is converted into either OOTOOT' or TOOT'OO at a defect plane which runs perpendicular to the [201] lattice plane. The step defects appear to provide a mechanism to relieve lattice strain and accommodate additional anion deficiency in phases with x > 0.83. Magnetization and neutron diffraction data indicate La1-xSrxMnO3-(0.5+x)/2 phases adopt antiferromagnetically ordered states at low-temperature in which the ordered arrangement of magnetic spins is incommensurate with the crystallographic lattice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000303092300011 Publication Date 2012-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 13 Open Access  
  Notes Esteem 026019 Approved (down) Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:98253 Serial 3318  
Permanent link to this record
 

 
Author Dendooven, J.; Goris, B.; Devloo-Casier, K.; Levrau, E.; Biermans, E.; Baklanov, M.R.; Ludwig, K.F.; van der Voort, P.; Bals, S.; Detavernier, C. pdf  doi
openurl 
  Title Tuning the pore size of ink-bottle mesopores by atomic layer deposition Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 11 Pages 1992-1994  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000305092600002 Publication Date 2012-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 52 Open Access  
  Notes Fwo Approved (down) Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:99078 Serial 3760  
Permanent link to this record
 

 
Author Abakumov, A.M.; Batuk, D.; Hadermann, J.; Rozova, M.G.; Sheptyakov, D.V.; Tsirlin, A.A.; Niermann, D.; Waschowski, F.; Hemberger, J.; Van Tendeloo, G.; Antipov, E.V. doi  openurl
  Title Antiferroelectric (Pb,Bi)1-xFe1+xO3-y perovskites modulated by crystallographic shear planes Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue 2 Pages 255-265  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate for the first time a possibility to vary the anion content in perovskites over a wide range through a long-range-ordered arrangement of crystallographic shear (CS) planes. Anion-deficient perovskites (Pb,Bi)1−xFe1+xO3−y with incommensurately modulated structures were prepared as single phases in the compositional range from Pb0.857Bi0.094Fe1.049O2.572 to Pb0.409Bi0.567Fe1.025O2.796. Using a combination of electron diffraction and high-resolution scanning transmission electron microscopy, we constructed a superspace model describing a periodic arrangement of the CS planes. The model was verified by refinement of the Pb0.64Bi0.32Fe1.04O2.675 crystal structure from neutron powder diffraction data ((3 + 1)D S.G. X2/m(α0γ), X = [1/2,1/2,1/2,1/2], a = 3.9082(1) Å, b = 3.90333(8) Å, c = 4.0900(1) Å, β = 91.936(2)°, q = 0.05013(4)a* + 0.09170(3)c* at T = 700 K, RP = 0.036, RwP = 0.048). The (Pb,Bi)1−xFe1+xO3−y structures consist of perovskite blocks separated by CS planes confined to nearly the (509)p perovskite plane. Along the CS planes, the perovskite blocks are shifted with respect to each other over the 1/2[110]p vector that transforms the corner-sharing connectivity of the FeO6 octahedra in the perovskite framework to an edge-sharing connectivity of the FeO5 pyramids at the CS plane, thus reducing the oxygen content. Variation of the chemical composition in the (Pb,Bi)1−xFe1+xO3−y series occurs mainly because of a changing thickness of the perovskite block between the interfaces, that can be expressed through the components of the q vector as Pb6γ+2αBi1−7γ−αFe1+γ−αO3−3γ−α. The Pb, Bi, and Fe atoms are subjected to strong displacements occurring in antiparallel directions on both sides of the perovskite blocks, resulting in an antiferroelectric-type structure. This is corroborated by the temperature-, frequency-, and field-dependent complex permittivity measurements. Pb0.64Bi0.32Fe1.04O2.675 demonstrates a remarkably high resistivity >0.1 T Ω cm at room temperature and orders antiferromagnetically below TN = 608(10) K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000286160800018 Publication Date 2010-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 29 Open Access  
  Notes Approved (down) Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:88651 Serial 136  
Permanent link to this record
 

 
Author Belik, A.A.; Abakumov, A.M.; Tsirlin, A.A.; Hadermann, J.; Kim, J.; Van Tendeloo, G.; Takayama-Muromachi, E. doi  openurl
  Title Article Structure and magnetic properties of BiFe0.75Mn0.25O3 perovskite prepared at ambient and high pressure Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue 20 Pages 4505-4514  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solid solutions of BiFe1xMnxO3 (0.0 ≤ x ≤ 0.4) were prepared at ambient pressure and at 6 GPa. The ambient-pressure (AP) phases crystallize in space group R3c similarly to BiFeO3. The high-pressure (HP) phases crystallize in space group R3c for x = 0.05 and in space group Pnma for 0.15 ≤ x ≤ 0.4. The structure of HP-BiFe0.75Mn0.25O3 was investigated using synchrotron X-ray powder diffraction, electron diffraction, and transmission electron microscopy. HP-BiFe0.75Mn0.25O3 has a PbZrO3-related √2ap × 4ap × 2√2ap (ap is the parameter of the cubic perovskite subcell) superstructure with a = 5.60125(9) Å, b = 15.6610(2) Å, and c = 11.2515(2) Å similar to that of Bi0.82La0.18FeO3. A remarkable feature of this structure is the unconventional octahedral tilt system, with the primary ab0a tilt superimposed on pairwise clockwise and counterclockwise rotations around the b-axis according to the oioi sequence (o stands for out-of-phase tilt, and i stands for in-phase tilt). The (FeMn)O6 octahedra are distorted, with one longer metaloxygen bond (2.222.23 Å) that can be attributed to a compensation for covalent BiO bonding. Such bonding results in the localization of the lone electron pair on Bi3+ cations, as confirmed by electron localization function analysis. The relationship between HP-BiFe0.75Mn0.25O3 and antiferroelectric structures of PbZrO3 and NaNbO3 is discussed. On heating in air, HP-BiFe0.75Mn0.25O3 irreversibly transforms to AP-BiFe0.75Mn0.25O3 starting from about 600 K. Both AP and HP phases undergo an antiferromagnetic ordering at TN ≈ 485 and 520 K, respectively, and develop a weak net magnetic moment at low temperatures. Additionally, ceramic samples of AP-BiFe0.75Mn0.25O3 show a peculiar phenomenon of magnetization reversal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000295897400015 Publication Date 2011-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 57 Open Access  
  Notes Approved (down) Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:93581 Serial 151  
Permanent link to this record
 

 
Author Hamelet, S.; Casas-Cabanas, M.; Dupont, L.; Davoisne, C.; Tarascon, J.M.; Masquelier, C. doi  openurl
  Title Existence of superstructures due to large amounts of Fe vacancies in the LiFePO4-type framework Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue 1 Pages 32-38  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract LiFePO4 has been under intense scrutiny over the past decade because it stands as an attractive positive electrode material for the next generation of Li-ion batteries to power electric vehicles and hybrid electric vehicles, hence the importance of its thermal behavior. The reactivity of LiFePO4 with air at moderate temperatures is shown to be dependent on its particle size. For nanosized materials, a progressive displacement of Fe from the core structure leading to a composite made of nanosize Fe2O3 and highly defective, oxidized LixFeyPO4 compositions, among which the “ideal” formula LiFe2/3PO4. Herein we report, from both temperature-controlled X-ray diffraction and electronic diffraction microscopy, that these off-stoichiometry olivine-type compounds show a defect ordering resulting in the formation of a superstructure. Such a finding shows striking similarities with the temperature-driven oxidation of fayalite Fe2SiO4 (another olivine) to structurally defective laihunite, reported in the literature three decades ago.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000285726900007 Publication Date 2010-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 30 Open Access  
  Notes Approved (down) Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:105605 Serial 1130  
Permanent link to this record
 

 
Author Dachraoui, W.; Yang, T.; Liu, C.; Ling, G.; Hadermann, J.; Van Tendeloo, G.; Llobet, A.; Greenblatt, M. pdf  doi
openurl 
  Title Short-range layered A-site ordering in double perovskites NaLaBB'O6 (B = Mn, Fe; B' = Nb, Ta) Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue 9 Pages 2398-2406  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The new compounds NaLaFeTaO6, NaLaFeNbO6, NaLaMnTaO6, and NaLaMnNbO6 have been synthesized and characterized with a combination of transmission electron microscopy, X-ray powder diffraction (XRPD), neutron powder diffraction (NPD), and magnetization measurements. Through electron microscopy study, a local layered order of the A-cations has been detected without the typical occurrence of rock salt order at the B-cation site. Satellite reflections in the electron diffraction related to the local layered order are not visible on the XRPD or NPD patterns. The occurrence of local layered order is supported by pair distribution function analysis, which also reveals the presence of uncorrelated displacements of the Nb and Ta cations. The octahedra are tilted according to the system a−b+a−, and the coordinates were refined from XRPD and NPD with a disordered cation distribution in the space group Pnma. The magnetic exchange interactions in NaLaFeTaO6 and NaLaFeNbO6 are antiferromagnetic, while they are ferromagnetic in NaLaMnTaO6 and NaLaMnNbO6. Long-range magnetic ordering is not observed down to 4 K for any of the compositions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000290063600016 Publication Date 2011-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 14 Open Access  
  Notes Esteem 026019 Approved (down) Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:89944 Serial 2996  
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Turner, S.; Hafideddine, Z.; Khasanova, N.R.; Antipov, E.V.; Van Tendeloo, G. pdf  doi
openurl 
  Title Solving the structure of Li ion battery materials with precession electron diffraction : application to Li2CoPo4F Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue 15 Pages 3540-3545  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structure of the Li2CoPO4F high-voltage cathode for Li ion rechargeable batteries has been completely solved from precession electron diffraction (PED) data, including the location of the Li atoms. The crystal structure consists of infinite chains of CoO4F2 octahedra sharing common edges and linked into a 3D framework by PO4 tetrahedra. The chains and phosphate anions together delimit tunnels filled with the Li atoms. This investigation demonstrates that PED can be successfully applied for obtaining structural information on a variety of Li-containing electrode materials even from single micrometer-sized crystallites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000293357100019 Publication Date 2011-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 46 Open Access  
  Notes Fwo; Bof Approved (down) Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:90357 Serial 3053  
Permanent link to this record
 

 
Author Rusakov, D.; Abakumov, A.M.; Yamaura, K.; Belik, A.A.; Van Tendeloo, G.; Takayama-Muromachi, E. doi  openurl
  Title Structural evolution of the BiFeO3-LaFeO3 system Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue 2 Pages 285-292  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The (1 − x)BiFeO3−xLaFeO3 system has been investigated and characterized by room-temperature and high-temperature laboratory and synchrotron powder X-ray diffraction, electron diffraction, high-resolution transmission electron microscopy, differential scanning calorimetry, and magnetization measurements. At room temperature, the ferroelectric R3c phase is observed for 0.0 ≤ x ≤ 0.10. The PbZrO3-related √2ap × 2√2ap × 4ap superstructure (where ap is the parameter of the cubic perovskite subcell) is observed for Bi0.82La0.18FeO3, while an incommensurately modulated phase is formed for 0.19 ≤ x ≤ 0.30 with the √2ap × 2ap × √2ap basic unit cell. The GdFeO3-type phase with space group Pnma (√2ap × 2ap × √2ap) is stable at 0.50 ≤ x ≤ 1. Bi0.82La0.18FeO3 has no detectable homogeneity range (space group Pnam, a = 5.6004(1) Å, b = 11.2493(3) Å, c = 15.6179(3) Å). The incommensurately modulated Bi0.75La0.25FeO3 structure was solved from synchrotron X-ray powder diffraction data (Imma(00γ)s00 superspace group, a = 5.5956(1) Å, b = 7.8171(1) Å, c = 5.62055(8) Å, q = 0.4855(4)c*, RP = 0.023, RwP = 0.033). In this structure, cooperative displacements of the Bi and O atoms occur, which order within the (AO) (where A = Bi, La) layers, resulting in an antipolar structure. Local fluctuations of the intralayer antipolar ordering are compensated by an interaction with the neighboring (AO) layers. A coupling of the antipolar displacements with the cooperative tilting distortion of the perovskite octahedral framework is proposed as the origin of the incommensurability. All the phases transform to the GdFeO3-type structure at high temperatures. Bi0.82La0.18FeO3 shows an intermediate PbZrO3-type phase with √2ap × 2√2ap × 2ap (space group Pbam; a = 5.6154(2) Å, b = 11.2710(4) Å, and c = 7.8248(2) Å at 570 K). The compounds in the compositional range of 0.18 ≤ x ≤ 0.95 are canted antiferromagnets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000286160800021 Publication Date 2010-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 133 Open Access  
  Notes Approved (down) Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:88650 Serial 3236  
Permanent link to this record
 

 
Author Eckert, M.; Mortet, V.; Zhang, L.; Neyts, E.; Verbeeck, J.; Haenen, ken; Bogaerts, A. pdf  doi
openurl 
  Title Theoretical investigation of grain size tuning during prolonged bias-enhanced nucleation Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue 6 Pages 1414-1423  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, the effects of prolonged bias-enhanced nucleation (prolonged BEN) on the growth mechanisms of diamond are investigated by molecular dynamics (MD) and combined MD-Metropolis Monte Carlo (MD-MMC) simulations. First, cumulative impacts of CxHy+ and Hx+ on an a-C:H/nanodiamond composite were simulated; second, nonconsecutive impacts of the dominant ions were simulated in order to understand the observed phenomena in more detail. As stated in the existing literature, the growth of diamond structures during prolonged BEN is a process that takes place below the surface of the growing film. The investigation of the penetration behavior of CxHy+ and Hx+ species shows that the carbon-containing ions remain trapped within this amorphous phase where they dominate mechanisms like precipitation of sp3 carbon clusters. The H+ ions, however, penetrate into the crystalline phase at high bias voltages (>100 V), destroying the perfect diamond structure. The experimentally measured reduction of grain sizes at high bias voltage, reported in the literature, might thus be related to penetrating H+ ions. Furthermore, the CxHy+ ions are found to be the most efficient sputtering agents, preventing the build up of defective material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000288291400011 Publication Date 2011-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 9 Open Access  
  Notes Iwt; Fwo; Esteem 026019; Iap Approved (down) Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:87642 Serial 3605  
Permanent link to this record
 

 
Author Kazakov, S.M.; Abakumov, A.M.; Perz-Mato, J.M.; Ovchinnikov, A.V.; Roslova, M.V.; Boltalin, A.I.; Morozov, I.V.; Antipov, E.V.; Van Tendeloo, G. doi  openurl
  Title Uniform patterns of Fe-vacancy ordering in the Kx(Fe,Co)2-ySe2 superconductors Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue 19 Pages 4311-4316  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Fe-vacancy ordering patterns in the superconducting KxFe2ySe2 and nonsuperconducting Kx(Fe,Co)2ySe2 samples have been investigated by electron diffraction and high angle annular dark field scanning transmission electron microscopy. The Fe-vacancy ordering occurs in the ab plane of the parent ThCr2Si2-type structure, demonstrating two types of patterns. Superstructure I retains the tetragonal symmetry and can be described with the aI = bI = as√5 (as is the unit cell parameter of the parent ThCr2Si2-type structure) supercell and I4/m space group. Superstructure II reduces the symmetry to orthorhombic with the aII = as√2, bII = 2as√2 supercell and the Ibam space group. This type of superstructure is observed for the first time in KxFe2ySe2. The Fe-vacancy ordering is inhomogeneous: the disordered areas interleave with the superstructures I and II in the same crystallite. The observed superstructures represent the compositionally dependent uniform ordering patterns of two species (the Fe atoms and vacancies) on a square lattice. More complex uniform ordered configurations, including compositional stripes, can be predicted for different chemical compositions of the KxFe2ySe2 (0 < y < 0.5) solid solutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000295487800005 Publication Date 2011-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 20 Open Access  
  Notes Approved (down) Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:92805 Serial 3810  
Permanent link to this record
 

 
Author Malo, S.; Lepoittevin, C.; Pérez, O.; Hébert, S.; Van Tendeloo, G.; Hervieu, M. pdf  doi
openurl 
  Title Incommensurate crystallographic shear structures and magnetic properties of the cation deficient perovskite (Sr0.61Pb0.18)(Fe0.75Mn0.25)O2.29 Type A1 Journal article
  Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 22 Issue 5 Pages 1788-1797  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The origin of the incommensurability in the crystallographic shear (CS) structure of the ferri-Manganite (Sr0.61Pb0.18)(Fe0.75Mn0.25)O2.29, related to the cation deficient perovskite, has been determined by careful analysis of the boundaries between the two variants constituting the phasoid. High Resolution Electron Microscopy/HAADF-STEM images allow the structural mechanisms to be understood through the presence of structural units common to both phases, responsible of the incommensurate character observed in the electron diffraction patterns. The structural analysis allows for identifying different types of CS phases in the Pb−Sr−Fe(Mn)−O diagram and shows that the stabilization of the six-sided tunnels requires a higher A/B cationic ratio. A description of these phases is proposed through simple structural building units (SBU), based on chains of octahedra bordered by two pyramids. The (Sr0.61Pb0.18)(Fe0.75Mn0.25)O2.29 CS compound exhibits a strong antiferromagnetic and insulating behavior, similar to the Fe-2201 and terrace ferrites but differs by the presence of a hysteresis, with a small coercive field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000274929000025 Publication Date 2010-01-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access  
  Notes Esteem 026019 Approved (down) Most recent IF: 9.466; 2010 IF: 6.400  
  Call Number UA @ lucian @ c:irua:81800 Serial 1593  
Permanent link to this record
 

 
Author Cortes-Gil, R.; Parker, D.R.; Pitcher, M.J.; Hadermann, J.; Clarke, S.J. doi  openurl
  Title Indifference of superconductivity and magnetism to size-mismatched cations in the layered iron arsenides Ba1-xNaxFe2As2 Type A1 Journal article
  Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 22 Issue 14 Pages 4304-4311  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The evolution of the structure, magnetic ordering, and superconductivity in the series Ba(1-x)Na(x)Fe(2)As(2) is reported up to the limiting Na-rich composition with x = 0.6; the more Na-rich compositions are unstable at high temperatures with respect to competing phases. The magnetic and superconducting behaviors of the Bai,Na,Fe,As, members are similar to those of the betterinvestigated Ba(1-x)Na(x)Fe(2)As(2) analogues. This is evidently a consequence of the quantitatively similar evolution of the structure of the FeAs layers in the two series. In Ba(1-x)Na(x)Fe(2)As(2) antiferromagnetic order and an associated structural distortion are evident for x <= 0.35 and superconductivity is evident when x exceeds 0.2. For 0.4 <= x <= 0.6 bulk superconductivity is evident, and the long-range antiferromagnetically ordered state is completely suppressed. The maximum T(c) in the Ba(1-x)Na(x)Fe(2)As(2) series, as judged by the onset of diamagnetism, is 34K in Ba(0.6)Na(0.4)Fe(2)As(2). Despite the large mis-match in sizes between the two electropositive cations which separate the FeAs layers, there is no evidence for ordering of these cations on the length scale probed by electron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000280005300027 Publication Date 2010-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 31 Open Access  
  Notes Approved (down) Most recent IF: 9.466; 2010 IF: 6.400  
  Call Number UA @ lucian @ c:irua:95594 Serial 1601  
Permanent link to this record
 

 
Author Burriel, M.; Casa-Cabanas, M.; Zapata, J.; Tan, H.; Verbeeck, J.; Solis, C.; Roqueta, J.; Skinner, S.J.; Kilner, J.A.; Van Tendeloo, G.; Santiso, J. pdf  doi
openurl 
  Title Influence of the microstructure on the high-temperature transport properties of GdBaCo2O5.5+\delta epitaxial films Type A1 Journal article
  Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 22 Issue 19 Pages 5512-5520  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial thin films of GdBaCo2O5.5+δ (GBCO) grown by pulsed laser deposition have been studied as a function of deposition conditions. The variation in film structure, domain orientation, and microstructure upon deviations in the cation composition have been correlated with the charge transport properties of the films. The epitaxial GBCO films mainly consist of single- and double-perovskite regions that are oriented in different directions depending on the deposition temperature. Additionally, cobalt depletion induces the formation of a high density of stacking defects in the films, consisting of supplementary GdO planes along the c-axis of the material. The presence of such defects progressively reduces the electrical conductivity. The films closer to the stoichiometric composition have shown p-type electronic conductivity at high pO2 with values as high as 800 S/cm at 330 °C in 1 atm O2, and with a pO2 power dependence with an exponent as low as 1/25, consistent with the behavior reported for bulk GBCO. These values place GBCO thin films as a very promising material to be applied as cathodes in intermediate temperature solid oxide fuel cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000282471000013 Publication Date 2010-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 17 Open Access  
  Notes Fwo; Esteem 026019 Approved (down) Most recent IF: 9.466; 2010 IF: 6.400  
  Call Number UA @ lucian @ c:irua:85412UA @ admin @ c:irua:85412 Serial 1648  
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Van Rompaey, S.; Mankevich, A.S.; Korsakov, I.E. doi  openurl
  Title Comment on ALaMn2O6-y (A = K, Rb): novel ferromagnetic manganites exhibiting negative giant magnetoresistance Type Editorial
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 21 Issue 9 Pages 2000-2001  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000265781000036 Publication Date 2009-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 4 Open Access  
  Notes Approved (down) Most recent IF: 9.466; 2009 IF: 5.368  
  Call Number UA @ lucian @ c:irua:77055 Serial 411  
Permanent link to this record
 

 
Author Colomer, J.-F.; Marega, R.; Traboulsi, H.; Meneghetti, M.; Van Tendeloo, G.; Bonifazi, D. doi  openurl
  Title Microwave-assisted bromination of double-walled carbon nanotubes Type A1 Journal article
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 21 Issue 20 Pages 4747-4749  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000270807800001 Publication Date 2009-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 46 Open Access  
  Notes Approved (down) Most recent IF: 9.466; 2009 IF: 5.368  
  Call Number UA @ lucian @ c:irua:94504 Serial 2080  
Permanent link to this record
 

 
Author Caignaert, V.; Abakumov, A.M.; Pelloquin, D.; Pralong, V.; Maignan, A.; Van Tendeloo, G.; Raveau, B. pdf  doi
openurl 
  Title A new mixed-valence ferrite with a cubic structure, YBaFe4O7: spin-glass-like behavior Type A1 Journal article
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 21 Issue 6 Pages 1116-1122  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new mixed-valence ferrite, YBaFe4O7, has been synthesized. Its unique cubic structure, with a = 8.9595(2) Å, is closely related to that of the hexagonal 114 oxides YBaCo4O7 and CaBaFe4O7. It consists of corner-sharing FeO4 tetrahedra, forming triangular and kagome layers parallel to (111)C. In fact, the YBaFe4O7 and CaBaFe4O7 structures can be described as two different ccc and chch close packings of [BaO3]∞ and [O4]∞ layers, respectively, whose tetrahedral cavities are occupied by Fe2+/Fe3+ cations. The local structure of YBaFe4O7 is characterized by a large amount of stacking faults originating from the presence of hexagonal layers in the ccc cubic close-packed YBaFe4O7 structure. In this way, they belong to the large family of spinels and hexagonal ferrites studied for their magnetic properties. Differently from all the ferrites and especially from CaBaFe4O7, which are ferrimagnetic, YBaFe4O7 is an insulating spin glass with Tg = 50 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000264310900019 Publication Date 2009-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 39 Open Access  
  Notes Esteem 026019 Approved (down) Most recent IF: 9.466; 2009 IF: 5.368  
  Call Number UA @ lucian @ c:irua:76432 Serial 2325  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: