toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van der Paal, J.; Verlackt, C.C.; Yusupov, M.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Structural modification of the skin barrier by OH radicals : a reactive molecular dynamics study for plasma medicine Type A1 Journal article
  Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 48 Issue 48 Pages 155202  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract While plasma treatment of skin diseases and wound healing has been proven highly effective, the underlying mechanisms, and more generally the effect of plasma radicals on skin tissue, are not yet completely understood. In this paper, we perform ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of plasma generated OH radicals with a model system composed of free fatty acids, ceramides, and cholesterol molecules. This model system is an approximation of the upper layer of the skin (stratum corneum). All interaction mechanisms observed in our simulations are initiated by H-abstraction from one of the ceramides. This reaction, in turn, often starts a cascade of other reactions, which eventually lead to the formation of aldehydes, the dissociation of ceramides or the elimination of formaldehyde, and thus eventually to the degradation of the skin barrier function.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000351856600007 Publication Date 2015-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 20 Open Access  
  Notes Approved (up) Most recent IF: 2.588; 2015 IF: 2.721  
  Call Number c:irua:124230 Serial 3242  
Permanent link to this record
 

 
Author de de Meux, A.J.; Pourtois, G.; Genoe, J.; Heremans, P. pdf  doi
openurl 
  Title Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor : structure, tail states and strain effects Type A1 Journal article
  Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 48 Issue 48 Pages 435104  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We study the evolution of the structural and electronic properties of crystalline indium gallium zinc oxide (IGZO) upon amorphization by first-principles calculation. The bottom of the conduction band (BCB) is found to be constituted of a pseudo-band of molecular orbitals that resonate at the same energy on different atomic sites. They display a bonding character between the s orbitals of the metal sites and an anti-bonding character arising from the interaction between the oxygen and metal s orbitals. The energy level of the BCB shifts upon breaking of the crystal symmetry during the amorphization process, which may be attributed to the reduction of the coordination of the cationic centers. The top of the valence band (TVB) is constructed from anti-bonding oxygen p orbitals. In the amorphous state, they have random orientation, in contrast to the crystalline state. This results in the appearance of localized tail states in the forbidden gap above the TVB. Zinc is found to play a predominant role in the generation of these tail states, while gallium hinders their formation. Last, we study the dependence of the fundamental gap and effective mass of IGZO on mechanical strain. The variation of the gap under strain arises from the enhancement of the anti-bonding interaction in the BCB due to the modification of the length of the oxygen-metal bonds and/or to a variation of the cation coordination. This effect is less pronounced for the amorphous material compared to the crystalline material, making amorphous IGZO a semiconductor of choice for flexible electronics. Finally, the effective mass is found to increase upon strain, in contrast to regular materials. This counterintuitive variation is due to the reduction of the electrostatic shielding of the cationic centers by oxygen, leading to an increase of the overlaps between the metal orbitals at the origin of the delocalization of the BCB. For the range of strain typically met in flexible electronics, the induced variation in the effective mass is found to be negligible (less than 1%).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000365876300012 Publication Date 2015-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 23 Open Access  
  Notes Approved (up) Most recent IF: 2.588; 2015 IF: 2.721  
  Call Number UA @ lucian @ c:irua:130277 Serial 4153  
Permanent link to this record
 

 
Author Verswyvel, H.; Deben, C.; Wouters, A.; Lardon, F.; Bogaerts, A.; Smits, E.; Lin, A. pdf  url
doi  openurl
  Title Phototoxicity and cell passage affect intracellular reactive oxygen species levels and sensitivity towards non-thermal plasma treatment in fluorescently-labeled cancer cells Type A1 Journal article
  Year 2023 Publication Journal of physics: D: applied physics Abbreviated Journal  
  Volume 56 Issue 29 Pages 294001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Live-cell imaging with fluorescence microscopy is a powerful tool, especially in cancer research, widely-used for capturing dynamic cellular processes over time. However, light-induced toxicity (phototoxicity) can be incurred from this method, via disruption of intracellular redox balance and an overload of reactive oxygen species (ROS). This can introduce confounding effects in an experiment, especially in the context of evaluating and screening novel therapies. Here, we aimed to unravel whether phototoxicity can impact cellular homeostasis and response to non-thermal plasma (NTP), a therapeutic strategy which specifically targets the intracellular redox balance. We demonstrate that cells incorporated with a fluorescent reporter for live-cell imaging have increased sensitivity to NTP, when exposed to ambient light or fluorescence excitation, likely through altered proliferation rates and baseline intracellular ROS levels. These changes became even more pronounced the longer the cells stayed in culture. Therefore, our results have important implications for research implementing this analysis technique and are particularly important for designing experiments and evaluating redox-based therapies like NTP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000978180500001 Publication Date 2023-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes This work was partially funded by the Research Foundation— Flanders (FWO) and supported by the following Grants: 1S67621N (H V), 12S9221N (A L), and G044420N (A B and A L). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. Approved (up) Most recent IF: 3.4; 2023 IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:196441 Serial 7381  
Permanent link to this record
 

 
Author Zhang, C.; Ren, K.; Wang, S.; Luo, Y.; Tang, W.; Sun, M. pdf  doi
openurl 
  Title Recent progress on two-dimensional van der Waals heterostructures for photocatalytic water splitting : a selective review Type A1 Journal article
  Year 2023 Publication Journal of physics: D: applied physics Abbreviated Journal  
  Volume 56 Issue 48 Pages 483001-483024  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hydrogen production through photocatalytic water splitting is being developed swiftly to address the ongoing energy crisis. Over the past decade, with the rise of graphene and other two-dimensional (2D) materials, an increasing number of computational and experimental studies have focused on relevant van der Waals (vdW) semiconductor heterostructures for photocatalytic water splitting. In this review, the fundamental mechanism and distinctive performance of type-II and Z-scheme vdW heterostructure photocatalysts are presented. Accordingly, we have conducted a systematic review of recent studies focusing on candidates for photocatalysts, specifically vdW heterostructures involving 2D transition metal disulfides (TMDs), 2D Janus TMDs, and phosphorenes. The photocatalytic performance of these heterostructures and their suitability in theoretical scenarios are discussed based on their electronic and optoelectronic properties, particularly in terms of band structures, photoexcited carrier dynamics, and light absorption. In addition, various approaches for tuning the performance of these potential photocatalysts are illustrated. This strategic framework for constructing and modulating 2D heterostructure photocatalysts is expected to provide inspiration for addressing possible challenges in future studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001076327300001 Publication Date 2023-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved (up) Most recent IF: 3.4; 2023 IF: 2.588  
  Call Number UA @ admin @ c:irua:200353 Serial 9081  
Permanent link to this record
 

 
Author Heirman, P.; Verloy, R.; Baroen, J.; Privat-Maldonado, A.; Smits, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Liquid treatment with a plasma jet surrounded by a gas shield: effect of the treated substrate and gas shield geometry on the plasma effluent conditions Type A1 Journal article
  Year 2024 Publication Journal of physics: D: applied physics Abbreviated Journal J. Phys. D: Appl. Phys.  
  Volume 57 Issue 11 Pages 115204  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract The treatment of a well plate by an atmospheric pressure plasma jet is common for<italic>in vitro</italic>plasma medicine research. Here, reactive species are largely produced through the mixing of the jet effluent with the surrounding atmosphere. This mixing can be influenced not only by the ambient conditions, but also by the geometry of the treated well. To limit this influence and control the atmosphere, a shielding gas is sometimes applied. However, the interplay between the gas shield and the well geometry has not been investigated. In this work, we developed a 2D-axisymmetric computational fluid dynamics model of the kINPen plasma jet, to study the mixing of the jet effluent with the surrounding atmosphere, with and without gas shield. Our computational and experimental results show that the choice of well type can have a significant influence on the effluent conditions, as well as on the effectiveness of the gas shield. Furthermore, the geometry of the shielding gas device can substantially influence the mixing as well. Our results provide a deeper understanding of how the choice of setup geometry can influence the plasma treatment, even when all other operating parameters are unchanged.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001127372200001 Publication Date 2024-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access Not_Open_Access  
  Notes Fund for Scientific Research Flanders, 1100421N ; Approved (up) Most recent IF: 3.4; 2024 IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:201999 Serial 8977  
Permanent link to this record
 

 
Author Lauwens, J.; Kerkhofs, L.; Sala, A.; Sorée, B. pdf  doi
openurl 
  Title Superconductor-semiconductor hybrid capacitance with a nonlinear charge-voltage profile Type A1 Journal article
  Year 2024 Publication Journal of physics: D: applied physics Abbreviated Journal  
  Volume 57 Issue 2 Pages 025301-25309  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electronic devices that work in the quantum regime often employ hybrid nanostructures to bring about a nonlinear behaviour. The nonlinearity that these can provide has proven to be useful, in particular, for applications in quantum computation. Here we present a hybrid device that acts as a capacitor with a nonlinear charge-voltage relation. The device consists of a nanowire placed between the plates of a coplanar capacitor, with a co-parallel alignment. At low temperatures, due to the finite density of states on the nanowire, the charge distribution in the capacitor is uneven and energy-dependent, resulting in a charge-dependent effective capacitance. We study this system analytically and numerically, and show that the nonlinearity of the capacitance is significant enough to be utilized in circuit quantum electrodynamics. The resulting nonlinearity can be switched on, modulated, and switched off by an external potential, thus making this capacitive device highly versatile for uses in quantum computation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082883200001 Publication Date 2023-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access Not_Open_Access  
  Notes Approved (up) Most recent IF: 3.4; 2024 IF: 2.588  
  Call Number UA @ admin @ c:irua:200300 Serial 9099  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: