toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sarikurt, S.; Çakir, D.; Keceli, M.; Sevik, C. doi  openurl
  Title The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal  
  Volume 10 Issue 18 Pages 8859-8868  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The newest members of a two-dimensional material family, involving transition metal carbides and nitrides (called MXenes), have garnered increasing attention due to their tunable electronic and thermal properties depending on the chemical composition and functionalization. This flexibility can be exploited to fabricate efficient electrochemical energy storage (batteries) and energy conversion (thermoelectric) devices. In this study, we calculated the Seebeck coefficients and lattice thermal conductivity values of oxygen terminated M2CO2 (where M = Ti, Zr, Hf, Sc) monolayer MXene crystals in two different functionalization configurations (model-II (MD-II) and model-III (MD-III)), using density functional theory and Boltzmann transport theory. We estimated the thermoelectric figure-of-merit, zT, of these materials by two different approaches, as well. First of all, we found that the structural model (i.e. adsorption site of oxygen atom on the surface of MXene) has a paramount impact on the electronic and thermoelectric properties of MXene crystals, which can be exploited to engineer the thermoelectric properties of these materials. The lattice thermal conductivity kappa(l), Seebeck coefficient and zT values may vary by 40% depending on the structural model. The MD-III configuration always has the larger band gap, Seebeck coefficient and zT, and smaller kappa(l) as compared to the MD-II structure due to a larger band gap, highly flat valence band and reduced crystal symmetry in the former. The MD-III configuration of Ti2CO2 and Zr2CO2 has the lowest kappa(l) as compared to the same configuration of Hf2CO2 and Sc2CO2. Among all the considered structures, the MD-II configuration of Hf2CO2 has the highest kappa(l), and Ti2CO2 and Zr2CO2 in the MD-III configuration have the lowest kappa(l). For instance, while the band gap of the MD-II configuration of Ti2CO2 is 0.26 eV, it becomes 0.69 eV in MD-III. The zT(max) value may reach up to 1.1 depending on the structural model of MXene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000432096400055 Publication Date 2018-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:193788 Serial 8654  
Permanent link to this record
 

 
Author Xiao, Y. openurl 
  Title Theoretical study of the optoelectronic properties of new type 2DEG materials : multilayer graphene and monolayer MoS2 Type Doctoral thesis
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 144 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:144948 Serial 8661  
Permanent link to this record
 

 
Author Kandemir, A.; Ozden, A.; Cagin, T.; Sevik, C. doi  openurl
  Title Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures Type A1 Journal article
  Year 2017 Publication Science and technology of advanced materials Abbreviated Journal  
  Volume 18 Issue 1 Pages 187-196  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, <100>, is better than the <111> crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity engineering in bulk and nanostructures to produce high-performance thermoelectric materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405949800001 Publication Date 2017-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1468-6996; 1878-5514 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:193772 Serial 8662  
Permanent link to this record
 

 
Author Taghizadeh Sisakht, E. file  openurl
  Title Tight-binding investigation of the electronic properties of phosphorene and phosphorene nanoribbons Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 150 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract abstract not available  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:166195 Serial 8670  
Permanent link to this record
 

 
Author Mobaraki, A.; Kandemir, A.; Yapicioglu, H.; Gulseren, O.; Sevik, C. doi  openurl
  Title Validation of inter-atomic potential for WS2 and WSe2 crystals through assessment of thermal transport properties Type A1 Journal article
  Year 2018 Publication Computational materials science Abbreviated Journal  
  Volume 144 Issue Pages 92-98  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In recent years, transition metal dichalcogenides (TMDs) displaying astonishing properties are emerged as a new class of two-dimensional layered materials. The understanding and characterization of thermal transport in these materials are crucial for efficient engineering of 2D TMD materials for applications such as thermoelectric devices or overcoming general overheating issues. In this work, we obtain accurate Stillinger-Weber type empirical potential parameter sets for single-layer WS2 and WSe2 crystals by utilizing particle swarm optimization, a stochastic search algorithm. For both systems, our results are quite consistent with first-principles calculations in terms of bond distances, lattice parameters, elastic constants and vibrational properties. Using the generated potentials, we investigate the effect of temperature on phonon energies and phonon linewidth by employing spectral energy density analysis. We compare the calculated frequency shift with respect to temperature with corresponding experimental data, clearly demonstrating the accuracy of the generated inter-atomic potentials in this study. Also, we evaluate the lattice thermal conductivities of these materials by means of classical molecular dynamics simulations. The predicted thermal properties are in very good agreement with the ones calculated from first-principles. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424902300013 Publication Date 2017-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:193774 Serial 8729  
Permanent link to this record
 

 
Author da Costa, D.R.; Chaves, A.; Farias, G.A.; Peeters, F.M. pdf  doi
openurl 
  Title Valley filtering in graphene due to substrate-induced mass potential Type A1 Journal article
  Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal  
  Volume 29 Issue 21 Pages 215502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interaction of monolayer graphene with specific substrates may break its sublattice symmetry and results in unidirectional chiral states with opposite group velocities in the different Dirac cones (Zarenia et al 2012 Phys. Rev. B 86 085451). Taking advantage of this feature, we propose a valley filter based on a transversal mass kink for low energy electrons in graphene, which is obtained by assuming a defect region in the substrate that provides a change in the sign of the substrate-induced mass and thus creates a non-biased channel, perpendicular to the kink, for electron motion. By solving the time-dependent Schrodinger equation for the tight-binding Hamiltonian, we investigate the time evolution of a Gaussian wave packet propagating through such a system and obtain the transport properties of this graphene-based substrate-induced quantum point contact. Our results demonstrate that efficient valley filtering can be obtained, provided: (i) the electron energy is sufficiently low, i.e. with electrons belonging mostly to the lowest sub-band of the channel, and (ii) the channel length (width) is sufficiently long (narrow). Moreover, even though the transmission probabilities for each valley are significantly affected by impurities and defects in the channel region, the valley polarization in this system is shown to be robust against their presence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400092700002 Publication Date 2017-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 15 Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:152636 Serial 8730  
Permanent link to this record
 

 
Author Kenawy, A.; Magnus, W.; Milošević, M.V.; Sorée, B. doi  openurl
  Title Voltage-controlled superconducting magnetic memory Type A1 Journal article
  Year 2019 Publication AIP advances T2 – 64th Annual Conference on Magnetism and Magnetic Materials (MMM), NOV 04-08, 2019, Las Vegas, NV Abbreviated Journal  
  Volume 9 Issue 12 Pages 125223  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Over the past few decades, superconducting circuits have been used to realize various novel electronic devices such as quantum bits, SQUIDs, parametric amplifiers, etc. One domain, however, where superconducting circuits fall short is information storage. Superconducting memories are based on the quantization of magnetic flux in superconducting loops. Standard implementations store information as magnetic flux quanta in a superconducting loop interrupted by two Josephson junctions (i.e., a SQUID). However, due to the large inductance required, the size of the SQUID loop cannot be scaled below several micrometers, resulting in low-density memory chips. Here, we propose a scalable memory consisting of a voltage-biased superconducting ring threaded by a half-quantum flux bias. By numerically solving the time-dependent Ginzburg-Landau equations, we show that applying a time-dependent bias voltage in the microwave range constitutes a writing mechanism to change the number of stored flux quanta within the ring. Since the proposed device does not require a large loop inductance, it can be scaled down, enabling a high-density memory technology. (C) 2019 Author(s).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515525300002 Publication Date 2019-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:167551 Serial 8740  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.; Volodin, A.; van Haesendonck, C. pdf  doi
openurl 
  Title The work function of few-layer graphene Type A1 Journal article
  Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal  
  Volume 29 Issue 3 Pages 035003  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A theoretical and experimental study of the work function of few-layer graphene is reported. The influence of the number of layers on the work function is investigated in the presence of a substrate, a molecular dipole layer, and combinations of the two. The work function of few-layer graphene is almost independent of the number of layers with only a difference between monolayer and multilayer graphene of about 60 meV. In the presence of a charge-donating substrate the charge distribution is found to decay exponentially away from the substrate and this is directly reflected in the work function of few-layer graphene. A dipole layer changes the work function only when placed in between the substrate and few-layer graphene through a change of the charge transfer between the two.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425250600002 Publication Date 2016-11-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 61 Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:164938 Serial 8760  
Permanent link to this record
 

 
Author Blundo, E.; Faria, P.E., Jr.; Surrente, A.; Pettinari, G.; Prosnikov, M.A.; Olkowska-Pucko, K.; Zollner, K.; Wozniak, T.; Chaves, A.; Kazimierczuk, T.; Felici, M.; Babinski, A.; Molas, M.R.; Christianen, P.C.M.; Fabian, J.; Polimeni, A. url  doi
openurl 
  Title Strain-Induced Exciton Hybridization in WS2 Monolayers Unveiled by Zeeman-Splitting Measurements Type A1 Journal article
  Year 2022 Publication Physical review letters Abbreviated Journal  
  Volume 129 Issue 6 Pages 067402  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Mechanical deformations and ensuing strain are routinely exploited to tune the band gap energy and to enhance the functionalities of two-dimensional crystals. In this Letter, we show that strain leads also to a strong modification of the exciton magnetic moment in WS2 monolayers. Zeeman-splitting measurements under magnetic fields up to 28.5 T were performed on single, one-layer-thick WS2 microbubbles. The strain of the bubbles causes a hybridization of k-space direct and indirect excitons resulting in a sizable decrease in the modulus of they factor of the ground-state exciton. These findings indicate that strain may have major effects on the way the valley number of excitons can be used to process binary information in two-dimensional crystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000842367600007 Publication Date 2022-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007; 1079-7114 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:198538 Serial 8936  
Permanent link to this record
 

 
Author Wang, J.; Zhao, W.-S.; Hu, Y.; Filho, R.N.C.; Peeters, F.M. url  doi
openurl 
  Title Charged vacancy in graphene : interplay between Landau levels and atomic collapse resonances Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 10 Pages 104103-104106  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interplay between a magnetic field and the Coulomb potential from a charged vacancy on the electron states in graphene is investigated within the tight-binding model. The Coulomb potential removes locally Landau level degeneracy, while the vacancy introduces a satellite level next to the normal Landau level. These satellite levels are found throughout the positive-energy region, but in the negative-energy region, they turn into atomic collapse resonances. Crossings between Landau levels with different angular quantum number m are found. Unlike the point impurity system in which an anticrossing occurs between Landau levels of the same m, in this work anticrossing is found between the normal Landau level and the vacancy-induced level. The atomic collapse resonance hybridizes with the Landau levels. The charge at which the lowest Landau level m = -1, N = 1 crosses E = 0 increases with enhancing magnetic field. A Landau level scaling anomaly occurs when the charge is larger than the critical charge beta 0.6 and this critical charge is independent of the magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001199561900008 Publication Date 2024-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:205508 Serial 9137  
Permanent link to this record
 

 
Author Blagojević, J.; Mijin, S.D.; Bekaert, J.; Opačić, M.; Liu, Y.; Milošević, M.V.; Petrović, C.; Popović, Z.V.; Lazarević, N. url  doi
openurl 
  Title Competition of disorder and electron-phonon coupling in 2H-TaSe2-xSx (0≤x≤2) as evidenced by Raman spectroscopy Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 2 Pages 024004-24008  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The vibrational properties of 2H-TaSe<sub>2-x</sub>S<sub>x</sub> (0≤x≤2) single crystals were probed using Raman spectroscopy and density functional theory calculations. The end members revealed two out of four symmetry-predicted Raman active modes, together with the pronounced two-phonon structure, attributable to the enhanced electron-phonon coupling. Additional peaks become observable due to crystallographic disorder for the doped samples. The evolution of the E<sub>2</sub>g<sup>2</sup> mode Fano parameter reveals that the disorder has a weak impact on electron-phonon coupling, which is also supported by the persistence of two-phonon structure in doped samples. As such, this research provides thorough insights into the lattice properties, the effects of crystallographic disorder on Raman spectra, and the interplay of this disorder with the electron-phonon coupling in 2H-TaSe<sub>2-x</sub>S<sub>x</sub> compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001171649400004 Publication Date 2024-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:204404 Serial 9141  
Permanent link to this record
 

 
Author Pascucci, F.; Conti, S.; Perali, A.; Tempère, J.; Neilson, D. url  doi
openurl 
  Title Effects of intralayer correlations on electron-hole double-layer superfluidity Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 9 Pages 094512-94515  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract We investigate the intralayer correlations acting within the layers in a superfluid system of electron -hole spatially separated layers. In this system, superfluidity is predicted to be almost exclusively confined to the Bose-Einstein condensate (BEC) and crossover regimes where the electron -hole pairs are well localized. In this case, Hartree-Fock is an excellent approximation for the intralayer correlations. We find in the BEC regime that the effect of the intralayer correlations on superfluid properties is negligible but in the BCS-BEC crossover regime the superfluid gap is significantly weakened by the intralayer correlations. This is caused by the intralayer correlations boosting the number of low -energy particle -hole excitations that drive the screening. We further find that the intralayer correlations suppress the predicted phenomenon in which the average pair size passes through a minimum as the crossover regime is traversed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001199662600001 Publication Date 2024-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:205476 Serial 9145  
Permanent link to this record
 

 
Author Ozdemir, I.; Arkin, H.; Milošević, M.V.; V. Barth, J.; Aktuerk, E. pdf  doi
openurl 
  Title Exploring the adsorption mechanisms of neurotransmitter and amino acid on Ti3C2-MXene monolayer : insights from DFT calculations Type A1 Journal article
  Year 2024 Publication Surfaces and interfaces Abbreviated Journal  
  Volume 46 Issue Pages 104169-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, we conducted a systematic density functional theory (DFT) investigation of the interaction between Ti3C2-MXene monolayer and biological molecules dopamine (DA) and serine (Ser) as neurotransmitter and amino acid, respectively. Our calculations show good agreement with previous literature findings for the optimized Ti3C2 monolayer. We found that DA and Ser molecules bind to the Ti3C2 surface with adsorption energies of -2.244 eV and -3.960 eV, respectively. The adsorption of Ser resulted in the dissociation of one H atom. Electronic density of states analyses revealed little changes in the electronic properties of the Ti3C2-MXene monolayer upon adsorption of the biomolecules. We further investigated the interaction of DA and Ser with Ti3C2 monolayers featuring surface -termination with OH functional group, and Ti -vacancy. Our calculations indicate that the adsorption energies significantly decrease in the presence of surface termination, with adsorption energies of -0.097 eV and -0.330 eV for DA and Ser, respectively. Adsorption energies on the Ti -vacancy surface, on the other hand, are calculated to be -3.584 eV and -3.856 eV for DA and Ser, respectively. Our results provide insights into the adsorption behavior of biological molecules on Ti3C2-MXene, demonstrating the potential of this material for biosensing and other biomedical applications. These findings highlight the importance of surface modifications in the development of functional materials and devices based on Ti3C2-MXene, and pave the way for future investigations into the use of 2D materials for biomedical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001206950300001 Publication Date 2024-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:205977 Serial 9150  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Floquet engineering of axion and high-Chern number phases in a topological insulator under illumination Type A1 Journal article
  Year 2024 Publication SciPost Physics Core Abbreviated Journal  
  Volume 7 Issue 7 Pages 024-16  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quantum anomalous Hall, high-Chern number, and axion phases in topological insulators are characterized by its Chern invariant C (respectively, C = 1, integer C > 1, and C = 0 with half-quantized Hall conductance of opposite signs on top and bottom surfaces). They are of recent interest because of novel fundamental physics and prospective applications, but identifying and controlling these phases has been challenging in practice. Here we show that these states can be created and switched between in thin films of Bi2Se3 by Floquet engineering, using irradiation by circularly polarized light. We present the calculated phase diagrams of encountered topological phases in Bi2Se3, as a function of wavelength and amplitude of light, as well as sample thickness, after properly taking into account the penetration depth of light and the variation of the gap in the surface states. These findings open pathways towards energy-efficient optoelectronics, advanced sensing, quantum information processing and metrology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001217885300001 Publication Date 2024-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:205972 Serial 9151  
Permanent link to this record
 

 
Author Yorulmaz, U.; Šabani, D.; Sevik, C.; Milošević, M.V. pdf  doi
openurl 
  Title Goodenough-Kanamori-Anderson high-temperature ferromagnetism in tetragonal transition-metal xenes Type A1 Journal article
  Year 2024 Publication 2D materials Abbreviated Journal  
  Volume 11 Issue 3 Pages 035013-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Seminal Goodenough-Kanamori-Anderson (GKA) rules provide an inceptive understanding of the superexchange interaction of two magnetic metal ions bridged with an anion, and suggest fostered ferromagnetic interaction for orthogonal bridging bonds. However, there are no examples of two-dimensional (2D) materials with structure that optimizes the GKA arguments towards enhanced ferromagnetism and its critical temperature. Here we reveal that an ideally planar GKA ferromagnetism is indeed stable in selected tetragonal transition-metal xenes (tTMXs), with Curie temperature above 300 K found in CrC and MnC. We provide the general orbitally-resolved analysis of magnetic interactions that supports the claims and sheds light at the mechanisms dominating the magnetic exchange process in these structures. Furthermore, we propose the set of three GKA-like rules that will guarantee room temperature ferromagetnism. With recent advent of epitaxially-grown tetragonal 2D materials, our findings earmark tTMXs for facilitated spintronic and magnonic applications, or as a desirable magnetic constituent of functional 2D heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001208053200001 Publication Date 2024-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:205464 Serial 9153  
Permanent link to this record
 

 
Author Vermeulen, B.B.; Monteiro, M.G.; Giuliano, D.; Sorée, B.; Couet, S.; Temst, K.; Nguyen, V.D. doi  openurl
  Title Magnetization-switching dynamics driven by chiral coupling Type A1 Journal article
  Year 2024 Publication Physical review applied Abbreviated Journal  
  Volume 21 Issue 2 Pages 024050-11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Dzyaloshinskii-Moriya interaction (DMI) is known to play a central role in stabilizing chiral spin textures such as skyrmions and domain walls (DWs). Electrical manipulation of DW and skyrmion motion offers possibilities for next-generation, scalable and energy-efficient spintronic devices. However, achieving the full potential of these nanoscale devices requires overcoming several challenges, including reliable electrical write and read techniques for these magnetic objects, and addressing pinning and Joule-heating concerns. Here, through micromagnetic simulations and analytical modeling, we show that DMI can directly induce magnetization switching of a nanomagnet with perpendicular magnetic anisotropy (PMA). We find that the switching is driven by the interplay between the DMI-induced magnetic frustration and the PMA. By introducing magnetic tunnel junctions to electrically access and control the magnetization direction of the PMA nanomagnet, we first show the potential of this concept to enable high-density fieldfree spin-orbit torque magnetic random-access memory. Ultimately, we demonstrate that it offers a way of transferring and processing spin information for logic operation without relying on current-driven DW or skyrmion motion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001187487900001 Publication Date 2024-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:205518 Serial 9157  
Permanent link to this record
 

 
Author Moura, V.N.; Chaves, A.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title McMillan-Ginzburg-Landau theory of singularities and discommensurations in charge density wave states of transition metal dichalcogenides Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 9 Pages 094507-94511  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The McMillan-Ginzburg-Landau (MGL) model for charge density waves (CDW) is employed in a systematic phenomenological study of the different phases that have been probed in recent experiments involving transition metal dichalcogenides. We implemented an efficient imaginary time evolution method to solve the MGL equations, which enabled us to investigate the role of different coupling parameters on the CDW patterns and to perform calculations with different energy functionals that lead to several experimentally observed singularities in the CDW phase profiles. In particular, by choosing the appropriate energy functionals, we were able to obtain phases that go beyond the well-known periodic phase slips (discommensurations), exhibiting also topological defects (i.e., vortex-antivortex pairs), domain walls where the CDW order parameter is suppressed, and even CDW with broken rotational symmetry. Finally, we briefly discuss the effect of these different CDW phases on the profile and critical temperature of the competing superconducting state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001199651500001 Publication Date 2024-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:205491 Serial 9158  
Permanent link to this record
 

 
Author Zhou, S.; Zhang, C.; Xu, W.; Zhang, J.; Xiao, Y.; Ding, L.; Wen, H.; Cheng, X.; Hu, C.; Li, H.; Li, X.; Peeters, F.M. pdf  doi
openurl 
  Title Observation of temperature induced phase transitions in TiO superconducting thin film via infrared measurement Type A1 Journal article
  Year 2024 Publication Infrared physics and technology Abbreviated Journal  
  Volume 137 Issue Pages 105160-105169  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In contrast to conventional polycrystalline titanium oxide (TiO), it was found recently that the superconducting transition temperature Tc can be significantly enhanced from about 2 K to 7.4 K in cubic TiO thin films grown epitaxially on alpha-Al2O3 substrates. This kind of TiO film is also expected to have distinctive optoelectronic properties, which are still not very clear up to now. Herein, by using infrared (IR) reflection measurement we investigate the temperature-dependent optoelectronic response of a cubic TiO thin film, in which temperature induced phase transitions are observed. The semiconductor-, metallic- and semiconductor-like electronic phases of this superconducting film are found in the temperature regimes from 10 to 110 K, 110 to 220 K and above 220 K, respectively. The results obtained optically are consistent with those measured by transport experiment. Furthermore, based on an improved reflection model developed here, we extract the complex optical conductivity of the cubic TiO thin film. We are able to approximately determine the characteristic parameters (e.g., effective electron mass, carrier density, scattering time, etc.) for different electronic phases by fitting the optical conductivity with the modified Lorentz formula. These results not only deepen our understanding of the fundamental physics for cubic TiO thin films but also may find applications in optoelectronic devices based on superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001170490200001 Publication Date 2024-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1350-4495 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:204853 Serial 9162  
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Peeters, F.M. doi  openurl
  Title Reduction-enhanced water flux through layered graphene oxide (GO) membranes stabilized with H3O+ and OH- ions Type A1 Journal article
  Year 2024 Publication Physical chemistry, chemical physics Abbreviated Journal  
  Volume 26 Issue 13 Pages 10265-10272  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Modelling and Simulation in Chemistry (MOSAIC)  
  Abstract Graphene oxide (GO) is one of the most promising candidates for next generation of atomically thin membranes. Nevertheless, one of the major issues for real world application of GO membranes is their undesirable swelling in an aqueous environment. Recently, we demonstrated that generation of H3O+ and OH- ions (e.g., with an external electric field) in the interlayer gallery could impart aqueous stability to the layered GO membranes (A. Gogoi, ACS Appl. Mater. Interfaces, 2022, 14, 34946). This, however, compromises the water flux through the membrane. In this study, we report on reducing the GO nanosheets as a solution to this issue. With the reduction of the GO nanosheets, the water flux through the layered GO membrane initially increases and then decreases again beyond a certain degree of reduction. Here, two key factors are at play. Firstly, the instability of the H-bond network between water molecules and the GO nanosheets, which increases the water flux. Secondly, the pore size reduction in the interlayer gallery of the membranes, which decreases the water flux. We also observe a significant improvement in the salt rejection of the membranes, due to the dissociation of water molecules in the interlayer gallery. In particular, for the case of 10% water dissociation, the water flux through the membranes can be enhanced without altering its selectivity. This is an encouraging observation as it breaks the traditional tradeoff between water flux and salt rejection of a membrane.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001186465400001 Publication Date 2024-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:204792 Serial 9168  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.; Sorée, B.; Hinkle, C.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Reduction of magnetic interaction due to clustering in doped transition-metal dichalcogenides : a case study of Mn-, V-, and Fe-doped WSe₂ Type A1 Journal article
  Year 2024 Publication ACS applied materials and interfaces Abbreviated Journal  
  Volume 16 Issue 4 Pages 4991-4998  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using Hubbard-U-corrected density functional theory calculations, lattice Monte Carlo simulations, and spin Monte Carlo simulations, we investigate the impact of dopant clustering on the magnetic properties of WSe2 doped with period four transition metals. We use manganese (Mn) and iron (Fe) as candidate n-type dopants and vanadium (V) as the candidate p-type dopant, substituting the tungsten (W) atom in WSe2. Specifically, we determine the strength of the exchange interaction in Fe-, Mn-, and V-doped WSe2 in the presence of clustering. We show that the clusters of dopants are energetically more stable than discretely doped systems. Further, we show that in the presence of dopant clustering, the magnetic exchange interaction significantly reduces because the magnetic order in clustered WSe2 becomes more itinerant. Finally, we show that the clustering of the dopant atoms has a detrimental effect on the magnetic interaction, and to obtain an optimal Curie temperature, it is important to control the distribution of the dopant atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001155511900001 Publication Date 2024-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:203830 Serial 9169  
Permanent link to this record
 

 
Author Sethu, K.K.V.; Yasin, F.; Swerts, J.; Sorée, B.; De Boeck, J.; Kar, G.S.; Garello, K.; Couet, S. pdf  doi
openurl 
  Title Spin-orbit torque vector quantification in nanoscale magnetic tunnel junctions Type A1 Journal article
  Year 2024 Publication ACS nano Abbreviated Journal  
  Volume 18 Issue 21 Pages 13506-13516  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Spin-orbit torques (SOT) allow ultrafast, energy-efficient toggling of magnetization state by an in-plane charge current for applications such as magnetic random-access memory (SOT-MRAM). Tailoring the SOT vector comprising of antidamping (T-AD) and fieldlike (T-FL) torques could lead to faster, more reliable, and low-power SOT-MRAM. Here, we establish a method to quantify the longitudinal (T-AD) and transverse (T-FL) components of the SOT vector and its efficiency chi(AD) and chi(FL), respectively, in nanoscale three-terminal SOT magnetic tunnel junctions (SOT-MTJ). Modulation of nucleation or switching field (B-SF) for magnetization reversal by SOT effective fields (B-SOT) leads to the modification of SOT-MTJ hysteresis loop behavior from which chi(AD) and chi(FL) are quantified. Surprisingly, in nanoscale W/CoFeB SOT-MTJ, we find chi(FL) to be (i) twice as large as chi(AD) and (ii) 6 times as large as chi(FL) in micrometer-sized W/CoFeB Hall-bar devices. Our quantification is supported by micromagnetic and macrospin simulations which reproduce experimental SOT-MTJ Stoner-Wohlfarth astroid behavior only for chi(FL) > chi(AD). Additionally, from the threshold current for current-induced magnetization switching with a transverse magnetic field, we show that in SOT-MTJ, T-FL plays a more prominent role in magnetization dynamics than T-AD. Due to SOT-MRAM geometry and nanodimensionality, the potential role of nonlocal spin Hall spin current accumulated adjacent to the SOT-MTJ in the mediation of T-FL and chi(FL) amplification merits to be explored.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001226121700001 Publication Date 2024-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:205980 Serial 9173  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Tailoring weak and metallic phases in a strong topological insulator by strain and disorder : conductance fluctuations signatures Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 4 Pages 045129-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Transport measurements are readily used to probe different phases in disordered topological insulators (TIs), where determining topological invariants explicitly is challenging. On that note, universal conductance fluctuations (UCF) theory asserts the conductance G for an ensemble has a Gaussian distribution, and that standard deviation 8G depends solely on the symmetries and dimensions of the system. Using a real-space tight -binding Hamiltonian on a system with Anderson disorder, we explore conductance fluctuations in a thin Bi2Se3 film and demonstrate the agreement of their behavior with UCF hypotheses. We further show that magnetic field applied out-of-plane breaks the time -reversal symmetry and transforms the system's Wigner-Dyson class from root symplectic to unitary, increasing 8G by 2. Finally, we reveal that while Bi2Se3 is a strong TI, weak TI and metallic phases can be stabilized in presence of strain and disorder, and detected by monitoring the conductance fluctuations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001173938400008 Publication Date 2024-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:204765 Serial 9177  
Permanent link to this record
 

 
Author Xiao, H.; Wen, H.; Xu, W.; Cheng, Y.; Zhang, J.; Cheng, X.; Xiao, Y.; Ding, L.; Li, H.; He, B.; Peeters, F.M. pdf  doi
openurl 
  Title Terahertz magneto-optical properties of Nitrogen-doped diamond Type A1 Journal article
  Year 2024 Publication Infrared physics and technology Abbreviated Journal  
  Volume 138 Issue Pages 105237-105239  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Nitrogen-doped diamond (N-D) is one of the most important carbon-based electronic and optical materials. Here we study the terahertz (THz) magneto-optical (MO) properties of N-D grown by microwave plasma-enhanced chemical vapor deposition. The optical microscope, SEM, XRD, Raman spectrum, FTIR spectroscopy and XPS are used for the characterization of N-D samples. Applying THz time-domain spectroscopy (TDS), in combination with the polarization test and the presence of magnetic field in Faraday geometry, THz MO transmissions through N-D are measured from 0 to 8 T at 80 K. The complex right- and left-handed circular transmission coefficients and MO conductivities for N-D are obtained accordingly. Through fitting the experimental results with theoretical formulas of the dielectric constant and MO conductivities for an electron gas, we are able to determine magneto-optically the key electronic parameters of N-D, such as the static dielectric constant epsilon b, the electron density ne, the electronic relaxation time tau, the electronic localization factor alpha and, particularly, the effective electron mass m* obtained under non-resonant condition. The dependence of these parameters upon magnetic field is examined and analyzed. We find that the MO conductivities of N-D can be described rightly by the MO Drude-Smith formulas developed by us previously. It is shown that N-doping and the presence of the magnetic field can lead towards the larger epsilon b and heavier m* in diamond, while ne/tau/alpha in N-D decreases/increases/decreases with increasing magnetic field. The results obtained from this work are benefit to us in gaining an in-depth understanding of the electronic and optoelectronic properties of N-D.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001200173100001 Publication Date 2024-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1350-4495 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:205523 Serial 9178  
Permanent link to this record
 

 
Author Hassani, N.; Movafegh-Ghadirli, A.; Mahdavifar, Z.; Peeters, F.M.; Neek-Amal, M. pdf  doi
openurl 
  Title Two new members of the covalent organic frameworks family : crystalline 2D-oxocarbon and 3D-borocarbon structures Type A1 Journal article
  Year 2024 Publication Computational materials science Abbreviated Journal  
  Volume 241 Issue Pages 1-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Oxocarbons, known for over two centuries, have recently revealed a long-awaited facet: two-dimensional crystalline structures. Employing an intelligent global optimization algorithm (IGOA) alongside densityfunctional calculations, we unearthed a quasi -flat oxocarbon (C 6 0 6 ), featuring an oxygen -decorated hole, and a novel 3D-borocarbon. Comparative analyses with recently synthesized isostructures, such as 2D -porous carbon nitride (C 6 N 6 ) and 2D -porous boroxine (B 6 0 6 ), highlight the unique attributes of these compounds. All structures share a common stoichiometry of X 6 Y 6 (which we call COF-66), where X = B, C, and Y = B, N, O (with X not equal Y), exhibiting a 2D -crystalline structure, except for borocarbon C 6 B 6 , which forms a 3D crystal. In our comprehensive study, we conducted a detailed exploration of the electronic structure of X 6 Y 6 compounds, scrutinizing their thermodynamic properties and systematically evaluating phonon stability criteria. With expansive surface areas, diverse pore sizes, biocompatibility, pi-conjugation, and distinctive photoelectric properties, these structures, belonging to the covalent organic framework (COF) family, present enticing prospects for fundamental research and hold potential for biosensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001215960700001 Publication Date 2024-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:206005 Serial 9179  
Permanent link to this record
 

 
Author Li, C.; Lyu, Y.-Y.; Yue, W.-C.; Huang, P.; Li, H.; Li, T.; Wang, C.-G.; Yuan, Z.; Dong, Y.; Ma, X.; Tu, X.; Tao, T.; Dong, S.; He, L.; Jia, X.; Sun, G.; Kang, L.; Wang, H.; Peeters, F.M.; Milošević, M.V.; Wu, P.; Wang, Y.-L. pdf  doi
openurl 
  Title Unconventional superconducting diode effects via antisymmetry and antisymmetry breaking Type A1 Journal article
  Year 2024 Publication Nano letters Abbreviated Journal  
  Volume 24 Issue 14 Pages 4108-4116  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Symmetry breaking plays a pivotal role in unlocking intriguing properties and functionalities in material systems. For example, the breaking of spatial and temporal symmetries leads to a fascinating phenomenon: the superconducting diode effect. However, generating and precisely controlling the superconducting diode effect pose significant challenges. Here, we take a novel route with the deliberate manipulation of magnetic charge potentials to realize unconventional superconducting flux-quantum diode effects. We achieve this through suitably tailored nanoengineered arrays of nanobar magnets on top of a superconducting thin film. We demonstrate the vital roles of inversion antisymmetry and its breaking in evoking unconventional superconducting effects, namely a magnetically symmetric diode effect and an odd-parity magnetotransport effect. These effects are nonvolatilely controllable through in situ magnetization switching of the nanobar magnets. Our findings promote the use of antisymmetry (breaking) for initiating unconventional superconducting properties, paving the way for exciting prospects and innovative functionalities in superconducting electronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001193010700001 Publication Date 2024-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:205553 Serial 9180  
Permanent link to this record
 

 
Author Bogaerts, R.; de Keyser, A.; van Bockstal, L.; van der Burgt, M.; van Esch, A.; Provoost, R.; Silverans, R.; Herlach, F.; Swinnen, B.; van de Stadt, A.F.W.; Koenraad, P.M.; Wolter, J.H.; Karavolas, V.C.; Peeters, F.M.; van de Graaf, W.; Borghs, G. openurl 
  Title 2D semiconductors at the Leuven pulsed field facility Type A1 Journal article
  Year 1997 Publication Physicalia magazine Abbreviated Journal  
  Volume 19 Issue Pages 229-239  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Gent Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0770-0520 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:19257 Serial 7  
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H. doi  openurl
  Title Ab initio approach to superexchange interactions in alkali doped fullerides AC60 Type P1 Proceeding
  Year 2004 Publication AIP conference proceedings T2 – 18th International Winterschool/Euroconference on Electronic Properties, of Novel Materials, MAR 06-JUN 13, 2004, Kirchberg, AUSTRIA Abbreviated Journal  
  Volume Issue Pages 393-396  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract The superexchange interactions between the fullerenes arise as a result of the electron transfer from the C-60 molecule to the alkali atom and back. We present a scheme, which is a configuration interaction approach based on the valence bond (Heitler-London) method. The effect of superexchange is described together with chemical bonding by constructing and solving a secular equation, rather than by using a perturbation treatment. We have considered 180degrees and 90degrees superexchange for the C-60 Cs-C-60 pathways. The calculations account for unusual electronic properties of polymer orthorhombic and quenched cubic phases of CsC60: two lines in nuclear magnetic resonance experiments, the development of a spin-singlet ground state and a decrease of magnetic susceptibility as T-->0.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000224699400085 Publication Date 2004-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 723 Series Issue Edition  
  ISSN 0-7354-0204-3 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved (down) Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103752 Serial 27  
Permanent link to this record
 

 
Author Saniz, R.; Vercauteren, S.; Lamoen, D.; Partoens, B.; Barbiellini, B. pdf  doi
openurl 
  Title Accurate description of the van der Waals interaction of an electron-positron pair with the surface of a topological insulator Type P1 Proceeding
  Year 2014 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 505 Issue Pages 012002  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Positrons can be trapped in localized states at the surface of a material, and thus quite selectively interact with core or valence surface electrons. Hence, advanced surface positron spectroscopy techniques can present the ideal tools to study a topological insulator, where surface states play a fundamental role. We analyze the problem of a positron at a TI surface, assuming that it is a weakly physisorbed positronium (Ps) atom. To determine if the surface of interest in a material can sustain such a physisorption, an accurate description of the underlying van der Waals (vdW) interaction is essential. We have developed a first-principles parameterfree method, based on the density functional theory, to extract key parameters determining the vdW interaction potential between a Ps atom and the surface of a given material. The method has been successfully applied to quartz and preliminary results on Bi2Te2Se indicate the existence of a positron surface state. We discuss the robustness of our predictions versus the most relevant approximations involved in our approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000338216500002 Publication Date 2014-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes ; We thank A. Weiss for very useful conversations. We acknowledge financial support from FWO-Vlaanderen (projectG.0150.13). This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA), adivision of the Flemish Supercomputer Center (VSC), funded by the Hercules foundation and the Flemish Government (EWI Department). B. B. is supported by DOE grants Nos. DE-FG02-07ER46352 and DE-AC02-05CH11231 for theory support at ALS, Berkeley, and a NERSC computer time allocation. ; Approved (down) Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:118264 Serial 46  
Permanent link to this record
 

 
Author Li, B. openurl 
  Title Aharonov-Bohm effect in semiconductor quantum rings Type Doctoral thesis
  Year 2012 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:99488 Serial 85  
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Mints, R.G.; Peeters, F.M. doi  openurl
  Title Andreev-type states induced by quantum confinement Type A1 Journal article
  Year 2008 Publication Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Abbreviated Journal J Surf Investig-X-Ra  
  Volume 2 Issue 4 Pages 611-615  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract The properties of a clean superconductor with nanoscale dimensions are governed by quantum confinement of the electrons. This results in a spatially inhomogeneous superconducting condensate and in the formation of new Andreev-type quasiparticle states. These states are mainly located beyond regions where the superconducting condensate is enhanced. A numerical self-consistent solution of the Bogoliubov-de Gennes equations for a cylindrical metallic nanowire shows that these new Andreev-type states decrease the ratio of the energy gap to the critical temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000262864600021 Publication Date 2008-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1027-4510;1819-7094; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved (down) Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:75991 Serial 113  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: