|   | 
Details
   web
Records
Author Lamas, J.S.; Leroy, W.P.; Lu, Y.-G.; Verbeeck, J.; Van Tendeloo, G.; Depla, D.
Title Using the macroscopic scale to predict the nano-scale behavior of YSZ thin films Type A1 Journal article
Year 2014 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech
Volume 238 Issue Pages 45-50
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this work, Yttria-stabilized zirconia (YSZ) thin films were deposited using dual reactive magnetron sputtering. By varying the deposition conditions, the film morphology and texture of the thin films are tuned and biaxial alignment is obtained. Studying the crystallographic and microstructural properties of the YSZ thin films, a tilted columnar growth was identified. This tilt is shown to be dependent on the compositional gradient of the sample. The variation of composition within a single YSZ column measured via STEM-EDX is demonstrated to be equal to the macroscopic variation on a full YSZ sample when deposited under the same deposition parameters. A simple stress model was developed to predict the tilt of the growing columns. The results indicate that this model not only determines the column bending of the growing film but also confirms that a macroscopic approach is sufficient to determine the compositional gradient in a single column of the YSZ thin films. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000331028200005 Publication Date 2013-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0257-8972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.589 Times cited 8 Open Access
Notes 246791 Countatoms; 278510 Vortex;Nmp3-La-2010-246102 Ifox; 312483 Esteem2; esteem2jra3 ECASJO; Approved (up) Most recent IF: 2.589; 2014 IF: 1.998
Call Number UA @ lucian @ c:irua:115765 Serial 3827
Permanent link to this record
 

 
Author Kuznetsov, A.S.; Lu, Y.-G.; Turner, S.; Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Verbeeck, J.; Baranov, A.N.; Moshchalkov, V.V.
Title Preparation, structural and optical characterization of nanocrystalline ZnO doped with luminescent Ag-nanoclusters Type A1 Journal article
Year 2012 Publication Optical materials express Abbreviated Journal Opt Mater Express
Volume 2 Issue 6 Pages 723-734
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline ZnO doped with Ag-nanoclusters has been synthesized by a salt solid state reaction. Three overlapping broad emission bands due to the Ag nanoclusters have been detected at about 570, 750 and 900 nm. These emission bands are excited by an energy transfer from the exciton state of the ZnO host when pumped in the wavelength range from 250 to 400 nm. The 900 nm emission band shows characteristic orbital splitting into three components pointing out that the anisotropic crystalline wurtzite host of ZnO is responsible for this feature. Heat-treatment and temperature dependence studies confirm the origin of these emission bands. An energy level diagram for the emission process and a model for Ag nanoclusters sites are suggested. The emission of nanocrystalline ZnO doped with Ag nanoclusters may be applied for white light generation, displays driven by UV light, down-convertors for solar cells and luminescent lamps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304953700004 Publication Date 2012-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2159-3930; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.591 Times cited Open Access
Notes We are grateful to the Methusalem Funding of Flemish Government for the support of this work. Y.-G. L. and S. T. acknowledge funding from the Fund for Scientific Research Flanders (FWO) for a postdoctoral grant and under grant number G056810N. The microscope used in this study was partially financed by the Hercules Foundation. J.V. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No246791 – COUNTATOMS and ERC Starting Grant 278510 VORTEX. The authors acknowledge the guidance of Prof. G. Van Tendeloo, EMAT Antwerpen University, in transmission electron microscopy study in this work. ECASJO_; Approved (up) Most recent IF: 2.591; 2012 IF: 2.616
Call Number UA @ lucian @ c:irua:97709UA @ admin @ c:irua:97709 Serial 2707
Permanent link to this record
 

 
Author Ding, L.; Orekhov, A.; Weng, Y.; Jia, Z.; Idrissi, H.; Schryvers, D.; Muraishi, S.; Hao, L.; Liu, Q.
Title Study of the Q′ (Q)-phase precipitation in Al–Mg–Si–Cu alloys by quantification of atomic-resolution transmission electron microscopy images and atom probe tomography Type A1 Journal article
Year 2019 Publication Journal of materials science Abbreviated Journal J Mater Sci
Volume 54 Issue 10 Pages 7943-7952
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The precipitation mechanism of the Q phase in Al-Mg-Si-Cu alloys has long been the subject of ambiguity and debate since its metastable phase (Q 0) has the same crystal structure and similar lattice parameters as its equilibrium counterparts. In the present work, the evolution of the Q 0 (Q) phase during aging is studied by combination of quantitative atomic-resolution scanning transmission electron microscopy and atom probe tomography. It was found that the transformation from the Q 0 to the Q phase involves changes of the occupancy of Al atoms in atomic columns of the Q 0 (Q) phase. The Al atoms incorporated in the Cu, Si and Mg columns are gradually released into the Al matrix, while mixing between Cu and Si atoms occurs in the Si columns. This transformation process is mainly attributed to the low lattice misfit of the equilibrium Q phase. Besides, the formation of various compositions of the Q phase is due to the different occupancy in the atomic columns of the Q phase. The occupancy changes in the columns of the Q phase are kinetically controlled and are strongly influenced by the alloy composition and aging temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460069500043 Publication Date 2019-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2461 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 1 Open Access Not_Open_Access
Notes Special major R & D Projects for Key Technology Innovation of Key Industries in Chongqing, cstc2017zdcy-zdzxX0006 ; Fundamental Research Funds for the Central Universities of China, 2018CDGFCL0002 106112017CDJQJ308822 ; Belgian National Fund for Scientific Research; the National Natural Science Foundation of China, 51871035 ; This work was supported by the Special major R & D Projects for Key Technology Innovation of Key Industries in Chongqing (Grant No. cstc2017zdcyzdzxX0006), the Fundamental Research Funds for the Central Universities of China (Grant No. 2018CDGFCL0002), the National Natural Science Foundation of China (Grant No. 51871035) and the Foundation for Innovative Research Groups J Mater Sci National Natural Science Foundation of China (Grant No. 51421001). H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved (up) Most recent IF: 2.599
Call Number EMAT @ emat @UA @ admin @ c:irua:158112 Serial 5158
Permanent link to this record
 

 
Author Tuck, L.; Sayer, M.; Mackenzie, M.; Hadermann, J.; Dunfield, D.; Pietak, A.; Reid, J.W.; Stratilatov, A.D.
Title Composition and crystal structure of resorbable calcium phosphate thin films Type A1 Journal article
Year 2006 Publication Journal of materials science Abbreviated Journal J Mater Sci
Volume 41 Issue 13 Pages 4273-4284
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000239282300041 Publication Date 2006-05-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 2 Open Access
Notes Approved (up) Most recent IF: 2.599; 2006 IF: 0.999
Call Number UA @ lucian @ c:irua:60128 Serial 442
Permanent link to this record
 

 
Author Zelonka, K.; Sayer, M.; Freundorfer, A.P.; Hadermann, J.
Title Hydrothermal processing of barium strontium titanate sol-gel composite thin films Type A1 Journal article
Year 2006 Publication Journal of materials science Abbreviated Journal J Mater Sci
Volume 41 Issue 12 Pages 3885-3897
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000239022100043 Publication Date 2006-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 10 Open Access
Notes Approved (up) Most recent IF: 2.599; 2006 IF: 0.999
Call Number UA @ lucian @ c:irua:60566 Serial 1539
Permanent link to this record
 

 
Author Vast, L.; Carpentier, L.; Lallemand, F.; Colomer, J.-F.; Van Tendeloo, G.; Fonseca, A.; Nagy, J.B.; Mekhalif, Z.; Delhalle, J.
Title Multiwalled carbon nanotubes functionalized with 7-octenyltrichlorosilane and n-octyltrichlorosilane: dispersion in Sylgard®184 silicone and Youngs modulus Type A1 Journal article
Year 2009 Publication Journal of materials science Abbreviated Journal J Mater Sci
Volume 44 Issue 13 Pages 3476-3482
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sylgard®184/multiwalled carbon nanotube (MWNT) composites have been prepared by in situ polymerization using purified and functionalized multiwalled carbon nanotubes (f-MWNTs) as fillers. Surface modification of the MWNTs has been carried out by silanization with 7-octenyltrichlorosilane (7OTCS) and n-octyltrichlorosilane (nOTCS). The modification and dispersion of the carbon nanotubes in composites were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron spectroscopy (TEM), and high-resolution transmission electron spectroscopy (HRTEM). Youngs modulus results were derived from indentation testing. It is shown that the terminal-vinyl group of 7OTCS molecules plays an essential role for both the dispersion of the f-MWNTs in the composite and its mechanical properties. At loading as low as 0.2 wt%, the Youngs modulus is shown to increase up to 50%. This is interpreted as resulting from a combination of the good compatibility in the forming silicone matrix of the MWNTs coated with a siloxane network, on the one hand, and the covalent links created between the terminal-vinyl groups and the host matrix in formation, on the other hand.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000267153200022 Publication Date 2009-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 16 Open Access
Notes Iuap Approved (up) Most recent IF: 2.599; 2009 IF: 1.471
Call Number UA @ lucian @ c:irua:77844 Serial 2245
Permanent link to this record
 

 
Author Khalil-Allafi, J.; Amin-Ahmadi, B.
Title Multiple-step martensitic transformations in the Ni51Ti49 single crystal Type A1 Journal article
Year 2010 Publication Journal of materials science Abbreviated Journal J Mater Sci
Volume 45 Issue 23 Pages 6440-6445
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Multiple-step martensitic transformations of an aged Ni51Ti49 single crystal using calorimetric method were investigated. Results show that for short aging times (1045 min) multiple-step martensitic transformations on cooling occur in two steps. Applying intermediate aging times (1.254 h) results in three steps and long aging times (more than 8 h) lead to two-step martensitic transformations again. This behavior has not been recognized in NiTi single crystals in literatures. It can be related to the heterogeneity of composition and stress fields around Ni4Ti3 precipitates.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000282429400021 Publication Date 2010-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 5 Open Access
Notes Approved (up) Most recent IF: 2.599; 2010 IF: 1.859
Call Number UA @ lucian @ c:irua:122046 Serial 2231
Permanent link to this record
 

 
Author Verleysen, E.; Bender, H.; Richard, O.; Schryvers, D.; Vandervorst, W.
Title Compositional characterization of nickel silicides by HAADF-STEM imaging Type A1 Journal article
Year 2011 Publication Journal of materials science Abbreviated Journal J Mater Sci
Volume 46 Issue 7 Pages 2001-2008
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A methodology for the quantitative compositional characterization of nickel silicides by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imaging is presented. HAADF-STEM images of a set of nickel silicide reference samples Ni3Si, Ni31Si12, Ni2Si, NiSi and NiSi2 are taken at identical experimental conditions. The correlation between sample thickness and HAADF-STEM intensity is discussed. In order to quantify the relationship between the experimental Z-contrast intensities and the composition of the analysed layers, the ratio of the HAADF-STEM intensity to the sample thickness or to the intensity of the silicon substrate is determined for each nickel silicide reference sample. Diffraction contrast is still detected on the HAADF-STEM images, even though the detector is set at the largest possible detection angle. The influence on the quantification results of intensity fluctuations caused by diffraction contrast and channelling is examined. The methodology is applied to FUSI gate devices and to horizontal TFET devices with different nickel silicides formed on source, gate and drain. It is shown that, if the elements which are present are known, this methodology allows a fast quantitative 2-dimensional compositional analysis.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000286633000002 Publication Date 2011-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 1 Open Access
Notes Approved (up) Most recent IF: 2.599; 2011 IF: 2.015
Call Number UA @ lucian @ c:irua:88950 Serial 446
Permanent link to this record
 

 
Author Pourbabak, S.; Orekhov, A.; Schryvers, D.
Title Twin-jet electropolishing for damage-free transmission electron microscopy specimen preparation of metallic microwires Type A1 Journal article
Year 2020 Publication Microscopy Research And Technique Abbreviated Journal Microsc Res Techniq
Volume Issue Pages 1-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A method to prepare TEM specimens from metallic microwires and based on conventional twin-jet electropolishing is introduced. The wire is embedded in an opaque epoxy resin medium and the hardened resin is mechanically polished to reveal the wire on both sides. The resin containing wire is then cut into discs of the appropriate size. The obtained embedded wire is electropolished in a conventional twin-jet electropolishing machine until electron transparency in large areas without radiation damage is achieved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000567944200001 Publication Date 2020-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1059-910x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.5 Times cited Open Access OpenAccess
Notes ; Fonds Wetenschappelijk Onderzoek, Grant/Award Number: G.0366.15N ; Approved (up) Most recent IF: 2.5; 2020 IF: 1.147
Call Number UA @ admin @ c:irua:171969 Serial 6642
Permanent link to this record
 

 
Author Lin, H.; Ohta, T.; Paul, A.; Hutchison, J.A.; Kirilenko, D.; Lebedev, O.; Van Tendeloo, G.; Hofkens, J.; Uji-i, H.
Title Light-assisted nucleation of silver nanowires during polyol synthesis Type A1 Journal article
Year 2011 Publication Journal of photochemistry and photobiology: A: chemistry Abbreviated Journal J Photoch Photobio A
Volume 221 Issue 2/3 Pages 220-223
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This report describes the effect of light irradiation on the synthesis of silver nanowires by the well-known polyol method. High quality nanowires are produced in high yields when the reaction suspension is irradiated with 400500 nm light during the nucleation stage. These studies suggest that light accelerates the formation of the nanoparticle seeds most appropriate for nanowire growth.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000293813800018 Publication Date 2011-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1010-6030; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.625 Times cited 24 Open Access
Notes Fwo; Iap Approved (up) Most recent IF: 2.625; 2011 IF: 2.421
Call Number UA @ lucian @ c:irua:91262 Serial 1818
Permanent link to this record
 

 
Author Van Tendeloo, G.; Lebedev, O.I.; Amelinckx, S.
Title Atomic and microstructure of CMR materials Type A1 Journal article
Year 2000 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater
Volume 211 Issue Pages 73-83
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000085772100013 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.63 Times cited 48 Open Access
Notes Iuap 4-10 Approved (up) Most recent IF: 2.63; 2000 IF: 0.996
Call Number UA @ lucian @ c:irua:54773 Serial 165
Permanent link to this record
 

 
Author Schuddinck, W.; Van Tendeloo, G.; Barnabé, A.; Hervieu, M.; Raveau, B.
Title Relation between structure, charge ordering and magnetotransport properties in Nd0.5Ca0.5Mn1-xCrxO3 manganites Type A1 Journal article
Year 2000 Publication Journal of magnetism and magnetic materials T2 – Symposium G Material Physics Issues and Applications of Magnetic Oxides, at the E-MRS Spring Meeting, JUN 01-04, 1999, Strasbourg, France Abbreviated Journal J Magn Magn Mater
Volume 211 Issue 1-3 Pages 105-110
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The relationships between incommensurability, charge ordering and magnetotransport properties in Nd0.5Ca0.5Mn1-xCrxO3 manganites have been studied by electron diffraction and lattice imaging versus temperature with 0.02 less than or equal to x less than or equal to 0.07. All compositions show an incommensurate superstructure over the whole temperature domain, despite the fact that they are ferromagnetic and conductive below 140 K, The q-vector (1/2 – delta)a* decreases with increasing temperature for all compositions x. For a given temperature q also decreases with x. Lattice images obtained at low temperature give a clear view of the characteristics of the incommensurate structure. They also provide a better understanding of the charge ordering process. The low-temperature form of the Cr-doped manganites is not a perfectly doubled cell [[2a(p)root 2 x 2a(p) x a(p)root 2]], but defects inducing a tripled cell occur pseudo-periodically. (C) 2000 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000085772100017 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.63 Times cited 16 Open Access
Notes Approved (up) Most recent IF: 2.63; 2000 IF: 0.996
Call Number UA @ lucian @ c:irua:104256 Serial 2858
Permanent link to this record
 

 
Author Khazzan, S.; Bessais, L.; Van Tendeloo, G.; Mliki, N.
Title Correlation between the nanocrystalline Sm(Fe,Mo)12 and its out of equilibrium phase Sm(Fe,Mo)10 Type A1 Journal article
Year 2014 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater
Volume 363 Issue Pages 125-132
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanostructured Sm-Fe-Mo semi-hard magnetic material exhibiting enhanced magnetic properties can be produced by ball milling followed by recrystallization. Milled samples were annealed for 30 min in a vacuum at different temperatures (T-A) between 700 and 1190 degrees C. The effects of heat treatment and Mo content on structural and magnetic property changes have been investigated by means of X-ray diffraction using the Rietvekl method, transmission electron microscopy and magnetic measurements. For samples annealed at T-A > 900 degrees C the tetragonal ThMn12-type structure is identified, while for 700 < T-A < 900 degrees C a new out of equilibrium P6/mmm type structure was found as the major phase. This novel nanocrystalline phase has never been synthesized before. The correspondent stoichiometry is determined on the basis of the vacancy model. The Rietveld analysis gives a stoichiometry ratio equal to 1:10, for the out of equilibrium hexagonal phase, which is described with three crystallographic transition metal sites: 3g is fully occupied, 61 occupation is limited to hexagons surrounding the Fe dumbbell pairs 2e. We have performed a magnetic and structural study of nanocrystalline metastable P6/mrnm Sm(Fe1-xMo)(10), correlated with structural transformation towards its equilibrium derivative 14/mrnm Sm(Fe1-xMo)(12). A maximum of the coercive field H-C (H-C > 5 kOe) has been observed for the new hexagonal P6/rnmm phase suggesting that nanocrystalline Sm(Fe,Mo)(10), is a semi hard material, and is potential candidate for magnetic recording. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000335393900021 Publication Date 2014-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.63 Times cited 6 Open Access
Notes Approved (up) Most recent IF: 2.63; 2014 IF: 1.970
Call Number UA @ lucian @ c:irua:117139 Serial 524
Permanent link to this record
 

 
Author Angelakeris, M.; Li, Z.A.; Hilgendorff, M.; Simeonidis, K.; Sakellari, D.; Filippousi, M.; Tian, H.; Van Tendeloo, G.; Spasova, M.; Acet, M.; Farle, M.
Title Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles Type A1 Journal article
Year 2015 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater
Volume 381 Issue 381 Pages 179-187
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Biomedical nanomagnetic carriers are getting a higher impact in therapy and diagnosis schemes while their constraints and prerequisites are more and more successfully confronted. Such particles should possess a well-defined size with minimum agglomeration and they should be synthesized in a facile and reproducible high-yield way together with a controllable response to an applied static or dynamic field tailored for the specific application. Here, we attempt to enhance the heating efficiency in magnetic particle hyperthermia treatment through the proper adjustment of the core-shell morphology in ferrite particles, by controlling exchange and dipolar magnetic interactions at the nanoscale. Thus, core-shell nanoparticles with mutual coupling of magnetically hard (CoFe2O4) and soft (MnFe2O4) components are synthesized with facile synthetic controls resulting in uniform size and shell thickness as evidenced by high resolution transmission electron microscopy imaging, excellent crystallinity and size monodispersity. Such a magnetic coupling enables the fine tuning of magnetic anisotropy and magnetic interactions without sparing the good structural, chemical and colloidal stability. Consequently, the magnetic heating efficiency of CoFe2O4. and MnFe2O4 core-shell nanoparticles is distinctively different horn that of their counterparts, even though all these nanocrystals were synthesized under similar conditions. For better understanding of the AC magnetic hyperthermia response and its correlation with magnetic-origin features we study the effect of the volume ratio of magnetic hard and soft phases in the bimagnetic core-shell nanocrystals. Eventually, such particles may be considered as novel heating carriers that under further biomedical functionalization may become adaptable multifunctional heat-triggered nanoplatforms. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000349361100027 Publication Date 2014-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.63 Times cited 20 Open Access
Notes 312483 Esteem2; Esteem2_ta Approved (up) Most recent IF: 2.63; 2015 IF: 1.970
Call Number c:irua:125284 c:irua:125284 Serial 1049
Permanent link to this record
 

 
Author Wang, J.; Shin, Y.; Gauquelin, N.; Yang, Y.; Lee, C.; Jannis, D.; Verbeeck, J.; Rondinelli, J.M.; May, S.J.
Title Physical properties of epitaxial SrMnO2.5−δFγoxyfluoride films Type A1 Journal article
Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 31 Issue 36 Pages 365602
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Recently, topotactic fluorination has become an alternative way of doping epitaxial perovskite oxides through anion substitution to engineer their electronic properties instead of the more commonly used cation substitution. In this work, epitaxial oxyfluoride SrMnO2.5−δ F γ films were synthesized via topotactic fluorination of SrMnO2.5 films using polytetrafluoroethylene as the fluorine source. Oxidized SrMnO3 films were also prepared for comparison with the fluorinated samples. The F content, probed by x-ray photoemission spectroscopy, was systematically controlled by adjusting fluorination conditions. Electronic transport measurements reveal that increased F content (up to γ  =  0.14) systematically increases the electrical resistivity, despite the nominal electron-doping induced by F substitution for O in these films. In contrast, oxidized SrMnO3 exhibits a decreased resistivity and conduction activation energy. A blue-shift of optical absorption features occurs with increasing F content. Density functional theory calculations indicate that F acts as a scattering center for electronic transport, controls the observed weak ferromagnetic behavior of the films, and reduces the inter-band optical transitions in the manganite films. These results stand in contrast to bulk electron-doped La1−x Ce x MnO3, illustrating how aliovalent anionic substitutions can yield physical behavior distinct from A-site substituted perovskites with the same nominal B-site oxidation states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472232000002 Publication Date 2019-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 5 Open Access
Notes Work at Drexel was supported by the National Science Foundation (NSF), grant number CMMI-1562223. Thin film synthesis utilized deposition instrumentation acquired through an Army Research Office DURIP grant (W911NF-14-1-0493). Y.S and J.M.R. were supported by NSF (Grant No. DMR-1454688). Calculations were performed using the QUEST HPC Facility at Northwestern, the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF Grant No. ACI-1053575, and the Center for Nanoscale Materials (Carbon Cluster). Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. J.V. and N. G. acknowledge funding from a GOA project “Solarpaint” of the University of Antwerp. D.J. acknowledges funding from FWO project G093417N from the Flemish fund for scientific research. Approved (up) Most recent IF: 2.649
Call Number EMAT @ emat @UA @ admin @ c:irua:161174 Serial 5293
Permanent link to this record
 

 
Author Nistor, L.C.; Nistor, S.V.; Dinca, G.; Georgeoni, P.; van Landuyt, J.; Manfredotti, C.; Vittone, E.
Title Microstructure and spectroscopy studies on cubic boron nitride synthesized under high-pressure conditions Type A1 Journal article
Year 2002 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 14 Issue 44 Pages 10983-10988
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High-resolution electron microscopy (HREM) studies of the microstructure and specific defects in hexagonal boron nitride (h-BN) precursors and cubic boron nitride (c-BN) crystals made under high-pressure high-temperature conditions revealed the presence of half-nanotubes at the edges of the h-BN particles. Their sp(3) bonding tendency could strongly influence the nucleation rates of c-BN. The atomic resolution at extended dislocations was insufficient to allow us to determine the stacking fault energy in the c-BN crystals. Its mean value of 191 +/- 15 mJ m(-2) is of the same order of magnitude as that of diamond. High-frequency (94 GHz) electron paramagnetic resonance studies on c-BN single crystals have produced new data on the D1 centres associated with the boron species. Ion-beam-induced luminescence measurements have indicated that c-BN is a very interesting luminescent material, which is characterized by four luminescence bands and exhibits a better resistance to ionizing radiation than CVD diamond.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000179541700114 Publication Date 2002-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 7 Open Access
Notes Approved (up) Most recent IF: 2.649; 2002 IF: 1.775
Call Number UA @ lucian @ c:irua:103328 Serial 2061
Permanent link to this record
 

 
Author Simoen, E.; Loo, R.; Claeys, C.; de Gryse, O.; Clauws, P.; van Landuyt, J.; Lebedev, O.
Title Optical spectroscopy of oxygen precipitates in heavily doped p-type silicon Type A1 Journal article
Year 2002 Publication Journal of physics : condensed matter T2 – Conference on Extended Defects in Semiconductors (EDS 2002), JUN 01-06, 2002, BOLOGNA, ITALY Abbreviated Journal J Phys-Condens Mat
Volume 14 Issue 48 Pages 13185-13193
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Results are presented on the photoluminescence (PL) characterization of heavily doped p(+) Czochralski silicon, which has been subjected to a two-step, oxygen precipitation heat treatment. It will be shown that the presence of oxygen precipitates gives rise to the D1, D2 and D5 lines, where the energy of the D1 line shifts to lower values for a stronger degree of precipitation. The occurrence of these PL features is also a function of the boron concentration in the p(+) material. The PL results are compared with Fourier transform infrared absorption data and with transmission electron microscope, results. From this, it is concluded that PL has a good potential for use in the assessment of oxygen precipitation in heavily doped silicon.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000180091100068 Publication Date 2002-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 3 Open Access
Notes Approved (up) Most recent IF: 2.649; 2002 IF: 1.775
Call Number UA @ lucian @ c:irua:103326 Serial 2477
Permanent link to this record
 

 
Author Van Tendeloo, G.; Lebedev, O.I.; Collart, O.; Cool, P.; Vansant, E.F.
Title Structure of nanoscale mesoporous silica spheres? Type A1 Journal article
Year 2003 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 15 Issue Pages S3037-S3046
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited Open Access
Notes Approved (up) Most recent IF: 2.649; 2003 IF: 1.757
Call Number UA @ lucian @ c:irua:46265 Serial 3313
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Neyts, E.; Bogaerts, A.
Title The effect of hydrogen on the electronic and bonding properties of amorphous carbon Type A1 Journal article
Year 2006 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 18 Issue 48 Pages 10803-10815
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000242650600008 Publication Date 2006-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 13 Open Access
Notes Approved (up) Most recent IF: 2.649; 2006 IF: 2.038
Call Number UA @ lucian @ c:irua:60468 Serial 816
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.
Title The effect of temperature on the structural, electronic and optical properties of sp3-rich amorphous carbon Type A1 Journal article
Year 2008 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 20 Issue 3 Pages 035216,1-6
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The effect of temperature on the structural, electronic and optical properties of dense tetrahedral amorphous carbon made of similar to 80% sp(3)-bonded atoms is investigated using a combination of the classical Monte Carlo technique and density functional theory. A structural transformation accompanied by a slight decrease of the sp(3) fraction is evidenced above a temperature of about 600 degrees C. A structural analysis in combination with energy-loss near-edge structure calculations shows that beyond this temperature, the sp(2)-bonded C sites arrange themselves so as to enhance the conjugation of the p electrons. The Tauc optical band gap deduced from the calculated dielectric function shows major changes beyond this temperature in accordance with experimental results. Energy-loss near-edge structure and band gap calculations additionally reveal a massive destabilization of the of sp(3) bonding phase in favour of sp(2) bonding at a temperature of about 1300 degrees C which agrees very well with the reported value of 1100 degrees C.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000252922900026 Publication Date 2007-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 11 Open Access
Notes Approved (up) Most recent IF: 2.649; 2008 IF: 1.900
Call Number UA @ lucian @ c:irua:67461 Serial 840
Permanent link to this record
 

 
Author Zhang, H.; Salje, E.K.H.; Schryvers, D.; Bartova, B.
Title The martensitic phase transition in Ni-Al: experimental observation of excess entropy and heterogeneous spontaneous strain Type A1 Journal article
Year 2008 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 20 Issue 5 Pages 055220,1-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000252923400023 Publication Date 2008-01-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 7 Open Access
Notes Multimat (MRTN-CT-2004-505226) Approved (up) Most recent IF: 2.649; 2008 IF: 1.900
Call Number UA @ lucian @ c:irua:67710 Serial 1948
Permanent link to this record
 

 
Author Chen, Y.; Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title Superconducting nanowires: quantum confinement and spatially dependent Hartree-Fock potential Type A1 Journal article
Year 2009 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 21 Issue 43 Pages 435701,1-435701,7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract It is well known that, in bulk, the solution of the Bogoliubovde Gennes equations is the same whether or not the HartreeFock term is included. Here the HartreeFock potential is position independent and so gives the same contribution to both the single-electron energies and the Fermi level (the chemical potential). Thus, the single-electron energies measured from the Fermi level (they control the solution) stay the same. This is not the case for nanostructured superconductors, where quantum confinement breaks the translational symmetry and results in a position-dependent HartreeFock potential. In this case its contribution to the single-electron energies depends on the relevant quantum numbers. We numerically solved the Bogoliubovde Gennes equations with the HartreeFock term for a clean superconducting nanocylinder and found a shift of the curve representing the thickness-dependent oscillations of the critical superconducting temperature to larger diameters.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000270642700012 Publication Date 2009-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 12 Open Access
Notes Approved (up) Most recent IF: 2.649; 2009 IF: 1.964
Call Number UA @ lucian @ c:irua:79162 Serial 3360
Permanent link to this record
 

 
Author Zelaya, E.; Tolley, A.; Condo, A.M.; Schumacher, G.
Title Swift heavy ion irradiation of Cu-Zn-Al and Cu-Al-Ni alloys Type A1 Journal article
Year 2009 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 21 Issue 18 Pages 185009-185009,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The effects produced by swift heavy ions in the martensitic (18R) and austenitic phase (beta) of Cu based shape memory alloys were characterized. Single crystal samples with a surface normal close to [210](18R) and [001](beta) were irradiated with 200 MeV of Kr(15+), 230 MeV of Xe(15+), 350 and 600 MeV of Au(26+) and Au(29+). Changes in the microstructure were studied with transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). It was found that swift heavy ion irradiation induced nanometer sized defects in the 18R martensitic phase. In contrast, a hexagonal close-packed phase formed on the irradiated surface of beta phase samples. HRTEM images of the nanometer sized defects observed in the 18R martensitic phase were compared with computer simulated images in order to interpret the origin of the observed contrast. The best agreement was obtained when the defects were assumed to consist of local composition modulations.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000264934400014 Publication Date 2009-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 8 Open Access
Notes Approved (up) Most recent IF: 2.649; 2009 IF: 1.964
Call Number UA @ lucian @ c:irua:94551 Serial 3399
Permanent link to this record
 

 
Author Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B.
Title The quasiparticle band structure of zincblende and rocksalt ZnO Type A1 Journal article
Year 2010 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 22 Issue 12 Pages 125505,1-125505,7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present the quasiparticle band structure of ZnO in its zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. The effect of the pd hybridization on the quasiparticle corrections to the band gap is discussed. We compare three systems, ZB-ZnO which shows strong pd hybridization and has a direct band gap, RS-ZnO which is also hybridized but includes inversion symmetry and therefore has an indirect band gap, and ZB-ZnS which shows a weaker hybridization due to a change of the chemical species from oxygen to sulfur. The quasiparticle corrections are calculated with different numbers of valence electrons in the Zn pseudopotential. We find that the Zn20 + pseudopotential is essential for the adequate treatment of the exchange interaction in the self-energy. The calculated GW band gaps are 2.47 eV and 4.27 eV respectively, for the ZB and RS phases. The ZB-ZnO band gap is underestimated compared to the experimental value of 3.27 by ~ 0.8 eV. The RS-ZnO band gap compares well with the experimental value of 4.5 eV. The underestimation for ZB-ZnO is correlated with the strong pd hybridization. The GW band gap for ZnS is 3.57 eV, compared to the experimental value of 3.8 eV.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000275496600010 Publication Date 2010-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 53 Open Access
Notes Iwt; Fwo; Bof-Nio Approved (up) Most recent IF: 2.649; 2010 IF: 2.332
Call Number UA @ lucian @ c:irua:81531 Serial 2802
Permanent link to this record
 

 
Author Dixit, H.; Saniz, R.; Cottenier, S.; Lamoen, D.; Partoens, B.
Title Electronic structure of transparent oxides with the Tran-Blaha modified Becke-Johnson potential Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 20 Pages 205503-205503,9
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present electronic band structures of transparent oxides calculated using the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. We studied the basic n-type conducting binary oxides In2O3, ZnO, CdO and SnO2 along with the p-type conducting ternary oxides delafossite CuXO2 (X = Al, Ga, In) and spinel ZnX2O4 (X = Co, Rh, Ir). The results are presented for calculated band gaps and effective electron masses. We discuss the improvements in the band gap determination using TB-mBJ compared to the standard generalized gradient approximation (GGA) in density functional theory (DFT) and also compare the electronic band structure with available results from the quasiparticle GW method. It is shown that the calculated band gaps compare well with the experimental and GW results, although the electron effective mass is generally overestimated.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000303507100009 Publication Date 2012-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 113 Open Access
Notes Iwt; Fwo Approved (up) Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:98222 Serial 1017
Permanent link to this record
 

 
Author Singh, K.; Maignan, A.; Simon, C.; Kumar, S.; Martin, C.; Lebedev, O.; Turner, S.; Van Tendeloo, G.
Title Magnetodielectric CuCr0.5V0.5O2 : an example of a magnetic and dielectric multiglass Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 22 Pages 226002-226002,4
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The complex dielectric susceptibility and spin glass properties of polycrystalline CuCr0.5V 0.5O2 delafossite have been investigated. Electron diffraction, high resolution electron microscopy and electron energy loss spectroscopy show that the Cr3+ and V 3+ magnetic cations are randomly distributed on the triangular network of CdI2-type layers. In contrast to CuCrO2, CuCr0.5V 0.5O2 exhibits two distinctive (magnetic and electric) glassy states evidenced by memory effects in electric and magnetic susceptibilities. A large magnetodielectric coupling is observed at low temperature.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000304873300027 Publication Date 2012-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 19 Open Access
Notes Approved (up) Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:98380 Serial 1916
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Saniz, R.; Amini, M.N.; Lamoen, D.; Partoens, B.
Title Perovskite transparent conducting oxides : an ab initio study Type A1 Journal article
Year 2013 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 25 Issue 41 Pages 415503
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We present an ab initio study of the electronic structure and of the formation energies of various point defects in BaSnO3 and SrGeO3. We show that La and Y impurities substituting Ba or Sr are shallow donors with a preferred 1 + charge state. These defects have a low formation energy within all the suitable equilibrium growth conditions considered. Oxygen vacancies behave as shallow donors as well, preferring the 2 + charge state. Their formation energies, however, are higher in most growth conditions, indicating a limited contribution to conductivity. The calculated electron effective mass in BaSnO3, with a value of 0.21 me, and the very high mobility reported recently in La-doped BaSnO3 single-crystals, suggest that remarkably low scattering rates can be achieved in the latter. In the case of SrGeO3, our results point to carrier density and mobility values in the low range for typical polycrystalline TCOs, in line with experiment.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000324920400011 Publication Date 2013-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 17 Open Access
Notes FWO;Hercules Approved (up) Most recent IF: 2.649; 2013 IF: 2.223
Call Number UA @ lucian @ c:irua:110495 Serial 2574
Permanent link to this record
 

 
Author Dixit, H.; Lamoen, D.; Partoens, B.
Title Quasiparticle band structure of rocksalt-CdO determined using maximally localized Wannier functions Type A1 Journal article
Year 2013 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 25 Issue 3 Pages 035501-35505
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract CdO in the rocksalt structure is an indirect band gap semiconductor. Thus, in order to determine its band gap one needs to calculate the complete band structure. However, in practice, the exact evaluation of the quasiparticle band structure for the large number of k-points which constitute the different symmetry lines in the Brillouin zone can be an extremely demanding task compared to the standard density functional theory (DFT) calculation. In this paper we report the full quasiparticle band structure of CdO using a plane-wave pseudopotential approach. In order to reduce the computational effort and time, we make use of maximally localized Wannier functions (MLWFs). The MLWFs offer a highly accurate method for interpolation of the DFT or GW band structure from a coarse k-point mesh in the irreducible Brillouin zone, resulting in a much reduced computational effort. The present paper discusses the technical details of the scheme along with the results obtained for the quasiparticle band gap and the electron effective mass.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000313100500010 Publication Date 2012-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 7 Open Access
Notes Fwo Approved (up) Most recent IF: 2.649; 2013 IF: 2.223
Call Number UA @ lucian @ c:irua:105296 Serial 2801
Permanent link to this record
 

 
Author Guzzinati, G.; Altantzis, T.; Batuk, M.; De Backer, A.; Lumbeeck, G.; Samaee, V.; Batuk, D.; Idrissi, H.; Hadermann, J.; Van Aert, S.; Schryvers, D.; Verbeeck, J.; Bals, S.
Title Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp Type A1 Journal article
Year 2018 Publication Materials Abbreviated Journal Materials
Volume 11 Issue 11 Pages 1304
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000444112800041 Publication Date 2018-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.654 Times cited 15 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N AUHA13009 ; European Research Council, COLOURATOM 335078 ; Universiteit Antwerpen, GOA Solarpaint ; G. Guzzinati, T. Altantzis and A. De Backer have been supported by postdoctoral fellowship grants from the Research Foundation Flanders (FWO). Funding was also received from the European Research Council (starting grant no. COLOURATOM 335078), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 770887), the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N, G.0401.16N) and from the University of Antwerp through GOA project Solarpaint. Funding for the TopSPIN precession system under grant AUHA13009, as well as for the Qu-Ant-EM microscope, is acknowledged from the HERCULES Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved (up) Most recent IF: 2.654
Call Number EMAT @ emat @c:irua:153737UA @ admin @ c:irua:153737 Serial 5064
Permanent link to this record
 

 
Author Zelaya, E.; Esquivel, M.R.; Schryvers, D.
Title Evolution of the phase stability of NiAl under low energy ball milling Type A1 Journal article
Year 2013 Publication Advanced powder technology Abbreviated Journal Adv Powder Technol
Volume 24 Issue 6 Pages 1063-1069
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Low energy mechanical alloying of Ni35 at.%Al and Ni40 at.%Al material was performed and the resulting structures were investigated by XRD and TEM. The final intermetallics observed consist of two phases, NiAl(B2) and Ni3Al while 7R and 3R martensite was observed in post-annealed samples. Different integrated milling times were associated to the intermetallic consolidation and initial blend dissociation.
Address
Corporate Author Thesis
Publisher Place of Publication Zeist Editor
Language Wos 000339175000024 Publication Date 2013-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-8831; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.659 Times cited 10 Open Access
Notes Fwo Approved (up) Most recent IF: 2.659; 2013 IF: 1.642
Call Number UA @ lucian @ c:irua:107345 Serial 1102
Permanent link to this record