|   | 
Details
   web
Records
Author Lima, I.L.C.; Milošević, M.V.; Peeters, F.M.; Chaves, A.
Title Tuning of exciton type by environmental screening Type A1 Journal article
Year 2023 Publication Physical review B Abbreviated Journal
Volume 108 Issue 11 Pages 115303-115308
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically investigate the binding energy and electron-hole (e-h) overlap of excitonic states confined at the interface between two-dimensional materials with type-II band alignment, i.e., with lowest conduction and highest valence band edges placed in different materials, arranged in a side-by-side planar heterostructure. We propose a variational procedure within the effective mass approximation to calculate the exciton ground state and apply our model to a monolayer MoS2/WS2 heterostructure. The role of nonabrupt interfaces between the materials is accounted for in our model by assuming a WxMo1-xS2 alloy around the interfacial region. Our results demonstrate that (i) interface-bound excitons are energetically favorable only for small interface thickness and/or for systems under high dielectric screening by the materials surrounding the monolayer, and that (ii) the interface exciton binding energy and its e-h overlap are controllable by the interface width and dielectric environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001077758300002 Publication Date 2023-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited 1 Open Access
Notes Approved (up) Most recent IF: 3.7; 2023 IF: 3.836
Call Number UA @ admin @ c:irua:200356 Serial 9110
Permanent link to this record
 

 
Author Tchakoua, T.; Powell, A.D.; Gerrits, N.; Somers, M.F.; Doblhoff-Dier, K.; Busnengo, H.F.; Kroes, G.-J.
Title Simulating highly activated sticking of H₂ on Al(110) : quantum versus quasi-classical dynamics Type A1 Journal article
Year 2023 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal
Volume 127 Issue 11 Pages 5395-5407
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We evaluate the importance of quantum effects on the sticking of H2 on Al(110) for conditions that are close to those of molecular beam experiments that have been done on this system. Calculations with the quasi-classical trajectory (QCT) method and with quantum dynamics (QD) are performed using a model in which only motion in the six molecular degrees of freedom is allowed. The potential energy surface used has a minimum barrier height close to the value recently obtained with the quantum Monte Carlo method. Monte Carlo averaging over the initial rovibrational states allowed the QD calculations to be done with an order of magnitude smaller computational expense. The sticking probability curve computed with QD is shifted to lower energies relative to the QCT curve by 0.21 to 0.05 kcal/mol, with the highest shift obtained for the lowest incidence energy. Quantum effects are therefore expected to play a small role in calculations that would evaluate the accuracy of electronic structure methods for determining the minimum barrier height to dissociative chemisorption for H2 + Al(110) on the basis of the standard procedure for comparing results of theory with molecular beam experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000971346700001 Publication Date 2023-03-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 3.7; 2023 IF: 4.536
Call Number UA @ admin @ c:irua:196071 Serial 8525
Permanent link to this record
 

 
Author Kavak, S.; Kadu, A.A.; Claes, N.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Batenburg, K.J.; Bals, S.
Title Quantitative 3D Investigation of Nanoparticle Assemblies by Volumetric Segmentation of Electron Tomography Data Sets Type A1 Journal article
Year 2023 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal
Volume 127 Issue 20 Pages 9725-9734
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Morphological characterization of nanoparticle assemblies and hybrid nanomaterials is critical in determining their structure-property relationships as well as in the development of structures with desired properties. Electron tomography has become a widely utilized technique for the three-dimensional characterization of nanoparticle assemblies. However, the extraction of quantitative morphological parameters from the reconstructed volume can be a complex and labor-intensive task. In this study, we aim to overcome this challenge by automating the volumetric segmentation process applied to three-dimensional reconstructions of nanoparticle assemblies. The key to enabling automated characterization is to assess the performance of different volumetric segmentation methods in accurately extracting predefined quantitative descriptors for morphological characterization. In our methodology, we compare the quantitative descriptors obtained through manual segmentation with those obtained through automated segmentation methods, to evaluate their accuracy and effectiveness. To show generality, our study focuses on the characterization of assemblies of CdSe/CdS quantum dots, gold nanospheres and CdSe/CdS encapsulated in polymeric micelles, and silica-coated gold nanorods decorated with both CdSe/CdS or PbS quantum dots. We use two unsupervised segmentation algorithms: the watershed transform and the spherical Hough transform. Our results demonstrate that the choice of automated segmentation method is crucial for accurately extracting the predefined quantitative descriptors. Specifically, the spherical Hough transform exhibits superior performance in accurately extracting quantitative descriptors, such as particle size and interparticle distance, thereby allowing for an objective, efficient, and reliable volumetric segmentation of complex nanoparticle assemblies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000991752700001 Publication Date 2023-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 2 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 1181122N ; Horizon 2020 Framework Programme, 861950 ; H2020 European Research Council, 815128 ; Approved (up) Most recent IF: 3.7; 2023 IF: 4.536
Call Number EMAT @ emat @c:irua:196971 Serial 8793
Permanent link to this record
 

 
Author Teunissen, J.L.; Braeckevelt, T.; Skvortsova, I.; Guo, J.; Pradhan, B.; Debroye, E.; Roeffaers, M.B.J.; Hofkens, J.; Van Aert, S.; Bals, S.; Rogge, S.M.J.; Van Speybroeck, V.
Title Additivity of Atomic Strain Fields as a Tool to Strain-Engineering Phase-Stabilized CsPbI3Perovskites Type A1 Journal Article
Year 2023 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C
Volume 127 Issue 48 Pages 23400-23411
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract CsPbI3 is a promising perovskite material for photovoltaic applications in its photoactive perovskite or black phase. However, the material degrades to a photovoltaically inactive or yellow phase at room temperature. Various mitigation strategies are currently being developed to increase the lifetime of the black phase, many of which rely on inducing strains in the material that hinder the black-to-yellow phase transition. Physical insight into how these strategies exactly induce strain as well as knowledge of the spatial extent over which these strains impact the material is crucial to optimize these approaches but is still lacking. Herein, we combine machine learning potential-based molecular dynamics simulations with our in silico strain engineering approach to accurately quantify strained large-scale atomic structures on a nanosecond time scale. To this end, we first model the strain fields introduced by atomic substitutions as they form the most elementary strain sources. We demonstrate that the magnitude of the induced strain fields decays exponentially with the distance from the strain source, following a decay rate that is largely independent of the specific substitution. Second, we show that the total strain field induced by multiple strain sources can be predicted to an excellent approximation by summing the strain fields of each individual source. Finally, through a case study, we illustrate how this additive character allows us to explain how complex strain fields, induced by spatially extended strain sources, can be predicted by adequately combining the strain fields caused by local strain sources. Hence, the strain additivity proposed here can be adopted to further our insight into the complex strain behavior in perovskites and to design strain from the atomic level onward to enhance their sought-after phase stability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001116862000001 Publication Date 2023-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes This work was supported by iBOF-21-085 PERsist (Special Research Fund of Ghent University, KU Leuven Research Fund, and the Research Fund of the University of Antwerp). S.M.J.R., T.B., and B.P. acknowledge financial support from the Research Foundation-Flanders (FWO) through two postdoctoral fellow- ships [grant nos. 12T3522N (S.M.J.R.) and 1275521N (B.P.)] and an SB-FWO fellowship [grant no. 1SC1319 (T.B.)]. E.D., M.B.J.R., and J.H. acknowledge financial support from the Research Foundation-Flanders (FWO, grant nos. G.0B39.15, G.0B49.15, G098319N, S002019N, S004322N, and ZW15_09- GOH6316). J.H. acknowledges support from the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) and the MPI as an MPI fellow. S.V.A. and S.B. acknowledge financial support from the Research Foundation-Flanders (FWO, grant no. G0A7723N). S.M.J.R. and V.V.S. acknowledge funding from the Research Board of Ghent University (BOF). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation- Flanders (FWO) and the Flemish Government�department EWI.; KU Leuven, iBOF-21-085 PERsist ; Universiteit Antwerpen, iBOF-21-085 PERsist ; Universiteit Gent, iBOF-21-085 PERsist ; Vlaamse regering, CASAS2, Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, G.0B39.15 G098319N G.0B49.15 1SC1319 12T3522N ZW15 09-GOH6316 G0A7723N 1275521N S004322N S002019N ; Approved (up) Most recent IF: 3.7; 2023 IF: 4.536
Call Number EMAT @ emat @c:irua:202124 Serial 8985
Permanent link to this record
 

 
Author Delfino, C.L.; Hao, Y.; Martin, C.; Minoia, A.; Gopi, E.; Mali, K.S.; Van der Auweraer, M.; Geerts, Y.H.; Van Aert, S.; Lazzaroni, R.; De Feyter, S.
Title Conformation-Dependent Monolayer and Bilayer Structures of an Alkylated TTF Derivative Revealed using STM and Molecular Modeling Type A1 Journal Article
Year 2023 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C
Volume 127 Issue 47 Pages 23023-23033
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract In this study, the multi-layer self-assembled molecular network formation of an alkylated tetrathiafulvalene compound is studied at the liquid-solid interface between 1-phenyloctane and graphite. A combined theoretical/experimental approach associating force-field and quantum-chemical calculations with scanning tunnelling microscopy is used to determine the two-dimensional self-assembly beyond the monolayer, but also to further the understanding of the molecular adsorption conformation and its impact on the molecular packing within the assemblies at the monolayer and bilayer level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001111637100001 Publication Date 2023-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Financial support from the Research Foundation-Flanders (FWO G081518N, G0A3220N) and KU Leuven–Internal Funds (C14/19/079) is acknowledged. This work was in part supported by FWO and F. R. S.-FNRS under the Excellence of Science EOS program (project 30489208 and 40007495). C.M. acknowledges the financial support: Grants PID2021-128761OA-C22 and CNS2022-136052 funded by MCIN/AEI/10.13039/501100011033 by the “European Union” and SBPLY/21/180501/000127 funded by JCCM and by the EU through “Fondo Europeo de Desarollo Regional” (FEDER). Research in Mons is also supported by the Belgian National Fund for Scientific Research (FRS-FNRS) within the Consortium des Équipements de Calcul Intensif – CÉCI, under Grant 2.5020.11, and by the Walloon Region (ZENOBE Tier-1 supercomputer, under grant 1117545). Approved (up) Most recent IF: 3.7; 2023 IF: 4.536
Call Number EMAT @ emat @c:irua:201671 Serial 8974
Permanent link to this record
 

 
Author Biondo, O.; Hughes, A.; van der Steeg, A.; Maerivoet, S.; Loenders, B.; van Rooij, G.; Bogaerts, A.
Title Power concentration determined by thermodynamic properties in complex gas mixtures : the case of plasma-based dry reforming of methane Type A1 Journal article
Year 2023 Publication Plasma sources science and technology Abbreviated Journal
Volume 32 Issue 4 Pages 045001-45020
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We investigate discharge contraction in a microwave plasma at sub-atmospheric pressure, operating in CO2 and CO2/CH4 mixtures. The rise of the electron number density with plasma contraction intensifies the gas heating in the core of the plasma. This, in turn, initiates fast core-periphery transport and defines the rate of thermal chemistry over plasma chemistry. In this context, power concentration describes the overall mechanism including plasma contraction and chemical kinetics. In a complex chemistry such as dry reforming of methane, transport of reactive species is essential to define the performance of the reactor and achieve the desired outputs. Thus, we couple experimental observations and thermodynamic calculations for model validation and understanding of reactor performance. Adding CH4 alters the thermodynamic properties of the mixture, especially the reactive component of the heat conductivity. The increase in reactive heat conductivity increases the pressure at which plasma contraction occurs, because higher rates of gas heating are required to reach the same temperature. In addition, we suggest that the predominance of heat conduction over convection is a key condition to observe the effect of heat conductivity on gas temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000963579500001 Publication Date 2023-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.8 Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 3.8; 2023 IF: 3.302
Call Number UA @ admin @ c:irua:196044 Serial 8397
Permanent link to this record
 

 
Author Tsonev, I.; Boothroyd, J.; Kolev, S.; Bogaerts, A.
Title Simulation of glow and arc discharges in nitrogen: effects of the cathode emission mechanisms Type A1 Journal Article
Year 2023 Publication PLASMA SOURCES SCIENCE & TECHNOLOGY Abbreviated Journal
Volume 32 Issue 5 Pages 054002
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Experimental evidence in the literature has shown that low-current direct current nitrogen discharges can exist in both glow and arc regimes at atmospheric pressure. However, modelling investigations of the positive column that include the influence of the cathode phenomena are scarce. In this work we developed a 2D axisymmetric model of a plasma discharge in flowing nitrogen gas, studying the influence of the two cathode emission mechanisms—thermionic field emission and secondary electron emission—on the cathode region and the positive column. We show for an inlet gas flow velocity of 1 m s<sup>−1</sup>in the current range of 80–160 mA, that the electron emission mechanism from the cathode greatly affects the size and temperature of the cathode region, but does not significantly influence the discharge column at atmospheric pressure. We also demonstrate that in the discharge column the electron density balance is local and the electron production and destruction is dominated by volume processes. With increasing flow velocity, the discharge contraction is enhanced due to the increased convective heat loss. The cross sectional area of the conductive region is strongly dependent on the gas velocity and heat conductivity of the gas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000987841800001 Publication Date 2023-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.8 Times cited Open Access Not_Open_Access
Notes This research is financially supported by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 965546. Approved (up) Most recent IF: 3.8; 2023 IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:196972 Serial 8788
Permanent link to this record
 

 
Author Vanraes, P.; Parayil Venugopalan, S.; Besemer, M.; Bogaerts, A.
Title Assessing neutral transport mechanisms in aspect ratio dependent etching by means of experiments and multiscale plasma modeling Type A1 Journal Article
Year 2023 Publication Plasma Sources Science and Technology Abbreviated Journal Plasma Sources Sci. Technol.
Volume 32 Issue 6 Pages 064004
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Since the onset of pattern transfer technologies for chip manufacturing, various strategies have been developed to circumvent or overcome aspect ratio dependent etching (ARDE). These methods have, however, their own limitations in terms of etch non-idealities, throughput or costs. Moreover, they have mainly been optimized for individual in-device features and die-scale patterns, while occasionally ending up with poor patterning of metrology marks, affecting the alignment and overlay in lithography. Obtaining a better understanding of the underlying mechanisms of ARDE and how to mitigate them therefore remains a relevant challenge to date, for both marks and advanced nodes. In this work, we accordingly assessed the neutral transport mechanisms in ARDE by means of experiments and multiscale modeling for SiO<sub>2</sub>etching with CHF<sub>3</sub>/Ar and CF<sub>4</sub>/Ar plasmas. The experiments revealed a local maximum in the etch rate for an aspect ratio around unity, i.e. the simultaneous occurrence of regular and inverse reactive ion etching lag for a given etch condition. We were able to reproduce this ARDE trend in the simulations without taking into account charging effects and the polymer layer thickness, suggesting shadowing and diffuse reflection of neutrals as the primary underlying mechanisms. Subsequently, we explored four methods with the simulations to regulate ARDE, by varying the incident plasma species fluxes, the amount of polymer deposition, the ion energy and angular distribution and the initial hardmask sidewall angle, for which the latter was found to be promising in particular. Although our study focusses on feature dimensions characteristic to metrology marks and back-end-of-the-line integration, the obtained insights have a broader relevance, e.g. to the patterning of advanced nodes. Additionally, this work supports the insight that physisorption may be more important in plasma etching at room temperature than originally thought, in line with other recent studies, a topic on which we recommend further research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001021250100001 Publication Date 2023-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.8 Times cited Open Access Not_Open_Access
Notes P Vanraes acknowledges funding by ASML for the project ‘Computational simulation of plasma etching of trench structures’. P Vanraes and A Bogaerts want to express their gratitude to Mark J Kushner (University of Michigan) for the sharing of the HPEM and MCFPM codes, and for the interesting exchange of views. P Vanraes wishes to thank Violeta Georgieva and Stefan Tinck for the fruitful discussions on the HPEM code, Yu-Ru Zhang for an example of the CCP reactor code and Karel Venken for his technical help with the server maintenance and use. S P Venugopalan and M Besemer wish to thank Luigi Scaccabarozzi, Sander Wuister, Coen Verschuren, Michael Kubis, Kuan-Ming Chen, Ruben Maas, Huaichen Zhang and Julien Mailfert (ASML) for the insightful discussions. Approved (up) Most recent IF: 3.8; 2023 IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:197760 Serial 8811
Permanent link to this record
 

 
Author Maes, R.R.; Potters, G.; Fransen, E.; Geuens, J.; Van Schaeren, R.; Lenaerts, S.
Title Can we find an optimal fatty acid composition of biodiesel in order to improve oxidation stability? Type A1 Journal article
Year 2023 Publication Sustainability Abbreviated Journal
Volume 15 Issue 13 Pages 10310-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Medical Genetics (MEDGEN)
Abstract Air quality currently poses a major risk for human health. Currently, diesel is widely used as fuel and is a significant source of nitrogen oxides (NOx) and particulate matter (PM), both hazardous to human health. A good alternative for mineral diesel is biodiesel, not only for the improvement of hazardous components in the exhaust gases but also because it can be produced in view of a circular economy. Biodiesel consists of a mix of different fatty acid methyl esters, which can react with oxygen. As a consequence, the oxidation stability of biodiesel has to be studied, because the oxidation of biodiesel could affect the performance of the engine due to the wear of injectors and fuel pumps. The oxidation stability could also affect the quality of the exhaust gases due to increases in NOx and PM. The basic question we try to answer in this communication is: 'Can we find an optimal fatty acid composition in order to have a maximal oxidation stability?' In this article, we try to find the optimal fatty acid composition according to the five most common fatty acid methyl esters present in biodiesel in order to reach a maximal oxidation stability. The measurements and statistical analysis show, however, that there is no useful regression model because there are statistically significant two- and three-way interactions among the different fatty acids.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001028597300001 Publication Date 2023-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 3.9; 2023 IF: 1.789
Call Number UA @ admin @ c:irua:198241 Serial 8839
Permanent link to this record
 

 
Author Dinger, J.; Friedrich, T.; Reimann, T.; Toepfer, J.
Title NiMn₂O₄ revisited : temperature-dependent cation distribution from in situ neutron diffraction and thermopower studies Type A1 Journal article
Year 2023 Publication Journal of the American Ceramic Society Abbreviated Journal
Volume 106 Issue 3 Pages 1834-1847
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The cation distribution of the negative temperature coefficient (NTC) thermistor spinel NiMn2O4 was studied in the temperature range from 55 to 900 degrees C, using a combined in situ neutron diffraction and thermopower study. Rietveld refinements of in situ neutron diffraction data reveal a temperature dependence of the degree of inversion with an inversion parameter of 0.70(1) at 900 degrees C and 0.87(1) at 55 degrees C. Thermopower measurements were evaluated using a modified Heikes formula, and the [Mn4+]/[Mn3+] ratio on octahedral sites of the spinel structure was calculated considering spin and orbital degeneracy. The inversion degree and disproportionation parameter, determined independently as function of temperature, were used to calculate the cation distribution of NiMn2O4 in the whole temperature range. At high temperature, within the stability range of the spinel, the cation distribution is characterized by a moderate degree of inversion with a concentration of NiB2+${\mathrm{Ni}}\mathrm{B}<
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000880360600001 Publication Date 2022-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7820 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 3.9; 2023 IF: 2.841
Call Number UA @ admin @ c:irua:192087 Serial 7326
Permanent link to this record
 

 
Author Phuttaro, C.; Krishnan, S.; Saritpongteeraka, K.; Charnnok, B.; Diels, L.; Chaiprapat, S.
Title Integrated poultry waste management by co-digestion with perennial grass : effects of mixing ratio, pretreatments, reaction temperature, and effluent recycle on biomethanation yield Type A1 Journal article
Year 2023 Publication Biochemical engineering journal Abbreviated Journal
Volume 196 Issue Pages 108937-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract This work aims to enhance the efficiency of integrated poultry waste management in bio-circular-green economy by maximizing the co-digestion of chicken manure and its digestate-grown biomass. In a series of batch assays, Napier grass (NG) was mixed with chicken manure (CM) at various proportions (100:0, 80:20, 60:40, 50:50, 40:60, 20:80 and 0:100) to identify co-substrate synergism, followed by physiochemical conditioning (size reduction and ultrasonication) of NG before co-digestion. Results indicated that NG mix of at least 80% was required to gain a full methanation potential of the individual substrates; no synergistic ratio above unity was found. However, the combined effect of size reduction and sonication was found to markedly improve the cosubstrate's biodegradability by 88.7%. The findings were then used to run continuous co-digestion at various operating regimes. In optimal continuous co-digestion condition, NG particle size of 0.6-2.4 mm combined with sonication intensity at 1111 kJ/kgTS improved biomethanation yield as high as 106.3%. Sub-thermophilic digestion at 45 degrees C was shown to give a higher and more stable CH4 yield than at 55 degrees C. Finally, it was also found that recycling liquid effluent at 40% to replace freshwater in feed, although showed no significant difference in CH4 yield (& alpha; = 0.05), noticeably increased system buffer capacity. This optimized biodegradation regime could give co-digestion waste management a higher overall plant efficiency and economic return.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001054826200001 Publication Date 2023-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1369-703x; 1873-295x ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 3.9; 2023 IF: 2.892
Call Number UA @ admin @ c:irua:199209 Serial 8887
Permanent link to this record
 

 
Author Craco, L.; Carara, S.S.; Barboza, E. da S.; Milošević, M.V.; Pereira, T.A.S.
Title Electronic and valleytronic properties of crystalline boron-arsenide tuned by strain and disorder Type A1 Journal article
Year 2023 Publication RSC advances Abbreviated Journal
Volume 13 Issue 26 Pages 17907-17913
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ab initio density functional theory (DFT) and DFT plus coherent potential approximation (DFT + CPA) are employed to reveal, respectively, the effect of in-plane strain and site-diagonal disorder on the electronic structure of cubic boron arsenide (BAs). It is demonstrated that tensile strain and static diagonal disorder both reduce the semiconducting one-particle band gap of BAs, and a V-shaped p-band electronic state emerges – enabling advanced valleytronics based on strained and disordered semiconducting bulk crystals. At biaxial tensile strains close to 15% the valence band lineshape relevant for optoelectronics is shown to coincide with one reported for GaAs at low energies. The role played by static disorder on the As sites is to promote p-type conductivity in the unstrained BAs bulk crystal, consistent with experimental observations. These findings illuminate the intricate and interdependent changes in crystal structure and lattice disorder on the electronic degrees of freedom of semiconductors and semimetals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001008414700001 Publication Date 2023-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 3.9; 2023 IF: 3.108
Call Number UA @ admin @ c:irua:197317 Serial 8861
Permanent link to this record
 

 
Author Ulu Okudur, F.; Batuk, M.; Hadermann, J.; Safari, M.; De Sloovere, D.; Kumar Mylavarapu, S.; Joos, B.; D'Haen, J.; Van Bael, M.K.; Hardy, A.
Title Solution-gel-based surface modification of LiNi0.5Mn1.5O4-δ with amorphous Li-Ti-O coating Type A1 Journal article
Year 2023 Publication RSC advances Abbreviated Journal
Volume 13 Issue 47 Pages 33146-33158
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract LNMO (LiNi0.5Mn1.5O4-delta) is a high-energy density positive electrode material for lithium ion batteries. Unfortunately, it suffers from capacity loss and impedance rise during cycling due to electrolyte oxidation and electrode/electrolyte interface instabilities at high operating voltages. Here, a solution-gel synthesis route was used to coat 0.5-2.5 mu m LNMO particles with amorphous Li-Ti-O (LTO) for improved Li conduction, surface structural stability and cyclability. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) analysis coupled with energy dispersive X-ray (EDX) showed Ti-rich amorphous coatings/islands or Ti-rich spinel layers on many of the LTO-modified LNMO facets, with a thickness varying from about 1 to 10 nm. The surface modification in the form of amorphous islands was mostly possible on high-energy crystal facets. Physicochemical observations were used to propose a molecular mechanism for the surface modification, combining insights from metalorganic chemistry with the crystallographic properties of LNMO. The improvements in functional properties were investigated in half cells. The cell impedance increased faster for the bare LNMO compared to amorphous LTO modified LNMO, resulting in R-ct values as high as 1247 Omega (after 1000 cycles) for bare LNMO, against 216 Omega for the modified material. At 10C, the modified material boosted a 15% increase in average discharge capacity. The improvements in electrochemical performance were attributed to the increase in electrochemically active surface area, as well as to improved HF-scavenging, resulting in the formation of protective byproducts, generating a more stable interface during prolonged cycling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001102666700001 Publication Date 2023-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access
Notes Approved (up) Most recent IF: 3.9; 2023 IF: 3.108
Call Number UA @ admin @ c:irua:202091 Serial 9096
Permanent link to this record
 

 
Author Bathula, G.; Rana, S.; Bandalla, S.; Dosarapu, V.; Mavurapu, S.; Rajeevan, V.V.A.; Sharma, B.; Jonnalagadda, S.B.; Baithy, M.; Vasam, C.S.
Title The role of WOx and dopants (ZrO₂ and SiO₂) on CeO₂-based nanostructure catalysts in the selective oxidation of benzyl alcohol to benzaldehyde under ambient conditions Type A1 Journal article
Year 2023 Publication RSC advances Abbreviated Journal
Volume 13 Issue 51 Pages 36242-36253
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Herein, the efficacy of WOx-promoted CeO2-SiO2 and CeO2-ZrO2 mixed oxide catalysts in the solvent-free selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as an oxidant is reported. We evaluated the effects of the oxidant and catalyst concentration, reaction duration, and temperature on the reaction with an aim to optimize the reaction conditions. The as-prepared CeO2, CeO2-ZrO2, CeO2-SiO2, WOx/CeO2, WOx/CeO2-ZrO2, and WOx/CeO2-SiO2 catalysts were characterized by X-ray diffraction (XRD), N-2 adsorption-desorption, Raman spectroscopy, temperature-programmed desorption of ammonia (TPD-NH3), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). These characterisation results indicated that the WOx/CeO2-SiO2 catalyst possessed improved physicochemical (i.e., structural, textural, and acidic) properties owing to the strong interactivity between WOx and CeO2-SiO2. A higher number of Ce3+ ions (I-u '''/I-Total) were created with the WOx/CeO2-SiO2 catalyst than those with the other catalysts in this work, indicating the generation of a high number of oxygen vacancies. The WOx/CeO2-SiO2 catalyst exhibited a high conversion of benzyl alcohol (>99%) and a high selectivity (100%) toward benzaldehyde compared to the other promoted catalysts (i.e., WOx/CeO2 and WOx/CeO2-ZrO2), which is attributed to the smaller particle size of the WOx and CeO2 and their high specific surface area, more significant number of acidic sites, and superior number of oxygen vacancies. The WOx/CeO2-SiO2 catalyst could be quickly recovered and utilized at least five times without suffering any appreciable activity loss.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001123102800001 Publication Date 2023-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access
Notes Approved (up) Most recent IF: 3.9; 2023 IF: 3.108
Call Number UA @ admin @ c:irua:202115 Serial 9107
Permanent link to this record
 

 
Author Oliveira, M.C.; Cordeiro, R.M.; Bogaerts, A.
Title Effect of lipid oxidation on the channel properties of Cx26 hemichannels : a molecular dynamics study Type A1 Journal article
Year 2023 Publication Archives of biochemistry and biophysics Abbreviated Journal
Volume 746 Issue Pages 109741-12
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Intercellular communication plays a crucial role in cancer, as well as other diseases, such as inflammation, tissue degeneration, and neurological disorders. One of the proteins responsible for this, are connexins (Cxs), which come together to form a hemichannel. When two hemichannels of opposite cells interact with each other, they form a gap junction (GJ) channel, connecting the intracellular space of these cells. They allow the passage of ions, reactive oxygen and nitrogen species (RONS), and signaling molecules from the interior of one cell to another cell, thus playing an essential role in cell growth, differentiation, and homeostasis. The importance of GJs for disease induction and therapy development is becoming more appreciated, especially in the context of oncology. Studies have shown that one of the mechanisms to control the formation and disruption of GJs is mediated by lipid oxidation pathways, but the underlying mechanisms are not well understood. In this study, we performed atomistic molecular dynamics simulations to evaluate how lipid oxidation influences the channel properties of Cx26 hemichannels, such as channel gating and permeability. Our results demonstrate that the Cx26 hemichannel is more compact in the presence of oxidized lipids, decreasing its pore diameter at the extracellular side and increasing it at the amino terminus domains, respectively. The permeability of the Cx26 hemichannel for water and RONS molecules is higher in the presence of oxidized lipids. The latter may facilitate the intracellular accumulation of RONS, possibly increasing oxidative stress in cells. A better understanding of this process will help to enhance the efficacy of oxidative stress-based cancer treatments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001079100300001 Publication Date 2023-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-9861; 1096-0384 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access
Notes Approved (up) Most recent IF: 3.9; 2023 IF: 3.165
Call Number UA @ admin @ c:irua:200282 Serial 9028
Permanent link to this record
 

 
Author Bian, G.; Ageeva, O.; Roddatis, V.; Li, C.; Pennycook, T.J.; Habler, G.; Abart, R.
Title Crystal structure controls on oriented primary magnetite micro-inclusions in plagioclase From oceanic gabbro Type A1 Journal article
Year 2023 Publication Journal of petrology Abbreviated Journal
Volume 64 Issue 3 Pages egad008-18
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Oriented needle-, lath- and plate-shaped magnetite micro-inclusions in rock forming plagioclase from mafic intrusive rocks, were investigated using correlated optical microscopy and scanning transmission electron microscopy. The magnetite micro-inclusions were analysed on cuts parallel and perpendicular to the inclusion-elongation directions. The crystal structures of the two phases are in direct contact along the interfaces. The shape, shape orientation and crystallographic orientation relationships between the magnetite micro-inclusions and the plagioclase host appear to be controlled by the tendency of the system to optimise lattice match along the interfaces. The elongation direction of the inclusions ensures good match between prominent oxygen layers in the magnetite and plagioclase crystal structures across the interfaces bounding the inclusions parallel to their elongation direction. In cross-section, additional modes of lattice match, such as the commensurate impingement of magnetite and plagioclase lattice planes along the interfaces, the parallel alignment of the interfaces to low-index lattice planes of magnetite or plagioclase, or the parallel alignment to low index lattice planes of both phases are observed, which appear to control the selection of interface facets, as well as the shape and crystallographic orientation relationships between magnetite micro-inclusions and plagioclase host. The systematics of the inclusion cross-sectional shapes and crystallographic orientation relationships indicate recrystallisation of magnetite with potential implications for natural remanent magnetisation of magnetite-bearing plagioclase grains.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001010636400007 Publication Date 2023-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3530 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 3.9; 2023 IF: 3.28
Call Number UA @ admin @ c:irua:195160 Serial 7292
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Jardali, F.; Bogaerts, A.; Lefferts, L.
Title Correction: From the Birkeland–Eyde process towards energy-efficient plasma-based NOXsynthesis: a techno-economic analysis Type A1 Journal Article
Year 2023 Publication Energy & Environmental Science Abbreviated Journal Energy Environ. Sci.
Volume 16 Issue 12 Pages 6170-6173
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Correction for ‘From the Birkeland–Eyde process towards energy-efficient plasma-based NO<sub><italic>X</italic></sub>synthesis: a techno-economic analysis’ by Kevin H. R. Rouwenhorst<italic>et al.</italic>,<italic>Energy Environ. Sci.</italic>, 2021,<bold>14</bold>, 2520–2534, https://doi.org/10.1039/D0EE03763J.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1754-5692 ISBN Additional Links
Impact Factor 32.5 Times cited Open Access
Notes H2020 European Research Council; Horizon 2020, 810182 ; Ministerie van Economische Zaken en Klimaat; Approved (up) Most recent IF: 32.5; 2023 IF: 29.518
Call Number PLASMANT @ plasmant @ Serial 8980
Permanent link to this record
 

 
Author Yang, S.; An, H.; Arnouts, S.; Wang, H.; Yu, X.; de Ruiter, J.; Bals, S.; Altantzis, T.; Weckhuysen, B.M.; van der Stam, W.
Title Halide-guided active site exposure in bismuth electrocatalysts for selective CO₂ conversion into formic acid Type A1 Journal article
Year 2023 Publication Nature Catalysis Abbreviated Journal
Volume 6 Issue 9 Pages 796-806
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract It remains a challenge to identify the active sites of bismuth catalysts in the electrochemical CO2 reduction reaction. Here we show through in situ characterization that the activation of bismuth oxyhalide electrocatalysts to metallic bismuth is guided by the halides. In situ X-ray diffraction results show that bromide promotes the selective exposure of planar bismuth surfaces, whereas chloride and iodide result in more disordered active sites. Furthermore, we find that bromide-activated bismuth catalysts outperform the chloride and iodide counterparts, achieving high current density (>100 mA cm(-2)) and formic acid selectivity (>90%), suggesting that planar bismuth surfaces are more active for the electrochemical CO2 reduction reaction. In addition, in situ X-ray absorption spectroscopy measurements reveal that the reconstruction proceeds rapidly in chloride-activated bismuth and gradually when bromide is present, facilitating the formation of ordered planar surfaces. These findings show the pivotal role of halogens on selective facet exposure in activated bismuth-based electrocatalysts during the electrochemical CO2 reduction reaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001050367400001 Publication Date 2023-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2520-1158 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 37.8 Times cited 13 Open Access OpenAccess
Notes B.M.W. acknowledges support from the Strategic UU-TU/e Alliance project 'Joint Centre for Chemergy Research' as well as from the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO gravitation programme funded by the Ministry of Education, Culture and Science of the government of the Netherlands. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S.A. and T.A. acknowledge funding from the University of Antwerp Research fund (BOF). We also thank J. Wijten, J. Janssens and T. Prins (all from the Inorganic Chemistry and Catalysis group, Utrecht University) for helpful technical support. S. Deelen (Faculty of Science, Utrecht University) and L. Wu (Inorganic Chemistry and Catalysis group, Utrecht University) are acknowledged for the design of the in situ XRD cell. We also acknowledge B. Detlefs, P. Glatzel and V. Paidi (ESRF) for the support during the HERFD-XANES measurements on the ID26 beamline of the ESRF. Approved (up) Most recent IF: 37.8; 2023 IF: NA
Call Number UA @ admin @ c:irua:199190 Serial 8877
Permanent link to this record
 

 
Author Borah, R.; Kumar, A.; Samantaray, M.; Desai, A.; Tseng, F.-G.
Title Photothermal heating of Au nanorods and nanospheres : temperature characteristics and strength of convective forces Type A1 Journal article
Year 2023 Publication Plasmonics Abbreviated Journal
Volume 18 Issue 4 Pages 1449-1465
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The nanoscale photothermal effect and the optofluidic convection around plasmonic nanoparticles drive the application of such nanoparticles in micro-environment. In this work, heat transfer and fluid flow around Au nanospheres and nanorods in water medium under continuous and pulsed wave laser irradiance was investigated using an FEM based numerical framework. Au nanospheres of a wide range of diameter: 40 nm = Diameter (D) = 180 nm and relatively large nanorods (diameter: 50 nm) with varying aspect ratio (1 = Aspect ratio (A) = 5) and orientation (0 degrees = ? = 90 degrees, ? = 0 degrees, 90 degrees) with respect to the incident EM radiation were investigated for continuous wave (CW) and pulsed wave laser. It was found that although nanorods can attain much higher temperature than nanospheres, orientation of a nanorod is an important factor to be carefully considered in applications. In micro-scale spherical and hemispherical confinements (diameter < 14.4 p.m), the convective velocity fields around nanoparticles is in the order of 10-9 m/s, with only a weak effect of the slip or no-slip boundary condition on the confining walls. Importantly, the size of the confinement has a strong effect leading to an order of magnitude stronger convection for 14.4 p.m (diameter) spherical confinement as compared to 3.6 p.m confinement. Additionally close proximity of the nanoparticles to the confining walls strongly reduces (by an order of magnitude) the convective currents. The results reported herein provides important insights for the use of photothermal nanoparticles in microscale confined space (e.g. cellular environment) for applications such as optical tweezers, photoporation, etc.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000985445100001 Publication Date 2023-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-1955; 1557-1963 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3 Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 3; 2023 IF: 2.139
Call Number UA @ admin @ c:irua:197380 Serial 8914
Permanent link to this record
 

 
Author Xiao, H.; Zhang, Z.; Xu, W.; Wang, Q.; Xiao, Y.; Ding, L.; Huang, J.; Li, H.; He, B.; Peeters, F.M.
Title Terahertz optoelectronic properties of synthetic single crystal diamond Type A1 Journal article
Year 2023 Publication Diamond and related materials Abbreviated Journal
Volume 139 Issue Pages 110266-110268
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A systematic investigation is undertaken for studying the optoelectronic properties of single crystal diamond (SCD) grown by microwave plasma chemical vapor deposition (MPCVD). It is indicated that, without intentional doping and surface treatment during the sample growth, the terahertz (THz) optical conduction in SCD is mainly affected by surface H-terminations, -OH-, O- and N-based functional groups. By using THz time-domain spectroscopy (TDS), we measure the transmittance, the complex dielectric constant and optical conductivity σ(ω) of SCD. We find that SCD does not show typical semiconductor characteristics in THz regime, where σ(ω) cannot be described rightly by the conventional Drude formula. Via fitting the real and imaginary parts of σ(ω) to the Drude-Smith formula, the ratio of the average carrier density to the effective electron mass γ = ne/m*, the electronic relaxation time τ and the electronic backscattering or localization factor can be determined optically. The temperature dependence of these parameters is examined. From the temperature dependence of γ, a metallic to semiconductor transition is observed at about T = 10 K. The temperature dependence of τ is mainly induced by electron coupling with acoustic-phonons and there is a significant effect of photon-induced electron backscattering or localization in SCD. This work demonstrates that THz TDS is a powerful technique in studying SCD which contains H-, N- and O-based bonds and has low electron density and high dc resistivity. The results obtained from this study can benefit us to gain an in-depth understanding of SCD and may provide new guidance for the application of SCD as electronic, optical and optoelectronic materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635 ISBN Additional Links UA library record
Impact Factor 4.1 Times cited Open Access
Notes Approved (up) Most recent IF: 4.1; 2023 IF: 2.561
Call Number UA @ admin @ c:irua:200920 Serial 9103
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmenev, R.A.; Neyts, E.C.; Koptyug, A.V.; Volkova, A.P.; Surmeneva, M.A.
Title Combined first-principles and experimental study on the microstructure and mechanical characteristics of the multicomponent additive-manufactured Ti-35Nb-7Zr-5Ta alloy Type A1 Journal article
Year 2023 Publication ACS Omega Abbreviated Journal
Volume 8 Issue 30 Pages 27519-27533
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract New & beta;-stabilizedTi-based alloys are highly promising forbone implants, thanks in part to their low elasticity. The natureof this elasticity, however, is as yet unknown. We here present combinedfirst-principles DFT calculations and experiments on the microstructure,structural stability, mechanical characteristics, and electronic structureto elucidate this origin. Our results suggest that the studied & beta;Ti-35Nb-7Zr-5Ta wt % (TNZT) alloy manufacturedby the electron-beam powder bed fusion (E-PBF) method has homogeneousmechanical properties (H = 2.01 & PLUSMN; 0.22 GPa and E = 69.48 & PLUSMN; 0.03 GPa) along the building direction,which is dictated by the crystallographic texture and microstructuremorphologies. The analysis of the structural and electronic properties,as the main factors dominating the chemical bonding mechanism, indicatesthat TNZT has a mixture of strong metallic and weak covalent bonding.Our calculations demonstrate that the softening in the Cauchy pressure(C & PRIME; = 98.00 GPa) and elastic constant C ̅ ( 44 ) = 23.84 GPa is the originof the low elasticity of TNZT. Moreover, the nature of this softeningphenomenon can be related to the weakness of the second and thirdneighbor bonds in comparison with the first neighbor bonds in theTNZT. Thus, the obtained results indicate that a carefully designedTNZT alloy can be an excellent candidate for the manufacturing oforthopedic internal fixation devices. In addition, the current findingscan be used as guidance not only for predicting the mechanical propertiesbut also the nature of elastic characteristics of the newly developedalloys with yet unknown properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001031269000001 Publication Date 2023-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.1 Times cited Open Access
Notes Approved (up) Most recent IF: 4.1; 2023 IF: NA
Call Number UA @ admin @ c:irua:198313 Serial 9011
Permanent link to this record
 

 
Author Wittner, N.; Vasilakou, K.; Broos, W.; Vlaeminck, S.E.; Nimmegeers, P.; Cornet, I.
Title Investigating the technical and economic potential of solid-state fungal pretreatment at nonsterile conditions for sugar production from poplar wood Type A1 Journal article
Year 2023 Publication Industrial and engineering chemistry research Abbreviated Journal
Volume Issue Pages 1-11
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM); Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Pretreatment is crucial for the conversion of lignocellulose to biofuels. Unlike conventional chemical/physicochemical methods, fungal pretreatment uses white-rot fungi and mild reaction conditions. However, challenges, including substrate sterilization, long duration, and low sugar yields associated with this method, contribute to lower techno-economic performance, an aspect that has rarely been investigated. This study aimed to evaluate the feasibility of fungal pretreatment of nonsterilized poplar wood. Various factors, including inoculum types, fermentation supplements, and cultivation methods, were investigated to optimize the process. A techno-economic assessment of the optimized processes was performed at a full biorefinery scale. The scenario using nonsterilized wood as a substrate, precolonized wood as an inoculum, and a 4 week pretreatment showed a 14.5% reduction in sugar production costs (€2.15/kg) compared to using sterilized wood. Although the evaluation of nonsterilized wood pretreatment showed promising cost reductions, fungal pretreatment remained more expensive than conventional methods due to the significant capital investment required.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001102138000001 Publication Date 2023-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.2 Times cited Open Access Not_Open_Access: Available from 24.04.2024
Notes Approved (up) Most recent IF: 4.2; 2023 IF: 2.843
Call Number UA @ admin @ c:irua:200155 Serial 8891
Permanent link to this record
 

 
Author Scandura, G.; Kumari, P.; Palmisano, G.; Karanikolos, G.N.; Orwa, J.; Dumee, L.F.
Title Nanoporous Dealloyed Metal Materials Processing and Applications?A Review Type A1 Journal article
Year 2023 Publication Industrial and engineering chemistry research Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The development of porous metal materials with pore geometries and sizes at the nanoscale offers promising opportunities for the development of smart responsive interfaces for separation and catalytic applications and as building blocks for complex composite materials. Dealloying is an innovative technique based on selective removal of a sacrificial metal from a metal alloy to engineer surface textures and pores across significant thicknesses. Dealloyed structures may be processed over large scales and for a range of source alloys, offering unprecedented manufacturing opportunities. This review presents the operations and challenges of dealloying routes and discusses avenues for process optimizations and improvements, aiming at the development of scalable nanoporous materials. The potential of dealloyed materials for catalytic and sensing applications is expanded and benchmarked against reference materials. Future prospects and applications of dealloyed materials toward surface reactivity control and pore architecture development are highlighted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000918107700001 Publication Date 2023-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.2 Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 4.2; 2023 IF: 2.843
Call Number UA @ admin @ c:irua:199419 Serial 8904
Permanent link to this record
 

 
Author Wittner, N.; Slezsák, J.; Broos, W.; Geerts, J.; Gergely, S.; Vlaeminck, S.E.; Cornet, I.
Title Rapid lignin quantification for fungal wood pretreatment by ATR-FTIR spectroscopy Type A1 Journal article
Year 2023 Publication Spectrochimica acta: part A: molecular and biomolecular spectroscopy Abbreviated Journal
Volume Issue Pages 121912
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Lignin determination in lignocellulose with the conventional two-step acid hydrolysis method is highly laborious and time-consuming. However, its quantification is crucial to monitor fungal pretreatment of wood, as the increase of acid-insoluble lignin (AIL) degradation linearly correlates with the achievable enzymatic saccharification yield. Therefore, in this study, a new attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy method was developed to track fungal delignification in an easy and rapid manner. Partial least square regression (PLSR) with cross-validation (CV) was applied to correlate the ATR-FTIR spectra with the AIL content (19.9%–27.1%). After variable selection and normalization, a PLSR model with a high coefficient of determination (
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000985309100010 Publication Date 2022-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-1425 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.4 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 4.4; 2023 IF: 2.536
Call Number UA @ admin @ c:irua:190328 Serial 7201
Permanent link to this record
 

 
Author Avranovich Clerici, E.; De Meyer, S.; Vanmeert, F.; Legrand, S.; Monico, L.; Miliani, C.; Janssens, K.
Title Multi-scale X-ray imaging of the pigment discoloration processes triggered by chlorine compounds in the Upper Basilica of Saint Francis of Assisi Type A1 Journal article
Year 2023 Publication Molecules: a journal of synthetic chemistry and natural product chemistry Abbreviated Journal
Volume 28 Issue 16 Pages 6106-6123
Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract In this paper, the chromatic alteration of various types of paints, present on mural painting fragments derived from the vaults of The Upper Basilica of Saint Francis of Assisi in Italy (12th-13th century), is studied using synchrotron radiation. Six painted mural fragments, several square centimeters in size, were available for analysis, originating from the ceiling paintings attributed to Cimabue and Giotto; they correspond to originally white, blue/green, and brown/yellow/orange areas showing discoloration. As well as collecting macroscopic X-ray fluorescence and diffraction maps from the entire fragments in the laboratory and at the SOLEIL synchrotron, corresponding paint cross-sections were also analyzed using microscopic X-ray fluorescence and powder diffraction mapping at the PETRA-III synchrotron. Numerous secondary products were observed on the painted surfaces, such as (a) copper tri-hydroxychloride in green/blue areas; (b) corderoite and calomel in vermillion red/cinnabar-rich paints; (c) plattnerite and/or scrutinyite assumed to be oxidation products of (hydro)cerussite (2PbCO(3)center dot Pb(OH)(2)) in the white areas, and (d) the calcium oxalates whewellite and weddellite. An extensive presence of chlorinated metal salts points to the central role of chlorine-containing compounds during the degradation of the 800-year-old paint, leading to, among other things, the formation of the rare mineral cumengeite (21PbCl(2)center dot 20Cu(OH) (2) center dot 6H(2)O).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001056388600001 Publication Date 2023-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1420-3049 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 4.6; 2023 IF: 2.861
Call Number UA @ admin @ c:irua:199265 Serial 8902
Permanent link to this record
 

 
Author Annys, A.; Jannis, D.; Verbeeck, J.; Annys, A.; Jannis, D.; Verbeeck, J.
Title Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy Type A1 Journal article
Year 2023 Publication Scientific reports Abbreviated Journal
Volume 13 Issue 1 Pages 13724
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electron energy loss spectroscopy (EELS) is a well established technique in electron microscopy that yields information on the elemental content of a sample in a very direct manner. One of the persisting limitations of EELS is the requirement for manual identification of core-loss edges and their corresponding elements. This can be especially bothersome in spectrum imaging, where a large amount of spectra are recorded when spatially scanning over a sample area. This paper introduces a synthetic dataset with 736,000 labeled EELS spectra, computed from available generalized oscillator strength tables, that represents 107 K, L, M or N core-loss edges and 80 chemical elements. Generic lifetime broadened peaks are used to mimic the fine structure due to band structure effects present in experimental core-loss edges. The proposed dataset is used to train and evaluate a series of neural network architectures, being a multilayer perceptron, a convolutional neural network, a U-Net, a residual neural network, a vision transformer and a compact convolutional transformer. An ensemble of neural networks is used to further increase performance. The ensemble network is used to demonstrate fully automated elemental mapping in a spectrum image, both by directly mapping the predicted elemental content and by using the predicted content as input for a physical model-based mapping.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001052937600046 Publication Date 2023-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes A.A. would like to acknowledge the resources and services used in this work provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. J.V. acknowledges the IMPRESS project. The IMPRESS project has received funding from the HORIZON EUROPE framework program for research and innovation under grant agreement n. 101094299. Approved (up) Most recent IF: 4.6; 2023 IF: 4.259
Call Number UA @ admin @ c:irua:198647 Serial 8846
Permanent link to this record
 

 
Author Soltan, S.; Macke, S.; Ilse, S.E.; Pennycook, T.; Zhang, Z.L.; Christiani, G.; Benckiser, E.; Schuetz, G.; Goering, E.
Title Ferromagnetic order controlled by the magnetic interface of LaNiO3/La2/3Ca1/3MnO3 superlattices Type A1 Journal article
Year 2023 Publication Scientific reports Abbreviated Journal
Volume 13 Issue 1 Pages 1-9
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Interface engineering in complex oxide superlattices is a growing field, enabling manipulation of the exceptional properties of these materials, and also providing access to new phases and emergent physical phenomena. Here we demonstrate how interfacial interactions can induce a complex charge and spin structure in a bulk paramagnetic material. We investigate a superlattice (SLs) consisting of paramagnetic LaNiO3 (LNO) and highly spin-polarized ferromagnetic La2/3Ca1/3MnO3 (LCMO), grown on SrTiO3 (001) substrate. We observed emerging magnetism in LNO through an exchange bias mechanism at the interfaces in X-ray resonant magnetic reflectivity. We find non-symmetric interface induced magnetization profiles in LNO and LCMO which we relate to a periodic complex charge and spin superstructure. High resolution scanning transmission electron microscopy images reveal that the upper and lower interfaces exhibit no significant structural variations. The different long range magnetic order emerging in LNO layers demonstrates the enormous potential of interfacial reconstruction as a tool for tailored electronic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000985158100013 Publication Date 2023-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 4.6; 2023 IF: 4.259
Call Number UA @ admin @ c:irua:197426 Serial 8867
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Temst, K.; Vandenberghe, W.G.; Sorée, B.
Title Atomistic modeling of spin and electron dynamics in two-dimensional magnets switched by two-dimensional topological insulators Type A1 Journal article
Year 2023 Publication Physical review applied Abbreviated Journal
Volume 19 Issue 1 Pages 014040-14049
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract To design fast memory devices, we need material combinations that can facilitate fast read and write operations. We present a heterostructure comprising a two-dimensional (2D) magnet and a 2D topological insulator (TI) as a viable option for designing fast memory devices. We theoretically model the spin-charge dynamics between 2D magnets and 2D TIs. Using the adiabatic approximation, we combine the nonequi-librium Green's function method for spin-dependent electron transport and a time-quantified Monte Carlo method for simulating magnetization dynamics. We show that it is possible to switch a magnetic domain of a ferromagnet using the spin torque from spin-polarized edge states of a 2D TI. We show further that the switching of 2D magnets by TIs is strongly dependent on the interface exchange (Jint), and an opti-mal interface exchange, is required for efficient switching. Finally, we compare experimentally grown Cr compounds and show that Cr compounds with higher anisotropy (such as CrI3) result in a lower switching speed but a more stable magnetic order.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000920227500002 Publication Date 2023-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 4.6; 2023 IF: 4.808
Call Number UA @ admin @ c:irua:194312 Serial 7283
Permanent link to this record
 

 
Author Foltyn, M.; Norowski, K.; Wyszynski, M.J.; De Arruda, A.S.; Milošević, M.V.; Zgirski, M.
Title Probing confined vortices with a superconducting nanobridge Type A1 Journal article
Year 2023 Publication Physical review applied Abbreviated Journal
Volume 19 Issue 4 Pages 044073-12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We realize a superconducting nanodevice in which vortex traps in the form of an aluminum square are integrated with a Dayem nanobridge. We perform field cooling of the traps arriving to different vortex configurations, dependent on the applied magnetic field, to demonstrate that the switching current of the bridge is highly sensitive to the presence and location of vortices in the trap. Our measurements exhibit unprecedented precision and ability to detect the first and successive vortex entries into all fabricated traps, from few hundred nm to 2 mu m in size. The experimental results are corroborated by Ginzburg-Landau simulations, which reveal the subtle yet crucial changes in the density of the superconducting condensate in the vicinity of the bridge with every additional vortex entry and relocation inside the trap. An ease of integration and simplicity make our design a convenient platform for studying dynamics of vortices in strongly confining geometries, involving a promise to manipulate vortex states electronically with simultaneous in situ control and monitoring.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000980861100007 Publication Date 2023-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.6 Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 4.6; 2023 IF: 4.808
Call Number UA @ admin @ c:irua:197356 Serial 8918
Permanent link to this record
 

 
Author Akande, S.O.; Samanta, B.; Sevik, C.; Cakir, D.
Title First-principles investigation of mechanical and thermal properties of M Al B (M = Mo, W), Cr₂ AlB₂, and Ti₂ In B₂ Type A1 Journal article
Year 2023 Publication Physical review applied Abbreviated Journal
Volume 20 Issue 4 Pages 044064-17
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The atomically laminated layered ternary transition-metal borides (the MAB phases) have demonstrated outstanding properties and have been applied in various fields. Understanding their thermal and mechanical properties is critical to determining their applicability in various fields such as high-temperature applications. To achieve this, we conducted first-principles calculations based on density-functional theory and the quasiharmonic approximation to determine the thermal expansion coefficients, Gruneisen parameters, bulk moduli, hardness, thermal conductivity, electron-phonon coupling parameters, and the structural and vibrational properties of MoAlB, WAlB, Cr2AlB2, and Ti2InB2. We found varying degrees of anisotropy in the thermal expansion and mechanical properties in spite of similarities in their crystal structures. MoAlB has a mild degree of anisotropy in its thermal expansion coefficient (TEC), while Cr2AlB2 and WAlB display the highest level of TEC anisotropy. We assessed various empirical models to calculate hardness and thermal conductivity, and correlated the calculated values with the material properties such as elastic moduli, Gruneisen parameter, Debye temperature, and type of bonding. Owing to their higher Gruneisen parameters, implying a greater degree of anharmonicity in lattice vibrations and lower phonon group velocities, MoAlB and WAlB have significantly lower lattice thermal conductivity values than those of Cr2AlB2 and Ti2InB2. The hardness and lattice thermal conductivity of MAB phases can be predicted with high accuracy if one utilizes an appropriate model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001106456600003 Publication Date 2023-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.6 Times cited Open Access
Notes Approved (up) Most recent IF: 4.6; 2023 IF: 4.808
Call Number UA @ admin @ c:irua:202078 Serial 9037
Permanent link to this record