|   | 
Details
   web
Records
Author Zhuge, X.; Jinnai, H.; Dunin-Borkowski, R.E.; Migunov, V.; Bals, S.; Cool, P.; Bons, A.-J.; Batenburg, K.J.
Title Automated discrete electron tomography – Towards routine high-fidelity reconstruction of nanomaterials Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 175 Issue 175 Pages 87-96
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and non-repeatability. In this paper, we present the application of a new

iterative reconstruction technique, named TVR-DART, for discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging modes. By further reducing the available tilt range and number of projections, we show that the

proposed technique can still produce consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403342500008 Publication Date 2017-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 22 Open Access OpenAccess
Notes This work has been supported in part by the Stichting voor de Technische Wetenschappen (STW) through a personal grant (Veni,13610), and was in part by ExxonMobil Chemical Europe Inc. The authors further acknowledge financial support from the University of Antwerp through BOF GOA funding. S.B. acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). R.D.B. is grateful for funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013)/ ERC grant agreement number 320832. Thomas Altantzis is gratefully acknowledged for acquiring the Anatase nanosheets dataset. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); saraecas; ECAS_Sara; Approved (down) Most recent IF: 2.843
Call Number EMAT @ emat @ c:irua:141218UA @ admin @ c:irua:141218 Serial 4485
Permanent link to this record
 

 
Author Van Tendeloo, G.; Lebedev, O.I.; Collart, O.; Cool, P.; Vansant, E.F.
Title Structure of nanoscale mesoporous silica spheres? Type A1 Journal article
Year 2003 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 15 Issue Pages S3037-S3046
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited Open Access
Notes Approved (down) Most recent IF: 2.649; 2003 IF: 1.757
Call Number UA @ lucian @ c:irua:46265 Serial 3313
Permanent link to this record
 

 
Author Vernimmen, J.; Meynen, V.; Herregods, S.J.F.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Cool, P.
Title New insights in the formation of combined zeolitic/mesoporous materials by using a one-pot templating synthesis Type A1 Journal article
Year 2011 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume Issue 27 Pages 4234-4240
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Zeolitic growth is often absent or occurs in separate phases when synthetic strategies based on the combination of zeolite templates and mesopore templating agents are applied. In this work, zeolitic growth and mesopore formation have been investigated at different temperatures by applying a one-pot templating approach, based on a TS-1 zeolite synthesis whereby part of the microtemplate (tetrapropylammonium hydroxide, TPAOH) is replaced by a mesotemplate (hexadecyltrimethylammonium bromide, CTMABr). Moreover, the synthesis duration and the molar ratio of the microtemplate/mesotemplate have also been studied. The different syntheses clearly show the inherent competitive mechanism between zeolitic growth and mesopore formation. These insights have led to the conclusion that by following a one-pot templating strategy with standard, nonexotic commercial templates, i.e. CTMABr and TPAOH, it is not possible to develop a true hierarchical mesoporous zeolite, meaning a mesoporous siliceous material with highly crystalline zeolitic walls. The resultant materials are instead combined zeolitic/mesoporous composite structures with, however, highly tuneable and controllable porosity characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000296143500014 Publication Date 2011-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 7 Open Access
Notes Fwo Approved (down) Most recent IF: 2.444; 2011 IF: 3.049
Call Number UA @ lucian @ c:irua:91574 Serial 2315
Permanent link to this record
 

 
Author Liu, S.; Rao, J.; Sui, X.; Cool, P.; Vansant, E.F.; Van Tendeloo, G.; Cheng, X.
Title Preparation of hollow silica spheres with different mesostructures Type A1 Journal article
Year 2008 Publication Journal of non-crystalline solids Abbreviated Journal J Non-Cryst Solids
Volume 354 Issue 10/11 Pages 826-830
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)
Abstract Hollow silica spheres were quickly synthesized by an octylamine (OA) templating method using tetraethyl orthosilicate (TEOS) as the silica source. N2-sorption results indicate that the hollow spheres have high surface areas and pore volumes. XRD and TEM measurements reveal that the structure of the hollow spheres depends on the amount of TEOS used in the synthesis. When low amount of TEOS is added, the template-containing precursor spheres depict an XRD pattern with two peaks, which can be indexed to a lamellar phase. After the removal of the template, the obtained hollow spheres show no diffraction peaks in the XRD pattern, suggesting that the nanopores in the silica shells are disordered. If increasing the amount of TEOS, either the uncalcined or the calcined sample gives an XRD pattern with a single diffraction peak. The mesostructure of these hollow silica spheres is typically as HMS materials. TGA analyses suggest that the interaction between the silica species and surfactant is stronger in the latter case.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000253216700003 Publication Date 2007-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3093; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.124 Times cited 26 Open Access
Notes Gao Approved (down) Most recent IF: 2.124; 2008 IF: 1.449
Call Number UA @ lucian @ c:irua:72018 Serial 2703
Permanent link to this record
 

 
Author De Meyer, R.; Gorbanev, Y.; Ciocarlan, R.-G.; Cool, P.; Bals, S.; Bogaerts, A.
Title Importance of plasma discharge characteristics in plasma catalysis: Dry reforming of methane vs. ammonia synthesis Type A1 Journal Article
Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal
Volume 488 Issue Pages 150838
Keywords A1 Journal Article; Gas conversion Dry reforming of methane Ammonia Microdischarges Dielectric barrier discharge; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma catalysis is a rapidly growing field, often employing a packed-bed dielectric barrier discharge plasma reactor. Such dielectric barrier discharges are complex, especially when a packing material (e.g., a catalyst) is introduced in the discharge volume. Catalysts are known to affect the plasma discharge, though the underlying mechanisms influencing the plasma physics are not fully understood. Moreover, the effect of the catalysts on the plasma discharge and its subsequent effect on the overall performance is often overlooked. In this work, we deliberately design and synthesize catalysts to affect the plasma discharge in different ways. These Ni or Co alumina-based catalysts are used in plasma-catalytic dry reforming of methane and ammonia synthesis. Our work shows that introducing a metal to the dielectric packing can affect the plasma discharge, and that the distribution of the metal is crucial in this regard. Further, the altered discharge can greatly influence the overall performance. In an atmospheric pressure dielectric barrier discharge reactor, this apparently more uniform plasma yields a significantly better performance for ammonia synthesis compared to the more conventional filamentary discharge, while it underperforms in dry reforming of methane. This study stresses the importance of analyzing the plasma discharge in plasma catalysis experiments. We hope this work encourages a more critical view on the plasma discharge characteristics when studying various catalysts in a plasma reactor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record
Impact Factor 15.1 Times cited Open Access
Notes This research was supported through long-term structural funding (Methusalem FFB15001C) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme with grant agreement No 810182 (SCOPE ERC Synergy project) and with grant agreement No 815128 (REALNANO). We acknowledge the practical contribution of Senne Van Doorslaer. Approved (down) Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:205154 Serial 9115
Permanent link to this record
 

 
Author Lebedev, O.I.; Van Tendeloo, G.; Collart, O.; Cool, P.; Vansant, E.F.
Title Structure and microstructure of nanoscale mesoporous silica spheres Type A1 Journal article
Year 2004 Publication Solid state sciences Abbreviated Journal Solid State Sci
Volume 6 Issue Pages 489-498
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000221604500011 Publication Date 2004-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.811 Times cited 42 Open Access
Notes Pai/Iuap P5/01 Approved (down) Most recent IF: 1.811; 2004 IF: 1.598
Call Number UA @ lucian @ c:irua:46262 Serial 3289
Permanent link to this record
 

 
Author Vernimmen, J.; Meynen, V.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Cool, P.
Title Formation of a Ti-siliceous trimodal material with macroholes, mesopores and zeolitic features via a one-pot templating synthesis Type A1 Journal article
Year 2012 Publication Journal of porous materials Abbreviated Journal J Porous Mat
Volume 19 Issue 2 Pages 153-160
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Based on a facile one-pot templating synthesis, using a TS-1 zeolite recipe whereby part of the zeolite structure directing agent is replaced by a mesopore templating agent, a trimodal material is formed. The resulting meso-TSM material combines mesoporosity (Ti-MCM-41) with zeolitic features (TS-1) and a unique sheet-like morphology with uniform macroporous voids (macroholes). Moreover, the macrohole formation, mesoporosity and zeolitic properties of the meso-TSM material can be controlled in a straightforward way by adjusting the length of the hydrothermal treatment. This newly developed material may imply great potential for catalytic redox applications and diffusion limitated processes because of its highly tunable character in all three dimensions (micro-, meso- and macroporous scale).
Address
Corporate Author Thesis
Publisher Kluwer Academic Place of Publication Boston, Mass. Editor
Language Wos 000301187600002 Publication Date 2011-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1380-2224;1573-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.624 Times cited 2 Open Access
Notes Fwo; Goa Approved (down) Most recent IF: 1.624; 2012 IF: 1.348
Call Number UA @ lucian @ c:irua:88367 Serial 1257
Permanent link to this record
 

 
Author Liu, S.; Wei, M.; Sui, X.; Cheng, X.; Cool, P.; Van Tendeloo, G.
Title A scanning electron microscopy study on hollow silica microspheres: defects and influences of the synthesis composition Type A1 Journal article
Year 2009 Publication Journal of sol-gel science and technology Abbreviated Journal J Sol-Gel Sci Techn
Volume 49 Issue 3 Pages 373-379
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)
Abstract Defects on hollow silica spheres synthesized in a tetraethylorthosilicate-octylamine-HCl-H2O system were recorded by scanning microscope. Based on the results, influences of synthesis composition on the formation of these defects are discussed. It is evidenced that products prepared with different octylamine-to-tetraethylorthosilicate ratios may have surface depressions, cracks and non-hollow microspheres. However, by changing water and acid additions, these defects could be reduced or eliminated. Generally, samples synthesized with a large octylamine addition commonly exhibit surface depressions. A small octylamine or a large water addition benefits the formation of solid silica microspheres among the product. Acid, although is not indispensable for the formation of hollow spheres, helps to eliminate or reduce depressions on the hollow shells. It is explained that the added acid gives rise to a relative localized fast hydrolysis versus condensation, facilitating an easy mobility of hydrolyzed silica species, and consequently the shell surface is smoothened.
Address
Corporate Author Thesis
Publisher Kluwer Place of Publication Dordrecht Editor
Language Wos 000263260100015 Publication Date 2008-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0928-0707;1573-4846; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.575 Times cited 1 Open Access
Notes Approved (down) Most recent IF: 1.575; 2009 IF: 1.393
Call Number UA @ lucian @ c:irua:74962 Serial 2941
Permanent link to this record
 

 
Author de Witte, K.; Cool, P.; de Witte, I.; Ruys, L.; Rao, J.; Van Tendeloo, G.; Vansant, E.F.
Title Multistep loading of titania nanoparticles in the mesopores of SBA-15 for enhanced photocatalytic activity Type A1 Journal article
Year 2007 Publication Journal of nanoscience and nanotechnology Abbreviated Journal J Nanosci Nanotechno
Volume 7 Issue 7 Pages 2511-2515
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000246347700042 Publication Date 2007-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1533-4880;0000-0000; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.483 Times cited 13 Open Access
Notes Approved (down) Most recent IF: 1.483; 2007 IF: 1.987
Call Number UA @ lucian @ c:irua:64773 Serial 2240
Permanent link to this record