|   | 
Details
   web
Records
Author Van der Paal, J.; Aernouts, S.; van Duin, A.C.T.; Neyts, E.C.; Bogaerts, A.
Title Interaction of O and OH radicals with a simple model system for lipids in the skin barrier : a reactive molecular dynamics investigation for plasma medicine Type A1 Journal article
Year 2013 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 46 Issue 39 Pages 395201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma medicine has been claimed to provide a novel route to heal wounds and regenerate skin, although very little is currently known about the elementary processes taking place. We carried out a series of ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of O and OH radicals with lipids, more specifically with α-linolenic acid as a model for the free fatty acids present in the upper skin layer. Our calculations predict that the O and OH radicals most typically abstract a H atom from the fatty acids, which can lead to the formation of a conjugated double bond, but also to the incorporation of alcohol or aldehyde groups, thereby increasing the hydrophilic character of the fatty acids and changing the general lipid composition of the skin. Within the limitations of the investigated model, no formation of possibly toxic products was observed.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000324810400007 Publication Date 2013-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 36 Open Access
Notes Approved (up) Most recent IF: 2.588; 2013 IF: 2.521
Call Number UA @ lucian @ c:irua:109904 Serial 1684
Permanent link to this record
 

 
Author Neyts, E.C.; Yusupov, M.; Verlackt, C.C.; Bogaerts, A.
Title Computer simulations of plasmabiomolecule and plasmatissue interactions for a better insight in plasma medicine Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 29 Pages 293001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma medicine is a rapidly evolving multidisciplinary field at the intersection of chemistry, biochemistry, physics, biology, medicine and bioengineering. It holds great potential in medical, health care, dentistry, surgical, food treatment and other applications. This multidisciplinary nature and variety of possible applications come along with an inherent and intrinsic complexity. Advancing plasma medicine to the stage that it becomes an everyday tool in its respective fields requires a fundamental understanding of the basic processes, which is lacking so far. However, some major advances have already been made through detailed experiments over the last 15 years. Complementary, computer simulations may provide insight that is difficultif not impossibleto obtain through experiments. In this review, we aim to provide an overview of the various simulations that have been carried out in the context of plasma medicine so far, or that are relevant for plasma medicine. We focus our attention mostly on atomistic simulations dealing with plasmabiomolecule interactions. We also provide a perspective and tentative list of opportunities for future modelling studies that are likely to further advance the field.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000338860300001 Publication Date 2014-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 28 Open Access
Notes Approved (up) Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:117853 Serial 472
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Simon, P.; Berdiyorov, G.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A.
Title Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 2 Pages 025205-25209
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of atmospheric pressure plasmas in medicine is increasingly gaining attention in recent years, although very little is currently known about the plasma-induced processes occurring on the surface of living organisms. It is known that most bio-organisms, including bacteria, are coated by a liquid film surrounding them, and there might be many interactions between plasma species and the liquid layer before the plasma species reach the surface of the bio-organisms. Therefore, it is essential to study the behaviour of the reactive species in a liquid film, in order to determine whether these species can travel through this layer and reach the biomolecules, or whether new species are formed along the way. In this work, we investigate the interaction of reactive oxygen species (i.e. O, OH, HO2 and H2O2) with water, which is assumed as a simple model system for the liquid layer surrounding biomolecules. Our computational investigations show that OH, HO2 and H2O2 can travel deep into the liquid layer and are hence in principle able to reach the bio-organism. Furthermore, O, OH and HO2 radicals react with water molecules through hydrogen-abstraction reactions, whereas no H-abstraction reaction takes place in the case of H2O2. This study is important to gain insight into the fundamental operating mechanisms in plasma medicine, in general, and the interaction mechanisms of plasma species with a liquid film, in particular.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000329108000013 Publication Date 2013-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 51 Open Access
Notes Approved (up) Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:112286 Serial 2823
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.C.; Rousseau, A.
Title Special issue on fundamentals of plasmasurface interactions Type Editorial
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 22 Pages 220301
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Iop publishing ltd Place of Publication Bristol Editor
Language Wos 000336207900001 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 2 Open Access
Notes Approved (up) Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:116917 Serial 3068
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A.
Title Understanding plasma catalysis through modelling and simulation : a review Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 22 Pages 224010
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis holds great promise for environmental applications, provided that the process viability can be maximized in terms of energy efficiency and product selectivity. This requires a fundamental understanding of the various processes taking place and especially the mutual interactions between plasma and catalyst. In this review, we therefore first examine the various effects of the plasma on the catalyst and of the catalyst on the plasma that have been described in the literature. Most of these studies are purely experimental. The urgently needed fundamental understanding of the mechanisms underpinning plasma catalysis, however, may also be obtained through modelling and simulation. Therefore, we also provide here an overview of the modelling efforts that have been developed already, on both the atomistic and the macroscale, and we identify the data that can be obtained with these models to illustrate how modelling and simulation may contribute to this field. Last but not least, we also identify future modelling opportunities to obtain a more complete understanding of the various underlying plasma catalytic effects, which is needed to provide a comprehensive picture of plasma catalysis.
Address
Corporate Author Thesis
Publisher Iop publishing ltd Place of Publication Bristol Editor
Language Wos 000336207900011 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 130 Open Access
Notes Approved (up) Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:116920 Serial 3803
Permanent link to this record
 

 
Author Dufour, T.; Minnebo, J.; Abou Rich, S.; Neyts, E.C.; Bogaerts, A.; Reniers, F.
Title Understanding polyethylene surface functionalization by an atmospheric He/O2 plasma through combined experiments and simulations Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 22 Pages 224007
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract High density polyethylene surfaces were exposed to the atmospheric post-discharge of a radiofrequency plasma torch supplied in helium and oxygen. Dynamic water contact angle measurements were performed to evaluate changes in surface hydrophilicity and angle resolved x-ray photoelectron spectroscopy was carried out to identify the functional groups responsible for wettability changes and to study their subsurface depth profiles, up to 9 nm in depth. The reactions leading to the formation of CO, C = O and OC = O groups were simulated by molecular dynamics. These simulations demonstrate that impinging oxygen atoms do not react immediately upon impact but rather remain at or close to the surface before eventually reacting. The simulations also explain the release of gaseous species in the ambient environment as well as the ejection of low molecular weight oxidized materials from the surface.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000336207900008 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 13 Open Access
Notes Approved (up) Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:116919 Serial 3804
Permanent link to this record
 

 
Author Van der Paal, J.; Verlackt, C.C.; Yusupov, M.; Neyts, E.C.; Bogaerts, A.
Title Structural modification of the skin barrier by OH radicals : a reactive molecular dynamics study for plasma medicine Type A1 Journal article
Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 48 Issue 48 Pages 155202
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract While plasma treatment of skin diseases and wound healing has been proven highly effective, the underlying mechanisms, and more generally the effect of plasma radicals on skin tissue, are not yet completely understood. In this paper, we perform ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of plasma generated OH radicals with a model system composed of free fatty acids, ceramides, and cholesterol molecules. This model system is an approximation of the upper layer of the skin (stratum corneum). All interaction mechanisms observed in our simulations are initiated by H-abstraction from one of the ceramides. This reaction, in turn, often starts a cascade of other reactions, which eventually lead to the formation of aldehydes, the dissociation of ceramides or the elimination of formaldehyde, and thus eventually to the degradation of the skin barrier function.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000351856600007 Publication Date 2015-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 20 Open Access
Notes Approved (up) Most recent IF: 2.588; 2015 IF: 2.721
Call Number c:irua:124230 Serial 3242
Permanent link to this record
 

 
Author Khosravian, N.; Bogaerts, A.; Huygh, S.; Yusupov, M.; Neyts, E.C.
Title How do plasma-generated OH radicals react with biofilm components? Insights from atomic scale simulations Type A1 Journal article
Year 2015 Publication Biointerphases Abbreviated Journal Biointerphases
Volume 10 Issue 10 Pages 029501
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of nonthermal atmospheric pressure plasma is emerging as an alternative and efficient technique for the inactivation of bacterial biofilms. In this study, reactive molecular dynamics simulations were used to examine the reaction mechanisms of hydroxyl radicals, as key reactive oxygen plasma species in biological systems, with several organic molecules (i.e., alkane, alcohol, carboxylic acid, and amine), as prototypical components of biomolecules in the biofilm. Our results demonstrate that organic molecules containing hydroxyl and carboxyl groups may act as trapping agents for the OH radicals. Moreover, the impact of OH radicals on N-acetyl-glucosamine, as constituent component of staphylococcus epidermidis biofilms, was investigated. The results show how impacts of OH radicals lead to hydrogen abstraction and subsequent molecular damage. This study thus provides new data on the reaction mechanisms of plasma species, and particularly the OH radicals, with fundamental components of bacterial biofilms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000357195600019 Publication Date 2014-12-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1934-8630;1559-4106; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.603 Times cited 10 Open Access
Notes Approved (up) Most recent IF: 2.603; 2015 IF: 3.374
Call Number c:irua:121371 Serial 1492
Permanent link to this record
 

 
Author Neyts, E.C.; Brault, P.
Title Molecular Dynamics Simulations for Plasma-Surface Interactions: Molecular Dynamics Simulations… Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600145
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-surface interactions are in general highly complex due to the interplay of many concurrent processes. Molecular dynamics simulations provide insight in some of these processes, subject to the accessible time and length scales, and the availability of suitable force fields. In this introductory tutorial-style review, we aim to describe the current capabilities and limitations of molecular dynamics simulations in this field, restricting ourselves to low-temperature nonthermal plasmas. Attention is paid to the simulation of the various fundamental processes occurring, including sputtering, etching, implantation, and deposition, as well as to what extent the basic plasma components can be accounted for, including ground state and excited species, electric fields, ions, photons, and electrons. A number of examples is provided, giving an bird’s eye overview of the current state of the field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393184600009 Publication Date 2016-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 13 Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:141758 Serial 4488
Permanent link to this record
 

 
Author Neyts, E.C.; Bal, K.M.
Title Effect of electric fields on plasma catalytic hydrocarbon oxidation from atomistic simulations Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 6 Pages e1600158
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The catalytic oxidative dehydrogenation of hydrocarbons is an industrially important process, in which selectivity is a key issue. We here investigate the conversion of methanol to formaldehyde on a vanadia surface employing long timescale simulations, reaching a time scale of seconds. In particular, we compare the thermal process to the case where an additional external electric field is applied, as would be the case in a direct plasma-catalysis setup. We find that the electric field influences the retention time of the molecules at the catalyst surface. These simulations provide an atomic scale insight in the thermal catalytic oxidative dehydrogenation process, and in how an external electric field may affect this process.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000403699900013 Publication Date 2016-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 2 Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 2.846
Call Number UA @ lucian @ c:irua:144210 Serial 4647
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Vanuytsel, S.; Neyts, E.C.; Bogaerts, A.
Title Phosphatidylserine flip-flop induced by oxidation of the plasma membrane: a better insight by atomic scale modeling Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 10 Pages 1700013
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We perform molecular dynamics simulations to study the flip-flop motion of phosphatidylserine (PS) across the plasma membrane upon increasing oxidation degree of the membrane. Our computational results show that an increase of the oxidation degree in the lipids leads to a decrease of the free energy barrier for translocation of PS through the membrane. In other words, oxidation of the lipids facilitates PS flip-flop motion across the membrane, because in native phospholipid bilayers this is only a “rare event” due to the high energy barriers for the translocation of PS. The present study provides an atomic-scale insight into the mechanisms of the PS flip-flop upon oxidation of lipids, as produced for example by cold atmospheric plasma, in living cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413045800010 Publication Date 2017-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 9 Open Access Not_Open_Access
Notes Fonds Wetenschappelijk Onderzoek, 1200216N ; Approved (up) Most recent IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:149567 Serial 4910
Permanent link to this record
 

 
Author Somers, W.; Dubreuil, M.F.; Neyts, E.C.; Vangeneugden, D.; Bogaerts, A.
Title Incorporation of fluorescent dyes in atmospheric pressure plasma coatings for in-line monitoring of coating homogeneity Type A1 Journal article
Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 11 Issue 7 Pages 678-684
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper reports on the incorporation of three commercial fluorescent dyes, i.e., rhodamine 6G, fluorescein, and fluorescent brightener 184, in plasma coatings, by utilizing a dielectric barrier discharge (DBD) reactor, and the subsequent monitoring of the coatings homogeneity based on the emitted fluorescent light. The plasma coatings are qualitatively characterized with fluorescence microscopy, UVvis spectroscopy and profilometry for the determination of the coating thickness. The emitted fluorescent light of the coating correlates to the amount of dye per area, and deviations of these factors can hence be observed by monitoring the intensity of this light. This allows monitoring the homogeneity of the plasma coatings in a fast and simple way, without making major adjustments to the process.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000340416300007 Publication Date 2014-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 3 Open Access
Notes Approved (up) Most recent IF: 2.846; 2014 IF: 2.453
Call Number UA @ lucian @ c:irua:118063 Serial 1598
Permanent link to this record
 

 
Author Bogaerts, A.; Yusupov, M.; Van der Paal, J.; Verlackt, C.C.W.; Neyts, E.C.
Title Reactive molecular dynamics simulations for a better insight in plasma medicine Type A1 Journal article
Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 11 Issue 12 Pages 1156-1168
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this review paper, we present several examples of reactive molecular dynamics simulations, which contribute to a better understanding of the underlying mechanisms in plasma medicine on the atomic scale. This includes the interaction of important reactive oxygen plasma species with the outer cell wall of both gram-positive and gram-negative bacteria, and with lipids present in human skin. Moreover, as most biomolecules are surrounded by a liquid biofilm, the behavior of these plasma species in a liquid (water) layer is presented as well. Finally, a perspective for future atomic scale modeling studies is given, in the field of plasma medicine in general, and for cancer treatment in particular.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000346034700007 Publication Date 2014-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 22 Open Access
Notes Approved (up) Most recent IF: 2.846; 2014 IF: 2.453
Call Number UA @ lucian @ c:irua:121269 Serial 2822
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Verlackt, C.C.; Khalilov, U.; van Duin, A.C.T.; Bogaerts, A.
Title Inactivation of the endotoxic biomolecule lipid A by oxygen plasma species : a reactive molecular dynamics study Type A1 Journal article
Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 12 Issue 12 Pages 162-171
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Reactive molecular dynamics simulations are performed to study the interaction of reactive oxygen species, such as OH, HO2 and H2O2, with the endotoxic biomolecule lipid A of the gram-negative bacterium Escherichia coli. It is found that the aforementioned plasma species can destroy the lipid A, which consequently results in reducing its toxic activity. All bond dissociation events are initiated by hydrogen-abstraction reactions. However, the mechanisms behind these dissociations are dependent on the impinging plasma species, i.e. a clear difference is observed in the mechanisms upon impact of HO2 radicals and H2O2 molecules on one hand and OH radicals on the other hand. Our simulation results are in good agreement with experimental observations.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000350275400005 Publication Date 2014-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 18 Open Access
Notes Approved (up) Most recent IF: 2.846; 2015 IF: 2.453
Call Number c:irua:123540 Serial 1589
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title Distribution pattern of metal atoms in bimetal-doped pyridinic-N₄ pores determines their potential for electrocatalytic N₂ reduction Type A1 Journal article
Year 2022 Publication Journal Of Physical Chemistry A Abbreviated Journal J Phys Chem A
Volume 126 Issue 20 Pages 3080-3089
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Doping two single transition-metal (TM) atoms on a substrate host opens numerous possibilities for catalyst design. However, what if the substrate contains more than one vacancy site? Then, the combination of two TMs along with their distribution patterns becomes a design parameter potentially complementary to the substrate itself and the bimetal composition. In this study, we investigate ammonia synthesis under mild electrocatalytic conditions on a transition-metal-doped porous C24N24 catalyst using density functional theory (DFT). The TMs studied include Ti, Mn, and Cu in a 2:4 dopant ratio (Ti2Mn4@C24N24 and Ti2Cu4@N-24(24)). Our computations show that a single Ti atom in both catalysts exhibits the highest selectivity for N-2 fixation at ambient conditions. This work is a good theoretical model to establish the structure-activity relationship, and the knowledge earned from the metal-N-4 moieties may help studies of related nanomaterials, especially those with curved structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000804119800003 Publication Date 2022-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1089-5639; 1520-5215 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.9 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 2.9
Call Number UA @ admin @ c:irua:189023 Serial 7146
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
Title On the time scale associated with Monte Carlo simulations Type A1 Journal article
Year 2014 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 141 Issue 20 Pages 204104
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000345641400005 Publication Date 2014-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606;1089-7690; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 26 Open Access
Notes Approved (up) Most recent IF: 2.965; 2014 IF: 2.952
Call Number UA @ lucian @ c:irua:120667 Serial 2459
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Neyts, E.C.
Title Toward the Understanding of Selective Si Nano-Oxidation by Atomic Scale Simulations Type A1 Journal article
Year 2017 Publication Accounts of chemical research Abbreviated Journal Accounts Chem Res
Volume 50 Issue 50 Pages 796-804
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The continuous miniaturization of nanodevices, such as transistors, solar cells, and optical fibers, requires the controlled synthesis of (ultra)thin gate oxides (<10 nm), including Si gate-oxide (SiO2) with high quality at the atomic scale. Traditional thermal growth of SiO2 on planar Si surfaces, however, does not allow one to obtain such ultrathin oxide due to either the high oxygen diffusivity at high temperature or the very low sticking ability of incident oxygen at low temperature. Two recent techniques, both operative at low (room) temperature, have been put forward to overcome these obstacles: (i) hyperthermal oxidation of planar Si surfaces and (ii) thermal or plasma-assisted oxidation of nonplanar Si surfaces, including Si nanowires (SiNWs). These nanooxidation processes are, however, often difficult to study experimentally, due to the key intermediate processes taking place on the nanosecond time scale.

In this Account, these Si nano-oxidation techniques are discussed from a computational point of view and compared to both hyperthermal and thermal oxidation experiments, as well as to well-known models of thermal oxidation, including the Deal−Grove, Cabrera−Mott, and Kao models and several alternative mechanisms. In our studies, we use reactive molecular dynamics (MD) and hybrid MD/Monte Carlo simulation techniques, applying the Reax force field. The incident energy of oxygen species is chosen in the range of 1−5 eV in hyperthermal oxidation of planar Si surfaces in order to prevent energy-induced damage. It turns out that hyperthermal growth allows for two growth modes, where the ultrathin oxide thickness depends on either (1) only the kinetic energy of the incident oxygen species at a growth temperature below Ttrans = 600 K, or (2) both the incident energy and the growth temperature at a growth temperature above Ttrans. These modes are specific to such ultrathin oxides, and are not observed in traditional thermal oxidation, nor theoretically considered by already existing models. In the case of thermal or plasma-assisted oxidation of small Si nanowires, on the other hand, the thickness of the ultrathin oxide is a function of the growth temperature and the nanowire diameter. Below Ttrans, which varies with the nanowire diameter, partially oxidized SiNW are formed, whereas complete oxidation to a SiO2 nanowire occurs only above Ttrans. In both nano-oxidation processes at lower temperature (T < Ttrans), final sandwich c-Si|SiOx|a-SiO2 structures are obtained due to a competition between overcoming the energy barrier to penetrate into Si subsurface layers and the compressive stress (∼2−3 GPa) at the Si crystal/oxide interface. The overall atomic-simulation results strongly indicate that the thickness of the intermediate SiOx (x < 2) region is very limited (∼0.5 nm) and constant irrespective of oxidation parameters. Thus, control over the ultrathin SiO2 thickness with good quality is indeed possible by accurately tuning the oxidant energy, oxidation temperature and surface curvature.

In general, we discuss and put in perspective these two oxidation mechanisms for obtaining controllable ultrathin gate-oxide films, offering a new route toward the fabrication of nanodevices via selective nano-oxidation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399859800016 Publication Date 2017-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 20.268 Times cited 5 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 12M1315N ; Approved (up) Most recent IF: 20.268
Call Number PLASMANT @ plasmant @ c:irua:142638 Serial 4561
Permanent link to this record
 

 
Author Ostrikov, K.; Neyts, E.C.; Meyyappan, M.
Title Plasma nanoscience : from nano-solids in plasmas to nano-plasmas in solids Type A1 Journal article
Year 2013 Publication Advances in physics Abbreviated Journal Adv Phys
Volume 62 Issue 2 Pages 113-224
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The unique plasma-specific features and physical phenomena in the organization of nanoscale soild-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter to nano-plasma effects and nano-plasmas of different states of matter.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000320913600001 Publication Date 2013-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-8732;1460-6976; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 21.818 Times cited 380 Open Access
Notes Approved (up) Most recent IF: 21.818; 2013 IF: 18.062
Call Number UA @ lucian @ c:irua:108723 Serial 2639
Permanent link to this record
 

 
Author Kovács, A.; Janssens, N.; Mielants, M.; Cornet, I.; Neyts, E.C.; Billen, P.
Title Biocatalyzed vinyl laurate transesterification in natural deep eutectic solvents Type A1 Journal article
Year 2023 Publication Waste and biomass valorization Abbreviated Journal
Volume Issue Pages 1-12
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Purpose Natural deep eutectic solvents (NADES) represent a green alternative to conventional organic solvents as reaction medium, offering more benign properties. To efficiently design NADES for biocatalysis, a better understanding of their effect on these reactions is needed. We hypothesize that this effect can be described by separately considering (1) the solvent interactions with the substrates, (2) the solvent viscosities and (3) the enzyme stability in NADES. Methods We investigated the effect of substrate solvation and viscosity on the reaction rate; and the stability of the enzyme in NADES. To this end, we monitored the conversion over time of the transesterification of vinyl laurate with 1- butanol by the lipase enzyme Candida antarctica B in NADES of different compounds and molar ratios. Results The initial reaction rate is higher in most NADES ( varying between 1.14 and 15.07 mu mol min(-1) mg(-1)) than in the reference n-hexane (4.0 mu mol min(-1) mg(-1))), but no clear relationship between viscosity and initial reaction rate was found. The increased reaction rate is most likely related to the solvation of the substrate due to a change in the activation energy of the reaction or a change in the conformation of the substrate. The enzyme retained part of its activity after the first 2 h of reaction (on average 20 % of the substrate reacted in the 2-24 h period). Enzyme incubation in ethylene glycol-based NADES resulted in a reduced reaction rate ( 15.07 vs. 3.34 mu mol min(-1) mg(-1)), but this may also be due to slow dissolution of the substrate. Conclusions The effect of viscosity seems to be marginal next to the effect of solvation and possible enzyme-NADES interaction. The enzyme retains some of its activity during the 24-hour measurements, but the enzyme incubation experiments did not yield accurate, comparable values. [GRAPHICS] .
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001117290800003 Publication Date 2023-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1877-2641; 1877-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.2 Times cited Open Access
Notes Approved (up) Most recent IF: 3.2; 2023 IF: 1.337
Call Number UA @ admin @ c:irua:202709 Serial 9005
Permanent link to this record
 

 
Author Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; Fernandez Rivas, D.; Foster, J.E.; Garrick, S.C.; Gorbanev, Y.; Hamaguchi, S.; Iza, F.; Jablonowski, H.; Klimova, E.; Kolb, J.; Krcma, F.; Lukes, P.; Machala, Z.; Marinov, I.; Mariotti, D.; Mededovic Thagard, S.; Minakata, D.; Neyts, E.C.; Pawlat, J.; Petrovic, Z.L.; Pflieger, R.; Reuter, S.; Schram, D.C.; Schröter, S.; Shiraiwa, M.; Tarabová, B.; Tsai, P.A.; Verlet, J.R.R.; von Woedtke, T.; Wilson, K.R.; Yasui, K.; Zvereva, G.
Title Plasma–liquid interactions: a review and roadmap Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 5 Pages 053002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on nonequilibrium plasmas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384715400001 Publication Date 2016-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 460 Open Access
Notes This manuscript originated from discussions at the Lorentz Center Workshop ‘Gas/Plasma–Liquid Interface: Transport, Chemistry and Fundamental Data’ that took place at the Lorentz Center, Leiden University in the Netherlands from August 4, through August 8, 2014, and follow-up discussions since the workshop. All authors acknowledge the support of the Lorentz Center, the COST action TD1208 (Electrical Discharges with Liquids for Future Applications) and the Royal Dutch Academy of Sciences for their financial support. PJB, MJK, DBG and JEF acknowledge the support of the ‘Center on Control of Plasma Kinetics’ of the United States Department of Energy Office of Fusion Energy Science (DE-SC0001319). In addition, PJB and BRL acknowledge the support of the National Science Foundation (PHY 1500135 and CBET 1236225, respectively). In addition the enormous help of Mrs. Victoria Piorek (University of Minnesota) in the formatting of the final document including the references is gratefully acknowledged. Approved (up) Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:144654 Serial 4628
Permanent link to this record
 

 
Author Bal, K.M.; Huygh, S.; Bogaerts, A.; Neyts, E.C.
Title Effect of plasma-induced surface charging on catalytic processes: application to CO2activation Type A1 Journal article
Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 2 Pages 024001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Understanding the nature and effect of the multitude of plasma–surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M=Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000424520100001 Publication Date 2018-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 19 Open Access OpenAccess
Notes KMB is funded as PhD fellow (aspirant) of the FWO-Flanders (Research Foundation—Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government— department EWI. Approved (up) Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:149285 Serial 4813
Permanent link to this record
 

 
Author Zhang, Y.-R.; Neyts, E.C.; Bogaerts, A.
Title Enhancement of plasma generation in catalyst pores with different shapes Type A1 Journal article
Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 5 Pages 055008
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma generation inside catalyst pores is of utmost importance for plasma catalysis, as the existence of plasma species inside the pores affects the active surface area of the catalyst available to the plasma species for catalytic reactions. In this paper, the electric field enhancement, and thus the plasma production inside catalyst pores with different pore shapes is studied with a two-dimensional fluid model. The results indicate that the electric field will be significantly enhanced near tip-like structures. In a conical pore with small opening, the strongest electric field appears at the opening and bottom corners of the pore, giving rise to a prominent ionization rate throughout the pore. For a cylindrical pore, the electric field is only enhanced at the bottom corners of the pore, with lower absolute value, and thus the ionization rate inside the pore is only slightly enhanced. Finally, in a conical pore with large opening, the electric field is characterized by a maximum at the bottom of the pore, yielding a similar behavior for the ionization rate. These results demonstrate that the shape of the pore has a significantly influence on the electric field enhancement, and thus modifies the plasma properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000432351700002 Publication Date 2018-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 11 Open Access OpenAccess
Notes This work was supported by the Fund for Scientific Research Flanders (FWO) (Grant No. G.0217.14N) and the Fundamental Research Funds for the Central Universities (Grant No. DUT17LK52). Approved (up) Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:151546 Serial 4998
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title A comparative DFT study on CO oxidation reaction over Si-doped BC2N nanosheet and nanotube Type A1 Journal article
Year 2018 Publication Applied surface science Abbreviated Journal Appl Surf Sci
Volume 439 Issue 439 Pages 934-945
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this study, we performed density functional theory (DFT) calculations to investigate different reaction mechanisms of CO oxidation catalyzed by the Si atom embedded defective BC2N nanostructures as well as the analysis of the structural and electronic properties. The structures of all the complexes are optimized and characterized by frequency calculations at the M062X/6-31G* computational level. Also, The electronic structures and thermodynamic parameters of adsorbed CO and O-2 molecules over Si-doped BC2N nanostructures are examined in detail. Moreover, to investigate the curvature effect on the CO oxidation reaction, all the adsorption and CO oxidation reactions on a finite-sized armchair (6,6) Si-BC2NNT are also studied. Our results indicate that there can be two possible pathways for the CO oxidation with O-2 molecule: O-2(g) + CO(g) -> O-2(ads) + CO(ads) -> CO2(g) + O-(ads) and O-(ads) + CO(g) -> CO2(g). The first reaction proceeds via the Langmuir-Hinshelwood (LH) mechanism while the second goes through the Eley-Rideal (ER) mechanism. On the other hand, by increasing the tube diameter, the energy barrier increases due to the strong adsorption energy of the O-2 molecule which is related to its dissociation over the tube surface. Our calculations indicate that the two step energy barrier of the oxidation reaction over Si-BC2NNS is less than that over the Si-BC2NNT. Hence, Si-BC2NNS may serve as an efficient and highly activated substrate to CO oxidation rather than (4,4) Si-BC2NNT. (C) 2018 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000427457100112 Publication Date 2018-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 8 Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 3.387
Call Number UA @ lucian @ c:irua:150745 Serial 4960
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title Direct methane conversion to methanol on M and MN4 embedded graphene (M = Ni and Si): a comparative DFT study Type A1 Journal article
Year 2019 Publication Applied surface science Abbreviated Journal Appl Surf Sci
Volume 496 Issue 496 Pages 143618
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The ever increasing global production and dispersion of methane requires novel chemistry to transform it into easily condensable energy carriers that can be integrated into the chemical infrastructure. In this context, single atom catalysts have attracted considerable interest due to their outstanding catalytic activity. We here use density functional theory (DFT) computations to compare the reaction and activation energies of M and MN4 embedded graphene (M = Ni and Si) on the methane-to-methanol conversion near room temperature. Thermodynamically, conversion of methane to methanol is energetically favorable at ambient conditions. Both singlet and triplet spin state of the studied systems are considered in all of the calculations. The DFT results show that the barriers are significantly lower when the complexes are in the triplet state than in the singlet state. In particular, Si-G with the preferred spin multiplicity of triplet seems to be viable catalysts for methane oxidation thanks to the corresponding lower energy barriers and higher stability of the obtained configurations. Our results provide insights into the nature of methane conversion and may serve as guidance for fabricating cost-effective graphene-based single atom catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000488957400004 Publication Date 2019-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 2 Open Access
Notes Approved (up) Most recent IF: 3.387
Call Number UA @ admin @ c:irua:163695 Serial 6294
Permanent link to this record
 

 
Author Fukuhara, S.; Bal, K.M.; Neyts, E.C.; Shibuta, Y.
Title Accelerated molecular dynamics simulation of large systems with parallel collective variable-driven hyperdynamics Type A1 Journal article
Year 2020 Publication Computational Materials Science Abbreviated Journal Comp Mater Sci
Volume 177 Issue Pages 109581
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The limitation in time and length scale is a major issue of molecular dynamics (MD) simulation. Although several methods have been developed to extend the MD time scale, their performance usually deteriorates with increasing system size. Therefore, an acceleration method which is applicable to large systems is required to bridge the gap between the MD simulations and target phenomena. In this study, an accelerated MD method for large system is developed based on the collective variable-driven hyperdynamics (CVHD) method [K.M. Bal and E.C. Neyts, 2015]. The key idea is to run CVHD in parallel with rate control and accelerate multiple possible events simultaneously. Using this novel method, carbon diffusion in bcc-iron bicrystal with grain boundary is examined as an application for practical materials. Carbon atoms reaching at the grain boundary are trapped whereas carbon atoms in the bulk region diffuse randomly, and both dynamic regimes can be simultaneously accelerated with the parallel CVHD technique.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000519576300001 Publication Date 2020-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited Open Access
Notes JSPS, J22727 ; Japan Society for the Promotion of Science; This work was supported by Grant-in-Aid for Scientific Research (B) (No.19H02415) and Grant-in-Aid for JSPS Research Fellow (No.18J22727) from Japan Society for the Promotion of Science (JSPS), Japan. S.F. was supported by JSPS through the Program for Leading Graduate Schools (MERIT). Data availability The data required to reproduce these findings are available from the corresponding authors upon reasonable request. Approved (up) Most recent IF: 3.3; 2020 IF: 2.292
Call Number PLASMANT @ plasmant @c:irua:166773 Serial 6333
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Peeters, F.M.
Title Reduction-enhanced water flux through layered graphene oxide (GO) membranes stabilized with H3O+ and OH- ions Type A1 Journal article
Year 2024 Publication Physical chemistry, chemical physics Abbreviated Journal
Volume 26 Issue 13 Pages 10265-10272
Keywords A1 Journal article; Condensed Matter Theory (CMT); Modelling and Simulation in Chemistry (MOSAIC)
Abstract Graphene oxide (GO) is one of the most promising candidates for next generation of atomically thin membranes. Nevertheless, one of the major issues for real world application of GO membranes is their undesirable swelling in an aqueous environment. Recently, we demonstrated that generation of H3O+ and OH- ions (e.g., with an external electric field) in the interlayer gallery could impart aqueous stability to the layered GO membranes (A. Gogoi, ACS Appl. Mater. Interfaces, 2022, 14, 34946). This, however, compromises the water flux through the membrane. In this study, we report on reducing the GO nanosheets as a solution to this issue. With the reduction of the GO nanosheets, the water flux through the layered GO membrane initially increases and then decreases again beyond a certain degree of reduction. Here, two key factors are at play. Firstly, the instability of the H-bond network between water molecules and the GO nanosheets, which increases the water flux. Secondly, the pore size reduction in the interlayer gallery of the membranes, which decreases the water flux. We also observe a significant improvement in the salt rejection of the membranes, due to the dissociation of water molecules in the interlayer gallery. In particular, for the case of 10% water dissociation, the water flux through the membranes can be enhanced without altering its selectivity. This is an encouraging observation as it breaks the traditional tradeoff between water flux and salt rejection of a membrane.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001186465400001 Publication Date 2024-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.3 Times cited Open Access
Notes Approved (up) Most recent IF: 3.3; 2024 IF: 4.123
Call Number UA @ admin @ c:irua:204792 Serial 9168
Permanent link to this record
 

 
Author Dumpala, S.; Broderick, S.R.; Khalilov, U.; Neyts, E.C.; van Duin, A.C.T.; Provine, J.; Howe, R.T.; Rajan, K.
Title Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation Type A1 Journal article
Year 2015 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 106 Issue 106 Pages 011602
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO2 and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000347976900008 Publication Date 2015-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 19 Open Access
Notes Approved (up) Most recent IF: 3.411; 2015 IF: 3.302
Call Number c:irua:122300 Serial 1679
Permanent link to this record
 

 
Author Heyne, M.H.; de Marneffe, J.-F.; Delabie, A.; Caymax, M.; Neyts, E.C.; Radu, I.; Huyghebaert, C.; De Gendt, S.
Title Two-dimensional WS2 nanoribbon deposition by conversion of pre-patterned amorphous silicon Type A1 Journal article
Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 28 Issue 28 Pages 04LT01
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We present a method for area selective deposition of 2D WS2 nanoribbons with tunable thickness on a dielectric substrate. The process is based on a complete conversion of a prepatterned, H-terminated Si layer to metallic W by WF6, followed by in situ sulfidation by H2S. The reaction process, performed at 450 degrees C, yields nanoribbons with lateral dimension down to 20 nm and with random basal plane orientation. The thickness of the nanoribbons is accurately controlled by the thickness of the pre-deposited Si layer. Upon rapid thermal annealing at 900 degrees C under inert gas, the WS2 basal planes align parallel to the substrate.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000391445100001 Publication Date 2016-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 13 Open Access OpenAccess
Notes Approved (up) Most recent IF: 3.44
Call Number UA @ lucian @ c:irua:140382 Serial 4471
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title Linking bi-metal distribution patterns in porous carbon nitride fullerene to its catalytic activity toward gas adsorption Type A1 Journal article
Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 11 Issue 7 Pages 1794
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Immobilization of two single transition metal (TM) atoms on a substrate host opens numerous possibilities for catalyst design. If the substrate contains more than one vacancy site, the combination of TMs along with their distribution patterns becomes a design parameter potentially complementary to the substrate itself and the bi-metal composition. By means of DFT calculations, we modeled three dissimilar bi-metal atoms (Ti, Mn, and Cu) doped into the six porphyrin-like cavities of porous C24N24 fullerene, considering different bi-metal distribution patterns for each binary complex, viz. TixCuz@C24N24, TixMny@C24N24, and MnyCuz@C24N24 (with x, y, z = 0-6). We elucidate whether controlling the distribution of bi-metal atoms into the C24N24 cavities can alter their catalytic activity toward CO2, NO2, H-2, and N-2 gas capture. Interestingly, Ti2Mn4@C24N24 and Ti2Cu4@C24N24 complexes showed the highest activity and selectively toward gas capture. Our findings provide useful information for further design of novel few-atom carbon-nitride-based catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000676140500001 Publication Date 2021-07-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 3.553
Call Number UA @ admin @ c:irua:180372 Serial 8174
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title Identification of a unique pyridinic FeN4Cx electrocatalyst for N₂ reduction : tailoring the coordination and carbon topologies Type A1 Journal article
Year 2022 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 126 Issue 34 Pages 14460-14469
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Although the heterogeneity of pyrolyzed Fe???N???C materials is known and has been reported previously, the atomic structure of the active sites and their detailed reaction mechanisms are still unknown. Here, we identified two pyridinic Fe???N4-like centers with different local C coordinates, i.e., FeN4C8 and FeN4C10, and studied their electrocatalytic activity for the nitrogen reduction reaction (NRR) based on density functional theory (DFT) calculations. We also discovered the influence of the adsorption of NH2 as a functional ligand on catalyst performance on the NRR. We confirmed that the NRR selectivity of the studied catalysts is essentially governed either by the local C coordination or by the dynamic structure associated with the FeII/FeIII. Our investigations indicate that the proposed traditional pyridinic FeN4C10 has higher catalytic activity and selectivity for the NRR than the robust FeN4C8 catalyst, while it may have outstanding activity for promoting other (electro)catalytic reactions. <comment>Superscript/Subscript Available</comment
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000859545200001 Publication Date 2022-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 3.7
Call Number UA @ admin @ c:irua:191469 Serial 7268
Permanent link to this record