|   | 
Details
   web
Records
Author Vagov, A.; Croitoru, M.D.; Axt, V.M.; Kuhn, T.; Peeters, F.
Title Real time path integrals in studies of quantum dots dynamics: non-monotonous decay rate and reappearance of rabi rotations Type P1 Proceeding
Year 2008 Publication Path Integrals : New Trends and Perspectives, Proceedings Abbreviated Journal
Volume Issue Pages 57-62
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract The dynamics of strongly confined laser driven semiconductor quantum dots coupled to phonons is studied theoretically by calculating the time evolution of the reduced density matrix using the path integral method. We explore the cases of long pulses, strong dot-phonon and dot-laser coupling and high temperatures, which up to now have been inaccessible. We find that the decay rate of the Rabi oscillations is a non-monotonic function of the laser field leading to the decay and reappearance of the Rabi oscillations in the field dependence of the dot exciton population.
Address
Corporate Author Thesis
Publisher World Scientific Place of Publication Singapore Editor
Language Wos 000264341000007 Publication Date 2009-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:95702 Serial 2834
Permanent link to this record
 

 
Author Nelissen, K.; Heytens, L.; Schweigert, V.A.; Peeters, F.M.
Title Reentrant melting of a classical two-dimensional binary cluster Type A1 Journal article
Year 2005 Publication AIP conference proceedings Abbreviated Journal
Volume 799 Issue Pages 347-350
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A system of classical charged particles interacting through a dipole repulsive potential, which are confined in a two-dimensional hardwall trap, is studied. The cluster consists of 16 particles, together with 4 defect particles. The technique of Brownian dynamics is used to simulate experimental binary colloidal systems [1]. The melting properties and the reentrant behavior of the system, which was studied before for clusters of identical particles [2], are studied for the binary mixture. The defect particles, which have a smaller charge than the other particles, stabilize the cluster, melt at a higher value of the coupling parameter F as compared to the other particles and have a strong influence on the melting properties of the other particles.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-243x ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:94767 Serial 2854
Permanent link to this record
 

 
Author Wang, Y.J.; Nickel, H.A.; McCombe, B.D.; Peeters, F.M.; Hai, G.Q.; Shi, J.M.; Devreese, J.T.; Wu, X.G.
Title Resonant magnetopolaron effects in GaAs/AlGaAs MQWs at high magnetic fields Type P3 Proceeding
Year 1997 Publication Abbreviated Journal
Volume Issue Pages 797-800
Keywords P3 Proceeding; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher World Scientific Place of Publication Singapore Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:19305 Serial 2890
Permanent link to this record
 

 
Author Peeters, F.M.
Title Semiconductor Type H3 Book chapter
Year 1997 Publication Abbreviated Journal
Volume Issue Pages 350-352
Keywords H3 Book chapter; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher McGraw-Hill Place of Publication New York Editor
Language Wos 000077204000044 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:19308 Serial 2982
Permanent link to this record
 

 
Author Djotyan, A.P.; Avetisyan, A.A.; Hao, Y.L.; Peeters, F.M.
Title Shallow donor near a semiconductor surface in the presence of locally spherical scanning tunneling microscope tip Type P1 Proceeding
Year 2012 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers T2 – Conference on Photonics and Micro and Nano-structured Materials, JUN 28-30, 2011, Yerevan, ARMENIA Abbreviated Journal
Volume Issue Pages 84140-84148
Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We developed a variational approach to investigate the ground state energy and the extend of the wavefunction of a neutral donor located near a semiconductor surface in the presence of scanning tunneling microscope (STM) metallic tip. We apply the effective mass approximation and use a variational wavefunction that takes into account the influence of all image charges that arise due to the presence of a metallic tip. The behavior of the ground state energy when the tip approaches the semiconductor surface is investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303856600020 Publication Date 2012-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume 8414 Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy. One of us (AAA) was supported by a fellowship from the Belgian Federal Science Policy Office (Belspo). ; Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:113047 Serial 2987
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M.
Title Single and coupled type II quantum dots in magnetic and electric fields Type A1 Journal article
Year 2002 Publication Physicalia magazine Abbreviated Journal
Volume 24 Issue Pages 211
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Gent Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0770-0520 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:62456 Serial 3016
Permanent link to this record
 

 
Author Molnar, B.; Vasilopoulos, P.; Peeters, F.M.
Title Square-wave conductance through a chain of rings due to spin-orbit interaction Type P1 Proceeding
Year 2005 Publication AIP conference proceedings Abbreviated Journal
Volume 772 Issue Pages 1335-1336
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We study ballistic electron transport through a finite chain of quantum circular rings in the presence of spin-orbit interaction (SOI) of strength alpha. The transmission and reflection coefficients for a single ring, obtained analytical lylead to the conductance for a chain of rings as a function of alpha and of the wave vector k of the incident electron. Due to destructive spin interferences the chain can be totaly opaque for certain ranges of k the width of which depends on the value of alpha. A periodic modulation of a widens up the gaps considerably and produces a nearly binary conductance output.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-243x ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:94771 Serial 3113
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Vagov, A.; Peeters, F.M.
Title Superconducting nanowires : new type of BCS-BEC crossover driven by quantum-size effects Type P1 Proceeding
Year 2011 Publication Abbreviated Journal
Volume Issue Pages 119-127
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We show that a superconducting quantum nanowire undergoes a new type of BCS-BEC crossover each time when an electron subband approaches the Fermi surface. In this case the longitudinal Cooper-pair size drops by two-three orders of magnitude down to a few nanometers. This unconventional BCS-BEC crossover is driven by quantum-size effects rather than by tuning the fermion-fermion interaction.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Dordrecht Editor
Language Wos 000289872900009 Publication Date 2010-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1874-6500;1874-6535; ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the ESF-network: INSTANS. M.D.C. acknowledges support from the Alexander von Humboldt Foundation. ; Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:89946 Serial 3359
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title Superconducting nanowires: quantum-confinement effect on the critical magnetic field and supercurrent Type P1 Proceeding
Year 2010 Publication Abbreviated Journal
Volume Issue Pages 327-338
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We study the effect, of electron confinement on the superconducting-to-normal phase transition driven by a magnetic field and/or on the current-carrying state of the superconducting condensate in nanowires. Our investigation is based on a self-consistent. numerical solution of the Bogoliubov-de Gennes equations. We show that, in a parallel magnetic field and/or in the presence of supercurrent the transition from superconducting to normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magnetic held exhibits quantum-size oscillations with pronounced resonant enhancements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278418300025 Publication Date 2010-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), Interuni-versity Attraction Poles Programme -Belgian State -Belgian Science Policy (IAP) and the ESF-AQDJJ network. ; Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:83294 Serial 3361
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Superconductivity in the quantum-size regime Type P1 Proceeding
Year 2008 Publication Abbreviated Journal
Volume Issue Pages 79-103
Keywords P1 Proceeding; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract Recent technological advances resulted in high-quality superconducting metallic nanofilms and nanowires. The physical properties of such nanostructures are governed by the size-quantization of the transverse electron spectrum. This has a substantial impact on the basic superconducting characteristics, e.g., the order parameter, the critical temperature and the critical magnetic field. In the present paper we give an overview of our theoretical results on this subject. Based on a numerical self-consistent solution of the Bogoliubov-de Gennes equations, we investigate how the superconducting properties are modified in the quantum-size regime.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-4020-9144-5 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:75944 Serial 3374
Permanent link to this record
 

 
Author Dong, H.M.; Qin, H.; Zhang, J.; Peeters, F.M.; Xu, W.
Title Terahertz absorption window in bilayer graphene Type H1 Book chapter
Year 2009 Publication Abbreviated Journal
Volume Issue Pages 247-248
Keywords H1 Book chapter; Condensed Matter Theory (CMT)
Abstract We present a detailed theoretical study of terahertz (THz) optical absorption in bilayer graphene. Considering an air/graphene/dielectric-wafer system, we find that there is an absorption window in the range 3 similar to 30 THz. Such an absorption window is induced by different transition energies required for inter- and intra-band optical absorption in the presence of the Pauli blockade effect. As a result, the position and width of this THz absorption window depend sensitively on temperature and carrier density of the system. These results are pertinent to the applications of recently developed graphene systems as novel optoelectronic devices such as THz photo-detectors.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New York, N.Y. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4244-5416-7 Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:99225 Serial 3506
Permanent link to this record
 

 
Author Benedict, M.G.; Földi, P.; Peeters, F.M.
Title Terahertz radiation from crystals of nanomagnets Type P1 Proceeding
Year 2006 Publication Journal of physics : conference series Abbreviated Journal
Volume 36 Issue Pages 12-17
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract Certain crystals, consisting of molecules with unusually large spin, exhibit macroscopically observable signatures of quantum tunneling, when a slowly varying external magnetic field is applied parallel to the easy axis of the crystal. Recently it has been observed that jumps in the magnetization are sometimes accompanied by the emission of infrared radiation. We discuss the connection of the tunneling with the electromagnetic transition, and we address the questions: to what extent can the radiation be considered as a collective, superradiant emission, and what is the role played by the cavity in the experiments? Our conclusion is that among the reported experimental coditions the radiation is not superradidance, but rather a maserlike effect.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000239847500003 Publication Date 2006-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:94695 Serial 3508
Permanent link to this record
 

 
Author Nguyen, N.T.T.; Peeters, F.M.
Title The breakdown of Kohn's theorem in few-electron parabolic quantum dots doped with a single magnetic impurity Mn2+ Type P1 Proceeding
Year 2010 Publication Journal of physics : conference series T2 – Conference on Quantum Dots 2010 (QD2010), APR 26-30, 2010, Nottingham, ENGLAND Abbreviated Journal
Volume Issue Pages 012031-12034
Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The cyclotron resonance (CR) absorption spectrum is calculated for a II-VI parabolic quantum dot (QD) containing few electrons and a single magnetic dopant (Mn(2+)). We find that Kohn's theorem no longer holds for this system and that the CR spectrum depends on the number of electrons inside the QD. The electron-Mn-ion interaction strength can be tuned for example by the magnetic field and by moving the Mn-ion to different positions inside the QD. We demonstrate that due to the presence of the Mn-ion the relative motion of the electrons couple with their center-of-mass motion through the electron-Mn-ion spin-spin exchange term resulting in an electron-electron interaction dependence of the magneto-optical absorption spectrum. At the ferromagnetic-antiferromagnetic transition we observe significant discontinuities in the CR lines.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000294907400031 Publication Date 2010-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume 245 Series Issue Edition
ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes ; ; Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:113080 Serial 3572
Permanent link to this record
 

 
Author Badalian, S.M.; Ibrahim, I.S.; Peeters, F.M.
Title Theory of the magneto-transport in a nonplanar two dimensional electron gas Type P3 Proceeding
Year 1997 Publication Abbreviated Journal
Volume Issue Pages 327-330
Keywords P3 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher World Scientific Place of Publication Singapore Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:19304 Serial 3623
Permanent link to this record
 

 
Author Mlinar, V.; Peeters, F.M.
Title A three-dimensional model for artificial atoms and molecules: influence of substrate orientation and magnetic field dependence Type A1 Journal article
Year 2007 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 17 Issue 35 Pages 3687-3695
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000249080100013 Publication Date 2007-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 7 Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:66124 Serial 3653
Permanent link to this record
 

 
Author Li, B.; Magnus, W.; Peeters, F.M.
Title Tunable exciton Aharonov-Bohm effect in a quantum ring Type A1 Journal article
Year 2010 Publication Journal of physics : conference series T2 – Proceedings of the 11th International Conference on Optics of Excitons in Confined Systems, September 7-11, 2009, Spain / Vina, L. [edit.]; et al. [edit.] Abbreviated Journal
Volume 210 Issue 1 Pages 012030,1-01203,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We studied the optical Aharonov-Bohm effect for an exciton in a semiconductor quantum ring. A perpendicular electric field applied to a quantum ring with large height, is able to tune the exciton ground state energy such that it exhibits a weak observable Aharonov-Bohm oscillations. This Aharonov-Bohm effect is tunable in strength and period.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000289715800242 Publication Date 2010-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes ; ; Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:89950 Serial 3741
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title Tuning the superconducting properties of nanomaterials Type H1 Book chapter
Year 2009 Publication Abbreviated Journal
Volume Issue Pages 1-14
Keywords H1 Book chapter; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract Electron continement and its effect on the superconducting-to-normal phase transition driven by a magentic field and/or a current is studied in nanowires. Our investigation is based on a self-consistent numerical solution of the Bogoliubov-de Gennes equations. We find that in a parallel magneitc field and/or in the presence of a supercurrent the transition from the superconducting to the normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magentic field exhibits quantum-size oscillations with pronounced resonant enhancements as a function of the wire radius.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Dordrecht Editor
Language Wos 000274282900001 Publication Date 2009-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1874-6500; ISBN 978-90-481-3118-1 Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:99226 Serial 3761
Permanent link to this record
 

 
Author Baelus, B.J.; Kanda, A.; Peeters, F.M.; Ootuka, Y.; Kadowaki, K.
Title Two kinds of vortex states in thin mesoscopic superconductors Type A1 Journal article
Year 2006 Publication Journal of physics : conference series T2 – Journal of physics: conference series Abbreviated Journal
Volume 43 Issue Pages 647-650
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Experimentally, multivortex states and giant vortex states in mesoscopic superconductors can be distinguished directly by using the multiple-small-tunnel-junctions, and indirectly by studying the temperature dependence of the expulsion fields. These experimental results are compared with the theoretical prediction from the nonlinear Ginzburg- Landau theory.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000277479400158 Publication Date 2006-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:82762 Serial 3782
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.
Title Vortex-antivortex ionic crystals in superconducting films with magnetic pinning arays Type A1 Journal article
Year 2004 Publication Physicalia magazine Abbreviated Journal
Volume 26 Issue Pages 355-370
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Gent Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0770-0520 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:57241 Serial 3852
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.
Title Vortex-antivortex molecules near a magnetic disk on top of a superconducting film Type A1 Journal article
Year 2003 Publication Physicalia magazine Abbreviated Journal
Volume 25 Issue Pages 185-197
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Gent Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0770-0520 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:57240 Serial 3858
Permanent link to this record
 

 
Author Moldovan, D.; Peeters, F.M.
Title Atomic Collapse in Graphene Type P1 Proceeding
Year 2016 Publication Nanomaterials For Security Abbreviated Journal
Volume Issue Pages 3-17
Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract When the charge Z of an atom exceeds the critical value of 170, it will undergo a process called atomic collapse which triggers the spontaneous creation of electron-positron pairs. The high charge requirements have prevented the observation of this phenomenon with real atomic nuclei. However, thanks to the relativistic nature of the carriers in graphene, the same physics is accessible at a much lower scale. The atomic collapse analogue in graphene is realized using artificial nuclei which can be created via the deposition of impurities on the surface of graphene or using charged vacancies. These supercritically charged artificial nuclei trap electrons in a sequence of quasi-bound states which can be observed experimentally as resonances in the local density of states.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Dordrecht Editor
Language Wos 000386506200001 Publication Date 2016-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-94-017-7593-9; 978-94-017-7591-5 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes ; ; Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:138237 Serial 4348
Permanent link to this record
 

 
Author Andelkovic, M.; Covaci, L.; Peeters, F.M.
Title DC conductivity of twisted bilayer graphene: Angle-dependent transport properties and effects of disorder Type A1 Journal article
Year 2018 Publication Physical review materials Abbreviated Journal
Volume 2 Issue 3 Pages 034004
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The in-plane dc conductivity of twisted bilayer graphene is calculated using an expansion of the real-space Kubo-Bastin conductivity in terms of Chebyshev polynomials. We investigate within a tight-binding approach the transport properties as a function of rotation angle, applied perpendicular electric field, and vacancy disorder. We find that for high-angle twists, the two layers are effectively decoupled, and the minimum conductivity at the Dirac point corresponds to double the value observed in monolayer graphene. This remains valid even in the presence of vacancies, hinting that chiral symmetry is still preserved. On the contrary, for low twist angles, the conductivity at the Dirac point depends on the twist angle and is not protected in the presence of disorder. Furthermore, for low angles and in the presence of an applied electric field, we find that the chiral boundary states emerging between AB and BA regions contribute to the dc conductivity, despite the appearance of localized states in the AA regions. The results agree qualitatively with recent transport experiments in low-angle twisted bilayer graphene.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication College Park, Md Editor
Language Wos 000427822700002 Publication Date 2018-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 27 Open Access
Notes ; We acknowledge financial support from the graphene FLAG-ERA project TRANS2DTMD. ; Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:150838UA @ admin @ c:irua:150838 Serial 4964
Permanent link to this record
 

 
Author Hai, G.-Q.; Candido, L.; Brito, B.G.A.; Peeters, F.M.
Title Electron pairing: from metastable electron pair to bipolaron Type A1 Journal article
Year 2018 Publication Journal of physics communications Abbreviated Journal
Volume 2 Issue 3 Pages Unsp 035017
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Starting from the shell structure in atoms and the significant correlation within electron pairs, we distinguish the exchange-correlation effects between two electrons of opposite spins occupying the same orbital from the average correlation among many electrons in a crystal. In the periodic potential of the crystal with lattice constant larger than the effective Bohr radius of the valence electrons, these correlated electron pairs can form a metastable energy band above the corresponding single-electron band separated by an energy gap. In order to determine if these metastable electron pairs can be stabilized, we calculate the many-electron exchange-correlation renormalization and the polaron correction to the two-band system with single electrons and electron pairs. We find that the electron-phonon interaction is essential to counterbalance the Coulomb repulsion and to stabilize the electron pairs. The interplay of the electron-electron and electron-phonon interactions, manifested in the exchange-correlation energies, polaron effects, and screening, is responsible for the formation of electron pairs (bipolarons) that are located on the Fermi surface of the single-electron band.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000434996900022 Publication Date 2018-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2399-6528 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 9 Open Access
Notes ; This work was supported by the Brazilian agencies FAPESP and CNPq. GQH would like to thank Prof. Bangfen Zhu for his invaluable support and expert advice. ; Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:152079UA @ admin @ c:irua:152079 Serial 5022
Permanent link to this record
 

 
Author Kalashami, H.G.; Neek-Amal, M.; Peeters, F.M.
Title Slippage dynamics of confined water in graphene oxide capillaries Type A1 Journal article
Year 2018 Publication Physical review materials Abbreviated Journal
Volume 2 Issue 7 Pages 074004
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The permeation of water between neighboring graphene oxide (GO) flakes, i.e., 2D nanochannels, are investigated using a simple model for the GO membrane. We simulate the hydrophilic behavior of nanocapillaries and study the effect of surface charge on the dynamical properties of water flow and the influence of Na+ and Cl- ions on water permeation. Our approach is based on extensive equilibrium molecular dynamics simulations to obtain a better understanding of water permeation through charged nanochannels in the presence of ions. We found significant change in the slippage dynamics of confined water such as a profound increase in viscosity/slip length with increasing charges over the surface. The slip length decreases one order of magnitude (i.e., 1/30) with increasing density of surface charge, while it increases by a factor of 2 with ion concentration. We found that commensurability induced by nanoconfinement plays an important role on the intrinsic dynamical properties of water.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication College Park, Md Editor
Language Wos 000439435200006 Publication Date 2018-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes ; We acknowledge fruitful discussions with Andre K. Geim, Irina Grigorieva, and Rahul R. Nair. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:152409UA @ admin @ c:irua:152409 Serial 5128
Permanent link to this record
 

 
Author Wang, Z.; Wang, Y.B.; Yin, J.; Tovari, E.; Yang, Y.; Lin, L.; Holwill, M.; Birkbeck, J.; Perello, D.J.; Xu, S.; Zultak, J.; Gorbachev, R.V.; Kretinin, A.V.; Taniguchi, T.; Watanabe, K.; Morozov, S.V.; Andelkovic, M.; Milovanović, S.P.; Covaci, L.; Peeters, F.M.; Mishchenko, A.; Geim, A.K.; Novoselov, K.S.; Fal'ko, V.I.; Knothe, A.; Woods, C.R.
Title Composite super-moiré lattices in double-aligned graphene heterostructures = Composite super-moire lattices in double-aligned graphene heterostructures Type A1 Journal article
Year 2019 Publication Science Advances Abbreviated Journal
Volume 5 Issue 12 Pages eaay8897
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract When two-dimensional (2D) atomic crystals are brought into close proximity to form a van der Waals heterostructure, neighbouring crystals may influence each other's properties. Of particular interest is when the two crystals closely match and a moire pattern forms, resulting in modified electronic and excitonic spectra, crystal reconstruction, and more. Thus, moire patterns are a viable tool for controlling the properties of 2D materials. However, the difference in periodicity of the two crystals limits the reconstruction and, thus, is a barrier to the low-energy regime. Here, we present a route to spectrum reconstruction at all energies. By using graphene which is aligned to two hexagonal boron nitride layers, one can make electrons scatter in the differential moire pattern which results in spectral changes at arbitrarily low energies. Further, we demonstrate that the strength of this potential relies crucially on the atomic reconstruction of graphene within the differential moire super cell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000505069600089 Publication Date 2019-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 71 Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:165754 Serial 6289
Permanent link to this record
 

 
Author Chaves, A.; Azadani, J.G.; Alsalman, H.; da Costa, D.R.; Frisenda, R.; Chaves, A.J.; Song, S.H.; Kim, Y.D.; He, D.; Zhou, J.; Castellanos-Gomez, A.; Peeters, F.M.; Liu, Z.; Hinkle, C.L.; Oh, S.-H.; Ye, P.D.; Koester, S.J.; Lee, Y.H.; Avouris, P.; Wang, X.; Low, T.
Title Bandgap engineering of two-dimensional semiconductor materials Type A1 Journal article
Year 2020 Publication npj 2D Materials and Applications Abbreviated Journal
Volume 4 Issue 1 Pages 29-21
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Semiconductors are the basis of many vital technologies such as electronics, computing, communications, optoelectronics, and sensing. Modern semiconductor technology can trace its origins to the invention of the point contact transistor in 1947. This demonstration paved the way for the development of discrete and integrated semiconductor devices and circuits that has helped to build a modern society where semiconductors are ubiquitous components of everyday life. A key property that determines the semiconductor electrical and optical properties is the bandgap. Beyond graphene, recently discovered two-dimensional (2D) materials possess semiconducting bandgaps ranging from the terahertz and mid-infrared in bilayer graphene and black phosphorus, visible in transition metal dichalcogenides, to the ultraviolet in hexagonal boron nitride. In particular, these 2D materials were demonstrated to exhibit highly tunable bandgaps, achieved via the control of layers number, heterostructuring, strain engineering, chemical doping, alloying, intercalation, substrate engineering, as well as an external electric field. We provide a review of the basic physical principles of these various techniques on the engineering of quasi-particle and optical bandgaps, their bandgap tunability, potentials and limitations in practical realization in future 2D device technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000565588500001 Publication Date 2020-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 604 Open Access
Notes ; Discussions and interactions with D.R. Reichman, F. Tavazza, N.M.R. Peres, and K. Choudhary are gratefully acknowledged. A.C. acknowledges financial support by CNPq, through the PRONEX/FUNCAP and PQ programs. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 755655, ERCStG 2017 project 2D-TOPSENSE). Computational support from the Minnesota Supercomputing Institute (MSI) and EU Graphene Flagship funding (Grant Graphene Core 2, 785219) is acknowledged. R.F. acknowledges support from the Netherlands Organization for Scientific Research (NWO) through the research program Rubicon with project number 680-50-1515. D.H., J.Z., and X.W. acknowledge support by National Natural Science Foundation of China 61734003, 61521001, 61704073, 51861145202, and 61851401, and National Key Basic Research Program of China 2015CB921600 and 2018YFB2200500. J.Z. and Z.L. acknowledge support by RG7/18, MOE2017-T2-2-136, MOE2018-T3-1-002, and A*Star QTE program. S.H.S. and Y.H.L. acknowledge the support from IBS-R011-D1. Y.D.K. is supported by Samsung Research and Incubation Funding Center of Samsung Electronics under Project Number SRFC-TB1803-04. S.J.K acknowledges financial support by the National Science Foundation (NSF), under award DMR-1921629. T.L. and J.G.A. acknowledge funding support from NSF/DMREF under Grant Agreement No. 1921629. S.-H.O. acknowledges support from the U.S. National Science Foundation (NSF ECCS 1809723) and Samsung Global Research Outreach (GRO) project. ; Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:172069 Serial 6459
Permanent link to this record
 

 
Author Jalali, H.; Ghorbanfekr, H.; Hamid, I.; Neek-Amal, M.; Rashidi, R.; Peeters, F.M.
Title Out-of-plane permittivity of confined water Type A1 Journal article
Year 2020 Publication Physical Review E Abbreviated Journal Phys Rev E
Volume 102 Issue 2 Pages 022803
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The dielectric properties of confined water is of fundamental interest and is still controversial. For water confined in channels with height smaller than h = 8 angstrom, we found a commensurability effect and an extraordinary decrease in the out-of-plane dielectric constant down to the limit of the dielectric constant of optical water. Spatial resolved polarization density data obtained from molecular dynamics simulations are found to be antisymmetric across the channel and are used as input in a mean-field model for the dielectric constant as a function of the height of the channel for h > 15 angstrom. Our results are in excellent agreement with a recent experiment [L. Fumagalli et al., Science 360, 1339 (2018)].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000560660400004 Publication Date 2020-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755; 1550-2376 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 38 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:171157 Serial 6574
Permanent link to this record
 

 
Author Conti, S.; Neilson, D.; Peeters, F.M.; Perali, A.
Title Transition metal dichalcogenides as strategy for high temperature electron-hole superfluidity Type A1 Journal article
Year 2020 Publication Condensed Matter Abbreviated Journal
Volume 5 Issue 1 Pages 22-12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Condensation of spatially indirect excitons, with the electrons and holes confined in two separate layers, has recently been observed in two different double layer heterostructures. High transition temperatures were reported in a double Transition Metal Dichalcogenide (TMD) monolayer system. We briefly review electron-hole double layer systems that have been proposed as candidates for this interesting phenomenon. We investigate the double TMD system WSe2/hBN/MoSe2, using a mean-field approach that includes multiband effects due to the spin-orbit coupling and self-consistent screening of the electron-hole Coulomb interaction. We demonstrate that the transition temperature observed in the double TMD monolayers, which is remarkably high relative to the other systems, is the result of (i) the large electron and hole effective masses in TMDs, (ii) the large TMD band gaps, and (iii) the presence of multiple superfluid condensates in the TMD system. The net effect is that the superfluidity is strong across a wide range of densities, which leads to high transition temperatures that extend as high as TBKT=150 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000523711200017 Publication Date 2020-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2410-3896 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 13 Open Access
Notes ; This work was partially supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl), the Methusalem Foundation and the FLAG-ERA project TRANS-2D-TMD. ; Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:168658 Serial 6636
Permanent link to this record
 

 
Author Lavor, I.R.; da Costa, D.R.; Covaci, L.; Milošević, M.V.; Peeters, F.M.; Chaves, A.
Title Zitterbewegung of moiré excitons in twisted MoS₂/WSe₂ heterobilayers Type A1 Journal article
Year 2021 Publication Physical review letters Abbreviated Journal
Volume 127 Issue 10 Pages 106801
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract The moire pattern observed in stacked noncommensurate crystal lattices, such as heterobilayers of transition metal dichalcogenides, produces a periodic modulation of their band gap. Excitons subjected to this potential landscape exhibit a band structure that gives rise to a quasiparticle dubbed the moire exciton. In the case of MoS2/WSe2 heterobilayers, the moire trapping potential has honeycomb symmetry and, consequently, the moire exciton band structure is the same as that of a Dirac-Weyl fermion, whose mass can be further tuned down to zero with a perpendicularly applied field. Here we show that, analogously to other Dirac-like particles, the moire exciton exhibits a trembling motion, also known as Zitterbewegung, whose long timescales are compatible with current experimental techniques for exciton dynamics. This promotes the study of the dynamics of moire excitons in van der Waals heterostructures as an advantageous solid-state platform to probe Zitterbewegung, broadly tunable by gating and interlayer twist angle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000692200800020 Publication Date 2021-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1079-7114 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 5 Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:181599 Serial 6896
Permanent link to this record
 

 
Author Conti, S.; Perali, A.; Peeters, F.M.; Neilson, D.
Title Effect of mismatched electron-hole effective masses on superfluidity in double layer solid-state systems Type A1 Journal article
Year 2021 Publication Condensed Matter Abbreviated Journal
Volume 6 Issue 2 Pages 14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Superfluidity has been predicted and now observed in a number of different electron-hole double-layer semiconductor heterostructures. In some of the heterostructures, such as GaAs and Ge-Si electron-hole double quantum wells, there is a strong mismatch between the electron and hole effective masses. We systematically investigate the sensitivity to unequal masses of the superfluid properties and the self-consistent screening of the electron-hole pairing interaction. We find that the superfluid properties are insensitive to mass imbalance in the low density BEC regime of strongly-coupled boson-like electron-hole pairs. At higher densities, in the BEC-BCS crossover regime of fermionic pairs, we find that mass imbalance between electrons and holes weakens the superfluidity and expands the density range for the BEC-BCS crossover regime. This permits screening to kill the superfluid at a lower density than for equal masses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000665155800001 Publication Date 2021-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2410-3896 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:179635 Serial 6982
Permanent link to this record