|   | 
Details
   web
Records
Author Torun, E.; Sahin, H.; Singh, S.K.; Peeters, F.M.
Title Stable half-metallic monolayers of FeCl2 Type A1 Journal article
Year 2015 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 106 Issue 106 Pages 192404
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The structural, electronic, and magnetic properties of single layers of Iron Dichloride (FeCl2) were calculated using first principles calculations. We found that the 1T phase of the single layer FeCl2 is 0.17 eV/unit cell more favorable than its 1H phase. The structural stability is confirmed by phonon calculations. We found that 1T-FeCl2 possess three Raman-active (130, 179, and 237 cm(-1)) and one infrared-active (279 cm(-1)) phonon branches. The electronic band dispersion of the 1T-FeCl2 is calculated using both gradient approximation of Perdew-Burke-Ernzerhof and DFT-HSE06 functionals. Both functionals reveal that the 1T-FeCl2 has a half-metallic ground state with a Curie temperature of 17 K. (C) 2015 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000355008100020 Publication Date 2015-05-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 84 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. was supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved (down) Most recent IF: 3.411; 2015 IF: 3.302
Call Number c:irua:126411 Serial 3143
Permanent link to this record
 

 
Author Homm, P.; Dillemans, L.; Menghini, M.; Van Bilzen, B.; Bakalov, P.; Su, C.Y.; Lieten, R.; Houssa, M.; Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.; Seo, J.W.; Locquet, J.P.;
Title Collapse of the low temperature insulating state in Cr-doped V2O3 thin films Type A1 Journal article
Year 2015 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 107 Issue 107 Pages 111904
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We have grown epitaxial Cr-doped V2O3 thin films with Cr concentrations between 0% and 20% on (0001)-Al2O3 by oxygen-assisted molecular beam epitaxy. For the highly doped samples (>3%), a regular and monotonous increase of the resistance with decreasing temperature is measured. Strikingly, in the low doping samples (between 1% and 3%), a collapse of the insulating state is observed with a reduction of the low temperature resistivity by up to 5 orders of magnitude. A vacuum annealing at high temperature of the films recovers the low temperature insulating state for doping levels below 3% and increases the room temperature resistivity towards the values of Cr-doped V2O3 single crystals. It is well-know that oxygen excess stabilizes a metallic state in V2O3 single crystals. Hence, we propose that Cr doping promotes oxygen excess in our films during deposition, leading to the collapse of the low temperature insulating state at low Cr concentrations. These results suggest that slightly Cr-doped V2O3 films can be interesting candidates for field effect devices. (C) 2015 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000361639200020 Publication Date 2015-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 14 Open Access
Notes ; The authors acknowledge financial support from the FWO Project No. G052010N10 as well as the EU-FP7 SITOGA Project. P.H. acknowledges support from Becas Chile-CONICYT. ; Approved (down) Most recent IF: 3.411; 2015 IF: 3.302
Call Number UA @ lucian @ c:irua:128728 Serial 4149
Permanent link to this record
 

 
Author da Silva, R.M.; Milošević, M.V.; Dominguez, D.; Peeters, F.M.; Albino Aguiar, J.
Title Distinct magnetic signatures of fractional vortex configurations in multiband superconductors Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 105 Issue 23 Pages 232601
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000346266000066 Publication Date 2014-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 22 Open Access
Notes ; This work was supported by the Brazilian science agencies CAPES (Grant No. PNPD 223038.003145/2011-00), CNPq (Grant Nos. 307552/2012-8, 141911/2012-3, and APV-4 02937/2013-9), and FACEPE (Grant Nos. APQ-0202-1.05/10 and BCT-0278-1.05/ 11), the Research Foundation Flanders (FWO-Vlaanderen), and by the CNPq-FWO cooperation programme (CNPq Grant No. 490297/2009-9). D.D. acknowledges support from CONICET, CNEA, and ANPCyT-PICT2011-1537. The authors thank A. A. Shanenko for extensive discussions on the topic. ; Approved (down) Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:122775 Serial 742
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
Title Graphene on boron-nitride : Moiré pattern in the van der Waals energy Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue 4 Pages 041909-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The spatial dependence of the van der Waals (vdW) energy between graphene and hexagonal boron-nitride (h-BN) is investigated using atomistic simulations. The van der Waals energy between graphene and h-BN shows a hexagonal superlattice structure identical to the observed Moire pattern in the local density of states, which depends on the lattice mismatch and misorientation angle between graphene and h-BN. Our results provide atomistic features of the weak van der Waals interaction between graphene and BN which are in agreement with experiment and provide an analytical expression for the size of the spatial variation of the weak van der Waals interaction. We also found that the A-B-lattice symmetry of graphene is broken along the armchair direction. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000331209900028 Publication Date 2014-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 61 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A was supported by the EU-Marie Curie IIF postdoctoral Fellowship/299855. ; Approved (down) Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:115802 Serial 1374
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
Title Graphene on hexagonal lattice substrate : stress and pseudo-magnetic field Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue 17 Pages 173106
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Moire patterns in the pseudo-magnetic field and in the strain profile of graphene (GE) when put on top of a hexagonal lattice substrate are predicted from elasticity theory. The van der Waals interaction between GE and the substrate induces out-of-plane deformations in graphene which results in a strain field, and consequently in a pseudo-magnetic field. When the misorientation angle is about 0.5 degrees, a three-fold symmetric strain field is realized that results in a pseudo-magnetic field very similar to the one proposed by F. Guinea, M. I. Katsnelson, and A. K. Geim [Nature Phys. 6, 30 (2010)]. Our results show that the periodicity and length of the pseudo-magnetic field can be tuned in GE by changing the misorientation angle and substrate adhesion parameters and a considerable energy gap (23 meV) can be obtained due to out-of-plane deformation of graphene which is in the range of recent experimental measurements (20-30 meV). (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000336142500066 Publication Date 2014-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 14 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship 299855. ; Approved (down) Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:117724 Serial 1375
Permanent link to this record
 

 
Author Čukarić, N.A.; Tadić, M.Z.; Partoens, B.; Peeters, F.M.
Title The interband optical absorption in silicon quantum wells : application of the 30-band k . p model Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue 24 Pages 242103
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The interband optical absorption in Si/SiO2 quantum wells is calculated as function of the well width (W) and the evolution from an indirect to a direct gap material as function of the well width is investigated. In order to compute the electron states in the conduction band, the 30-band k . p model is employed, whereas the 6-band Luttinger-Kohn model is used for the hole states. We found that the effective direct band gap in the quantum well agrees very well with the W-2 scaling result of the single-band model. The interband matrix elements for linear polarized light oscillate with the quantum well width, which agrees qualitatively with a single band calculation. Our theoretical results indicate that the absorption can be maximized by a proper choice of the well width. However, the obtained absorption coefficients are at least an order of magnitude smaller than for a typical direct semiconductor even for a well width of 2 nm. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000337915000033 Publication Date 2014-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 1 Open Access
Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia, the Flemish fund for Scientific Research (FWO-Vl), and the Methusalem programme of the Flemish government. ; Approved (down) Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:118448 Serial 1689
Permanent link to this record
 

 
Author Milovanović, S.P.; Masir, M.R.; Peeters, F.M.
Title Interplay between snake and quantum edge states in a graphene Hall bar with a pn-junction Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 105 Issue 12 Pages 123507
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The magneto- and Hall resistance of a locally gated cross shaped graphene Hall bar is calculated. The edge of the top gate is placed diagonally across the center of the Hall cross. Four-probe resistance is calculated using the Landauer-Büttiker formalism, while the transmission coefficients are obtained using the non-equilibrium Green's function approach. The interplay between transport due to edge channels and snake states is investigated. When two edge channels are occupied, we predict oscillations in the Hall and the bend resistance as function of the magnetic field, which are a consequence of quantum interference between the occupied snake states.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000343004400090 Publication Date 2014-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 18 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN and the Methusalem Foundation of the Flemish government. Approved (down) Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:121119 Serial 1704
Permanent link to this record
 

 
Author Çakir, D.; Peeters, F.M.; Sevik, C.
Title Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers : a comparative study Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue 20 Pages 203110
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using density functional theory, we obtain the mechanical and thermal properties of MX2 monolayers (where M = Cr, Mo, W and X = O, S, Se, Te). The C-centered phonon frequencies (i.e., A(1), A(2)'', E ', and E ''), relative frequency values of A(1), and E ' modes, and mechanical properties (i.e., elastic constants, Young modulus, and Poisson's ratio) display a strong dependence on the type of metal and chalcogenide atoms. In each chalcogenide (metal) group, transition-metal dichalcogenides (TMDCs) with W (O) atom are found to be much stiffer. Consistent with their stability, the thermal expansion of lattice constants for TMDCs with O (Te) is much slower (faster). Furthermore, in a heterostructure of these materials, the difference of the thermal expansion of lattice constants between the individual components becomes quite tiny over the whole temperature range. The calculated mechanical and thermal properties show that TMDCs are promising materials for heterostructures. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000337140800063 Publication Date 2014-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 130 Open Access
Notes ; Cem Sevik acknowledges the support from Scientific and Technological Research Council of Turkey (TUBITAK-113F096) and Anadolu University (BAP-1306F261 and -1306F281) to this project. We would also like to thank the ULAKBIM High Performance and Grid Computing Center for a generous time allocation for our projects. D. C. was supported by a FWO Pegasus-short Marie Curie Fellowship. Part of this work was supported by the Methusalem foundation of the Flemish Government. ; Approved (down) Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:118379 Serial 1974
Permanent link to this record
 

 
Author Shakouri, K.; Vasilopoulos, P.; Vargiamidis, V.; Hai, G.-Q.; Peeters, F.M.
Title Spin- and valley-dependent commensurability oscillations and electric-field-induced quantum Hall plateaux in periodically modulated silicene Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue 21 Pages 213109
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the commensurability oscillations in silicene subject to a perpendicular electric field E-z, a weak magnetic field B, and a weak periodic potential V = V-0 cos(Cy); C = 2 pi/a(0) with a(0) its period. The field E-z and/or the modulation lift the spin degeneracy of the Landau levels and lead to spin and valley resolved Weiss oscillations. The spin resolution is maximal when the field E-z is replaced by a periodic one E-z = E-0 cos(Dy); D = 2 pi/b(0), while the valley one is maximal for b(0) = a(0). In certain ranges of B values, the current is fully spin or valley polarized. Additional quantum Hall conductivity plateaux arise due to spin and valley intra-Landau-level transitions. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000337143000047 Publication Date 2014-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 16 Open Access
Notes ; The work was supported by the Flemish Science Foundation (FWO-VI), the Methusalem Foundation of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756. Also, G. Q. H. was supported by FAPESP and CNPq (Brazil). ; Approved (down) Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:118409 Serial 3078
Permanent link to this record
 

 
Author Zhao, C.X.; Xu, W.; Peeters, F.M.
Title Cerenkov emission of terahertz acoustic-phonons from graphene Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 102 Issue 22 Pages 222101-222104
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a theoretical study of the electrical generation of acoustic-phonon emission from graphene at room temperature. The drift velocity (v(x)) and temperature of electrons driven by dc electric field (F-x) are determined by solving self-consistently the momentum-and energy-balance equations derived from the Boltzmann equation. We find that in the presence of impurity, acoustic-and optic-phonon scattering, v(x) can be much larger than the longitudinal (v(l)) and transverse (v(t)) sound velocities in graphene even within the linear response regime. As a result, although the acoustic Cerenkov effect cannot be obviously seen in the analytical formulas, the enhanced acoustic-phonon emission can be observed with increasing F-x when v(x) > v(l) and v > v(t). The frequency of acoustic-phonon emission from graphene can be above 10 THz, which is much higher than that generated from conventional semiconductor systems. This study is pertinent to the application of graphene as hypersonic devices such as terahertz sound sources. (C) 2013 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000320621600034 Publication Date 2013-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 25 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China (Grant No. 10974206), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved (down) Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:109607 Serial 305
Permanent link to this record
 

 
Author Neek-Amal, M.; Sadeghi, A.; Berdiyorov, G.R.; Peeters, F.M.
Title Realization of free-standing silicene using bilayer graphene Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 103 Issue 26 Pages 261904-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The available synthesized silicene-like structures have been only realized on metallic substrates which are very different from the standalone buckled silicene, e. g., the Dirac cone of silicene is destroyed due to lattice distortion and the interaction with the substrate. Using graphene bilayer as a scaffold, a route is proposed to synthesize silicene with electronic properties decoupled from the substrate. The buckled hexagonal arrangement of silicene between the graphene layers is found to be very similar to the theoretically predicted standalone buckled silicene which is only very weakly van der Waals coupled to the graphene layers with a graphite-like interlayer distance of 3.42 angstrom and without any lattice distortion. We found that these stacked layers are stable well above room temperature. (C) 2013 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000329977400022 Publication Date 2013-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 74 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship/299855. ; Approved (down) Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:114849 Serial 2837
Permanent link to this record
 

 
Author Milovanović, S.P.; Masir, M.R.; Peeters, F.M.
Title Spectroscopy of snake states using a graphene Hall bar Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 103 Issue 23 Pages 233502-233504
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract An approach to observe snake states in a graphene Hall bar containing a pn-junction is proposed. The magnetic field dependence of the bend resistance in a ballistic graphene Hall bar structure containing a tilted pn-junction oscillates as a function of applied magnetic field. We show that each oscillation is due to a specific snake state that moves along the pn-interface. Furthermore, depending on the value of the magnetic field and applied potential, we can control the lead in which the electrons will end up and hence control the response of the system.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000328634900090 Publication Date 2013-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 15 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN and the Methusalem Foundation of the Flemish government. Approved (down) Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:113710 Serial 3074
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Tunable double Dirac cone spectrum in bilayer \alpha-graphyne Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 103 Issue 1 Pages 013105-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Monolayer alpha-graphyne was recently proposed as a new all-carbon material having an electronic spectrum consisting of Dirac cones. Based on a first-principles investigation of bilayer alpha-graphyne, we show that the electronic band structure is qualitatively different from its monolayer form and depends crucially on the stacking mode of the two layers. Two stable stacking modes are found: a configuration with a gapless parabolic band structure, similar to AB stacked bilayer graphene, and another one which exhibits a doubled Dirac-cone spectrum. The latter can be tuned by an electric field with a gap opening rate of 0.3 eA. (C) 2013 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000321497200032 Publication Date 2013-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 58 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the NOI-BOF of the University of Antwerp, and the ESF EuroGRAPHENE project CONGRAN. ; Approved (down) Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:109821 Serial 3740
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M.
Title Comment on “Chiral tunneling in trilayer graphene” [Appl. Phys. Lett. 100, 163102 (2012)] Type Editorial
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 101 Issue 22 Pages 226101-1
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Amer inst physics Place of Publication Melville Editor
Language Wos 000311967000107 Publication Date 2012-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 7 Open Access
Notes ; ; Approved (down) Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:105999 Serial 408
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
Title Effect of grain boundary on the buckling of graphene nanoribbons Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 100 Issue 10 Pages 101905-101905,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The buckling of graphene nano-ribbons containing a grain boundary is studied using atomistic simulations where free and supported boundary conditions are invoked. We consider the buckling transition of two kinds of grain boundaries with special symmetry. When graphene contains a large angle grain boundary with theta = 21.8 degrees, the buckling strains are larger than those of perfect graphene when the ribbons with free (supported) boundary condition are subjected to compressive tension parallel (perpendicular) to the grain boundary. This is opposite for the results of theta = 32.2 degrees. The shape of the deformations of the buckled graphene nanoribbons depends on the boundary conditions, the presence of the particular used grain boundaries, and the direction of applied in-plane compressive tension. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692573]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000301655500021 Publication Date 2012-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 18 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved (down) Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:97794 Serial 809
Permanent link to this record
 

 
Author Barbier, M.; Papp, G.; Peeters, F.M.
Title Snake states and Klein tunneling in a graphene Hall bar with a pn-junction Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 100 Issue 16 Pages 163121-163121,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Hall (R-H) and bend (R-B) resistances of a graphene Hall bar structure containing a pn-junction are calculated when in the ballistic regime. The simulations are done using the billiard model. Introducing a pn-junction-dividing the Hall bar geometry in two regions-leads to two distinct regimes exhibiting very different physics: (1) both regions are of n-type and (2) one region is n-type and the other p-type. In regime (1), a “Hall plateau”-an enhancement of the resistance-appears for R-H. On the other hand, in regime (2), we found a negative R-H, which approaches zero for large B. The bend resistance is highly asymmetric in regime (2) and the resistance increases with increasing magnetic field B in one direction while it reduces to zero in the other direction. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704667]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000303128500064 Publication Date 2012-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 20 Open Access
Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-EuroGRAPHENE project CONGRAN. ; Approved (down) Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:99129 Serial 3047
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Spatially dependent sensitivity of superconducting meanders as single-photon detectors Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 100 Issue 26 Pages 262603
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The photo-response of a thin current-carrying superconducting stripe with a 90 degrees turn is studied within the time-dependent Ginzburg-Landau theory. We show that the photon acting near the inner corner (where the current density is maximal due to the current crowding [J. R. Clem and K. K. Berggren, Phys. Rev. B 84, 174510 (2011)]) triggers the nucleation of superconducting vortices at currents much smaller than the expected critical one, but does not bring the system to a higher resistive state and thus remains undetected. The transition to the resistive state occurs only when the photon hits the stripe away from the corner due to there uniform current distribution across the sample, and dissipation is due to the nucleation of a kinematic vortex-antivortex pair near the photon incidence. We propose strategies to account for this problem in the measurements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731627]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000305831500057 Publication Date 2012-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 27 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI). G. R. B. acknowledges individual support from FWO-VI. ; Approved (down) Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:100336 Serial 3066
Permanent link to this record
 

 
Author Wu, Z.; Peeters, F.M.; Chang, K.
Title Spin and momentum filtering of electrons on the surface of a topological insulator Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 98 Issue 16 Pages 162101,1-162101,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate theoretically the transport properties of Dirac fermions on the surface of a three-dimensional topological insulator. Dirac electrons can be totally reflected in front of a magnetic/electric p-n junction. For a p-n-p structure, multiple total internal reflections at the interfaces result in the bound states in the channel, which behaves like an electronic waveguide. This p-n-p like structure exhibits spin and momentum filtering features and could be used as a spin and/or charge diode.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000289842700032 Publication Date 2011-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 33 Open Access
Notes ; ; Approved (down) Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:89971 Serial 3076
Permanent link to this record
 

 
Author Liu, Y.; Cheng, F.; Li, X.J.; Peeters, F.M.; Chang, K.
Title Tuning of anisotropy in two-electron quantum dots by spin-orbit interactions Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 99 Issue 3 Pages 032102,1-032102,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the influence of the spin-orbit interactions (SOIs) on the electron distribution and the optical absorption of a two-electron quantum dot. It is shown that the interplay between the SOIs makes the two-electron quantum dot behave like two laterally coupled quantum dots and the anisotropic distribution can be rotated from [110] to [11®0] by reversing the direction of the perpendicular electric field and detect it through the optical absorption spectrum.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000293679000026 Publication Date 2011-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 8 Open Access
Notes ; This work was supported by NSFC Grants No. 16760525405, 10874175 and 11004017 and the Belgian Science Policy 168(IAP). ; Approved (down) Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:92473 Serial 3749
Permanent link to this record
 

 
Author Peelaers, H.; Hernández-Nieves, A.D.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Vibrational properties of graphene fluoride and graphane Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 98 Issue 5 Pages 051914
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The vibrational properties of graphene fluoride and graphane are studied using ab initio calculations. We find that both sp(3) bonded derivatives of graphene have different phonon dispersion relations and phonon densities of states as expected from the different masses associated with the attached atoms of fluorine and hydrogen, respectively. These differences manifest themselves in the predicted temperature behavior of the constant-volume specific heat of both compounds. (C) 2011 American Institute of Physics. [doi:10.1063/1.3551712]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000286988400027 Publication Date 2011-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 66 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-V1), the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (Contract No. FW /08/01). A.D.H.-N. is also supported by ANPCyT (under Grant No. PICT2008-2236) ; Approved (down) Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:105604 Serial 3844
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
Title Defected graphene nanoribbons under axial compression Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 97 Issue 15 Pages 153118,1-153118,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The buckling of defected rectangular graphene nanoribbons when subjected to axial stress with supported boundary conditions is investigated using atomistic simulations. The buckling strain and mechanical stiffness of monolayer graphene decrease with the percentage of randomly distributed vacancies. The elasticity to plasticity transition in the stress-strain curve, at low percentage of vacancies, are found to be almost equal to the buckling strain thresholds and they decrease with increasing percentage of vacancies.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000283216900069 Publication Date 2010-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 43 Open Access
Notes ; This work was supported by the Flemish Science Foundation (WO-Vl) and the Belgian Science Policy (IAP) ; Approved (down) Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:85789 Serial 624
Permanent link to this record
 

 
Author Ao, Z.M.; Peeters, F.M.
Title Electric field: A catalyst for hydrogenation of graphene Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 96 Issue 25 Pages 3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Due to the importance of hydrogenation of graphene for several applications, we present an alternative approach to hydrogenate graphene based on density functional theory calculations. We find that a negative perpendicular electric field F can act as a catalyst to reduce the energy barrier for molecular H<sub>2</sub> dissociative adsorption on graphene. Increasing -F above 0.02 a.u. (1 a.u.=5.14×10<sup>11</sup> V/m), this hydrogenation process occurs smoothly without any potential barrier.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000279168100052 Publication Date 2010-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 88 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved (down) Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:83924 Serial 881
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S.
Title Enhanced stability of hydrogen atoms at the graphene/graphane interface of nanoribbons Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 97 Issue 23 Pages 233109,1-233109,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The thermal stability of graphene/graphane nanoribbons (GGNRs) is investigated using density functional theory. It is found that the energy barriers for the diffusion of hydrogen atoms on the zigzag and armchair interfaces of GGNRs are 2.86 and 3.17 eV, respectively, while the diffusion barrier of an isolated H atom on pristine graphene was only ∼ 0.3 eV. These results unambiguously demonstrate that the thermal stability of GGNRs can be enhanced significantly by increasing the hydrogen diffusion barriers through graphene/graphane interface engineering. This may provide new insights for viable applications of GGNRs.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000285364000067 Publication Date 2010-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 43 Open Access
Notes ; The financial supports by the Vice-Chancellor's Postdoctoral Research Fellowship Program of the University of New South Wales (SIR50/PS19184), the Flemish Science Foundation (FWO-VI), and the Belgian Science Policy (IAP) are acknowledged. A.D.H. acknowledges also support from ANPCyT (Grant No. PICT2008-2236) and the collaborative project FWO-MINCyT (FW/08/01). ; Approved (down) Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:86972 Serial 1056
Permanent link to this record
 

 
Author Milošević, M.V.; Gillijns, W.; Silhanek, A.V.; Libál, A.; Peeters, F.M.; Moshchalkov, V.V.
Title Guided nucleation of superconductivity on a graded magnetic substrate Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 96 Issue 3 Pages 032503,1-032503,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We demonstrate the controlled spatial nucleation of superconductivity in a thin film deposited on periodic arrays of ferromagnetic dots with gradually increasing diameter. The perpendicular magnetization of the dots induces vortex-antivortex molecules in the sample, with the number of (anti)vortices increasing with magnet size. The resulting gradient of antivortex density between the dots predetermines local nucleation of superconductivity in the sample as a function of the applied external field and temperature. In addition, the compensation between the applied magnetic field and the antivortices results in an unprecedented enhancement of the critical temperature.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000273890500034 Publication Date 2010-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 15 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-NES program. W. G., A. V. S., and A. L. acknowledge individual support from FWO-Vlaanderen. ; Approved (down) Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:81504 Serial 1400
Permanent link to this record
 

 
Author Xavier, L.J.P.; Pereira, J.M.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title Topological confinement in graphene bilayer quantum rings Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 96 Issue 21 Pages 212108,1-212108,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We find localized electron and hole states in a ring-shaped potential kink in biased bilayer graphene. Within the continuum description, we show that for sharp potential steps the Dirac equation describing carrier states close to the K (or K′) point of the first Brillouin zone can be solved analytically for a circular kink/antikink dot. The solutions exhibit interfacial states which exhibit AharonovBohm oscillations as functions of the height of the potential step and/or the radius of the ring.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000278183200039 Publication Date 2010-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 29 Open Access
Notes ; This work was financially supported by CNPq, under Contract No. NanoBioEstruturas 555183/2005-0, FUNCAP, CAPES, the Bilateral program between Flanders and Brazil, the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl). ; Approved (down) Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:83373 Serial 3675
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.
Title Vortex manipulation in a superconducting matrix with view on applications Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 96 Issue 19 Pages 192501,1-192501,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show how a single flux quantum can be effectively manipulated in a superconducting film with a matrix of blind holes. Such a sample can serve as a basic memory element, where the position of the vortex in a k×l matrix of pinning sites defines the desired combination of n bits of information (2n = k×l). Vortex placement is achieved by strategically applied current and the resulting position is read out via generated voltage between metallic contacts on the sample. Such a device can also act as a controllable source of a nanoengineered local magnetic field for, e.g., spintronics applications.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000277756400040 Publication Date 2010-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 14 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the ESF-NES and ESF-AQDJJ networks. ; Approved (down) Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:83657 Serial 3869
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M.
Title Phonons in Ge nanowires Type A1 Journal article
Year 2009 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 95 Issue 12 Pages 122110,1-122110,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The phonon spectra of thin freestanding, hydrogen passivated, Ge nanowires are calculated by ab initio techniques. The effect of confinement on the phonon modes as caused by the small diameters of the wires is investigated. Confinement causes a hardening of the optical modes and a softening of the longitudinal acoustic modes. The stability of the nanowires, undoped or doped with B or P atoms, is investigated using the obtained phonon spectra. All considered wires were stable, except for highly doped, very thin nanowires.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000270243800035 Publication Date 2009-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 12 Open Access
Notes Approved (down) Most recent IF: 3.411; 2009 IF: 3.554
Call Number UA @ lucian @ c:irua:79307 Serial 2606
Permanent link to this record
 

 
Author Silhanek, A.V.; van de Vondel, J.; Moshchalkov, V.V.; Metlushko, V.; Ilic, B.; Misko, V.R.; Peeters, F.M.
Title Comment on “Transverse rectification in superconducting thin films with arrays of asymmetric defects” Type Editorial
Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 92 Issue 17 Pages
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Amer inst physics Place of Publication Melville Editor
Language Wos 000255524000100 Publication Date 2008-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 20 Open Access
Notes Approved (down) Most recent IF: 3.411; 2008 IF: 3.726
Call Number UA @ lucian @ c:irua:68867 Serial 412
Permanent link to this record
 

 
Author Slachmuylders, A.F.; Partoens, B.; Peeters, F.M.; Magnus, W.
Title Effect of a metallic gate on the energy levels of a shallow donor Type A1 Journal article
Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 92 Issue 8 Pages 083104,1-3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000254297300074 Publication Date 2008-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 14 Open Access
Notes Approved (down) Most recent IF: 3.411; 2008 IF: 3.726
Call Number UA @ lucian @ c:irua:69618 Serial 792
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Graphene: a perfect nanoballoon Type A1 Journal article
Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 93 Issue 19 Pages 193107,1-193107,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We have performed a first-principles density functional theory investigation of the penetration of helium atoms through a graphene monolayer with defects. The relaxation of the graphene layer caused by the incoming helium atoms does not have a strong influence on the height of the energy barriers for penetration. For defective graphene layers, the penetration barriers decrease exponentially with the size of the defects but they are still sufficiently high that very large defects are needed to make the graphene sheet permeable for small atoms and molecules. This makes graphene a very promising material for the construction of nanocages and nanomembranes.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000260944100090 Publication Date 2008-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 295 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the NOI-BOF of the University of Antwerp, and the Belgian Science Policy (IAP). Approved (down) Most recent IF: 3.411; 2008 IF: 3.726
Call Number UA @ lucian @ c:irua:73196 Serial 1368
Permanent link to this record