|   | 
Details
   web
Records
Author Wee, L.H.; Wiktor, C.; Turner, S.; Vanderlinden, W.; Janssens, N.; Bajpe, S.R.; Houthoofd, K.; Van Tendeloo, G.; De Feyter, S.; Kirschhock, C.E.A.; Martens, J.A.;
Title Copper benzene tricarboxylate metal-organic framework with wide permanent mesopores stabilized by keggin polyoxometallate ions Type A1 Journal article
Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 134 Issue 26 Pages 10911-10919
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Porous solids with organized multiple porosity are of scientific and technological importance for broadening the application range from traditional areas of catalysis and adsorption/separation to drug release and biomedical imaging. Synthesis of crystalline porous materials offering a network of uniform micro- and mesopores remains a major scientific challenge. One strategy is based on variation of synthesis parameters of microporous networks, such as, for example, zeolites or metal organic frameworks (MOFs). Here, we show the rational development of an hierarchical variant of the microporous cubic Cu-3(BTC)(2) (BTC = 1,3,5-benzenetricarboxylate) HKUST-1 MOF having strictly repetitive S inn wide mesopores separated by uniform microporous walls in a single crystal structure. This new material coined COK-15 (COK = Centrum voor Oppervlaktechemie en Katalyse) was synthesized via a dual-templating approach. Stability was enhanced by Keggin type phosphotungstate (HPW) systematically occluded in the cavities constituting the walls between the mesopores.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000305863900037 Publication Date 2012-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 83 Open Access
Notes Iap; Fwo Approved Most recent IF: 13.858; 2012 IF: 10.677
Call Number UA @ lucian @ c:irua:100330 Serial 514
Permanent link to this record
 

 
Author Boulay, E.; Nakano, J.; Turner, S.; Idrissi, H.; Schryvers, D.; Godet, S.
Title Critical assessments and thermodynamic modeling of BaO-SiO2 and SiO2-TiO2 systems and their extensions into liquid immiscibility in the BaO-SiO2-TiO2 system Type A1 Journal article
Year 2014 Publication Calphad computer coupling of phase diagrams and thermochemistry Abbreviated Journal Calphad
Volume 47 Issue Pages 68-82
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study discusses rational reproduction of liquid immiscibility in the BaO-SiO2-TiO2 system. While a ternary assessment requires sub-binary descriptions in the same thermodynamic model, the related sub-binary systems BaO-SiO2, BaO-TiO2 and SiO2-TiO2 liquid and solid phases have been evaluated using different thermodynamic models in the literature. In this study, BaO-SiO2 and SiO2-TiO2 were assessed using the Ionic Two Sublattice model (I2SL) based on experimental data from the literature. BaO-TiO2 was already assessed using this model. Binary descriptions developed were then used for the assessment of liquid immiscibility in the BaO-SiO2-TiO2 system. Ternary interaction parameters were found necessary for rational reproduction of the new ternary experimental data gathered in the present work. The model parameters for each system were evaluated using a CAPLHAD approach. A set of parameters is proposed. They show good agreement between the calculated and experimental equilibrium liquidus, liquid immiscibility and thermochemical properties in the BaO-SiO2-TiO2 system. (C) 2014 Elsevier Ltd. All rights reserved.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000346224700008 Publication Date 2014-07-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0364-5916; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.6 Times cited 9 Open Access
Notes Approved Most recent IF: 1.6; 2014 IF: 1.370
Call Number UA @ lucian @ c:irua:122776 Serial 540
Permanent link to this record
 

 
Author Schryvers, D.; Van Aert, S.; Delville, R.; Idrissi, H.; Turner, S.; Salje, E.K.H.
Title Dedicated TEM on domain boundaries from phase transformations and crystal growth Type A1 Journal article
Year 2013 Publication Phase transitions Abbreviated Journal Phase Transit
Volume 86 Issue 1 Pages 15-22
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Investigating domain boundaries and their effects on the behaviour of materials automatically implies the need for detailed knowledge on the structural aspects of the atomic configurations at these interfaces. Not only in view of nearest neighbour interactions but also at a larger scale, often surpassing the unit cell, the boundaries can contain structural elements that do not exist in the bulk. In the present contribution, a number of special boundaries resulting from phase transformations or crystal growth and those recently investigated by advanced transmission electron microscopy techniques in different systems will be reviewed. These include macrotwins between microtwinned martensite plates in NiAl, austenite-single variant martensite habit planes in low hysteresis NiTiPd, nanotwins in non-textured nanostructured Pd and ferroelastic domain boundaries in CaTiO3. In all discussed cases these boundaries play an essential role in the properties of the respective materials.
Address (down)
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000312586700003 Publication Date 2012-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.06 Times cited Open Access
Notes Fwo; Iap Approved Most recent IF: 1.06; 2013 IF: 1.044
Call Number UA @ lucian @ c:irua:101222 Serial 612
Permanent link to this record
 

 
Author Ray, S.; Kolen'ko, Y.V.; Kovnir, K.A.; Lebedev, O.I.; Turner, S.; Chakraborty, T.; Erni, R.; Watanabe, T.; Van Tendeloo, G.; Yoshimura, M.; Itoh, M.
Title Defect controlled room temperature ferromagnetism in Co-doped barium titanate nanocrystals Type A1 Journal article
Year 2012 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 23 Issue 2 Pages 025702,1-025702,10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Defect mediated high temperature ferromagnetism in oxide nanocrystallites is the central feature of this work. Here, we report the development of room temperature ferromagnetism in nanosized Co-doped barium titanate particles with a size of around 14 nm, synthesized by a solvothermal drying method. A combination of x-ray diffraction with state-of-the-art electron microscopy techniques confirms the intrinsic doping of Co into BaTiO3. The development of the room temperature ferromagnetism was tracked down to the different donor defects, namely hydroxyl groups at the oxygen site (\mathrm {OH}\mathrm {(O)}
Address (down)
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000298409000011 Publication Date 2011-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 19 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 3.44; 2012 IF: 3.842
Call Number UA @ lucian @ c:irua:93636 Serial 614
Permanent link to this record
 

 
Author Philippaerts, A.; Goossens, S.; Vermandel, W.; Tromp, M.; Turner, S.; Geboers, J.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F.
Title Design of Ru-zeolites for hydrogen-free production of conjugated linoleic acid Type A1 Journal article
Year 2011 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 4 Issue 6 Pages 757-767
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract While conjugated vegetable oils are currently used as additives in the drying agents of oils and paints, they are also attractive molecules for making bio-plastics. Moreover, conjugated oils will soon be accepted as nutritional additives for functional food products. While current manufacture of conjugated vegetable oils or conjugated linoleic acids (CLAs) uses a homogeneous base as isomerisation catalyst, a heterogeneous alternative is not available today. This contribution presents the direct production of CLAs over Ru supported on different zeolites, varying in topology (ZSM-5, BETA, Y), Si/Al ratio and countercation (H+, Na+, Cs+). Ru/Cs-USY, with a Si/Al ratio of 40, was identified as the most active and selective catalyst for isomerisation of methyl linoleate (cis-9,cis-12 (C18:2)) to CLA at 165 °C. Interestingly, no hydrogen pre-treatment of the catalyst or addition of hydrogen donors is required to achieve industrially relevant isomerisation productivities, namely, 0.7 g of CLA per litre of solvent per minute. Moreover, the biologically most active CLA isomers, namely, cis-9,trans-11, trans-10,cis-12 and trans-9,trans-11, were the main products, especially at low catalyst concentrations. Ex situ physicochemical characterisation with CO chemisorption, extended X-ray absorption fine structure measurements, transmission electron microscopy analysis, and temperature-programmed oxidation reveals the presence of highly dispersed RuO2 species in Ru/Cs-USY(40).
Address (down)
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000292214000009 Publication Date 2011-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 24 Open Access
Notes Fwo Approved Most recent IF: 7.226; 2011 IF: 6.827
Call Number UA @ lucian @ c:irua:90352 Serial 660
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Shenderova, O.; Vlasov, I.I.; Verbeeck, J.; Van Tendeloo, G.
Title Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy Type A1 Journal article
Year 2009 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 19 Issue 13 Pages 2116-2124
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Size, morphology, and nitrogen impurity location, all of which are all thought to be related to the luminescent properties of detonation nanodiamonds, are determined in several detonation nanodiamond samples using a combination of transmission electron microscopy techniques. Results obtained from annealed and cleaned detonation nanodiamond samples are compared to results from conventionally purified detonation nanodiamond. Detailed electron energy loss spectroscopy combined with model-based quantification provides direct evidence for the sp3 like embedding of nitrogen impurities into the diamond cores of all the studied nanodiamond samples. Simultaneously, the structure and morphology of the cleaned detonation nanodiamond particles are studied using high resolution transmission electron microscopy. The results show that the size and morphology of detonation nanodiamonds can be modified by temperature treatment and that by applying a special cleaning procedure after temperature treatment, nanodiamond particles with clean facets almost free from sp2 carbon can be prepared. These clean facets are clear evidence that nanodiamond cores are not necessarily in coexistence with a graphitic shell of non-diamond carbon.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000268297800012 Publication Date 2009-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X;1616-3028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 100 Open Access
Notes Esteem 026019 Approved Most recent IF: 12.124; 2009 IF: 6.990
Call Number UA @ lucian @ c:irua:78261UA @ admin @ c:irua:78261 Serial 674
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Schroeder, F.; Fischer, R.A.; Van Tendeloo, G.
Title Direct imaging of loaded metal-organic framework materials (metal@MOF-5) Type A1 Journal article
Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 20 Issue 17 Pages 5622-5627
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We illustrate the potential of advanced transmission electron microscopy for the characterization of a new class of soft porous materials: metal@Zn4O(bdc)3 (metal@MOF-5; bdc = 1,4-benzenedicarboxylate). By combining several electron microscopy techniques (transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and electron tomography) and by carefully reducing the electron dose to avoid beam damage, it is possible to simultaneously characterize the MOF-5 framework material and the loaded metal nanoparticles. We also demonstrate that electron tomography can be used to accurately determine the position and distribution of the particles within the MOF-5 framework. To demonstrate the implementation of these microscopy techniques and what kind of results can be expected, measurements on gas-phase-loaded metal−organic framework materials Ru@MOF-5 and Pd@MOF-5 are presented.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000258941400021 Publication Date 2008-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 112 Open Access
Notes Esteem 026019 Approved Most recent IF: 9.466; 2008 IF: 5.046
Call Number UA @ lucian @ c:irua:76595 Serial 714
Permanent link to this record
 

 
Author Filippousi, M.; Turner, S.; Katsikini, M.; Pinakidou, F.; Zamboulis, D.; Pavlidou, E.; Van Tendeloo, G.
Title Direct observation and structural characterization of natural and metal ion-exchanged HEU-type zeolites Type A1 Journal article
Year 2015 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 210 Issue 210 Pages 185-193
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The atomic structure of natural HEU-type zeolite and two ion-exchanged variants of the zeolite, Ag+ (Ag-HEU) and Zn2+ (Zn-HEU) ion exchanged HEU-type zeolites, are investigated using advanced transmission electron microscopy techniques in combination with X-ray powder diffraction and X-ray absorption fine structure measurements. In both ion-exchanged materials, loading of the natural HEU zeolite is confirmed. Using low-voltage, aberration-corrected transmission electron microscopy at low-dose conditions, the local crystal structure of natural HEU-type zeolite is determined and the interaction of the ion-exchanged natural zeolites with the Ag+ and Zn2+ ions is studied. In the case of Ag-HEU, the presence of Ag+ ions and clusters at extra-framework sites as well as Ag nanoparticles has been confirmed. The Ag nanoparticles are preferentially positioned at the zeolite surface. For Zn-HEU, no large Zn(O) nanopartides are present, instead, the HEU channels are evidenced to be decorated by small Zn(O) clusters. (c) 2015 Elsevier Inc. All rights reserved.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000353733300024 Publication Date 2015-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 5 Open Access
Notes 246791 Countatoms; Iap-Pai; Fwo Approved Most recent IF: 3.615; 2015 IF: 3.453
Call Number c:irua:126006 Serial 715
Permanent link to this record
 

 
Author Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Salje, E.K.H.
Title Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy Type A1 Journal article
Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 24 Issue 4 Pages 523-527
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High-resolution aberration-corrected transmission electron microscopy aided by statistical parameter estimation theory is used to quantify localized displacements at a (110) twin boundary in orthorhombic CaTiO3. The displacements are 36 pm for the Ti atoms and confined to a thin layer. This is the first direct observation of the generation of ferroelectricity by interfaces inside this material which opens the door for domain boundary engineering.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000299156400011 Publication Date 2011-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 150 Open Access
Notes Fwo Approved Most recent IF: 19.791; 2012 IF: 14.829
Call Number UA @ lucian @ c:irua:94110 Serial 717
Permanent link to this record
 

 
Author Das, P.; Koblischka, M.R.; Turner, S.; Van Tendeloo, G.; Wolf, T.; Jirsa, M.; Hartmann, U.
Title Direct observation of nanometer-scale pinning sites in (Nd0.33Eu0.20Gd0.47)Ba2Cu3O7-\delta single crystals Type A1 Journal article
Year 2008 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 83 Issue 3 Pages 37005,1-37005,4
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report on the observation of self-organized stripe-like structures on the as-grown surface and in the bulk of (Nd,Eu,Gd)Ba2Cu3Oy single crystals. The periodicity of the stripes on the surface lies between 500800 nm. These are possibly the growth steps of the crystal. Transmission electron microscopy investigations revealed stripes of periodicity in the range of 2040 nm in the bulk. From electron back scattered diffraction investigations, no crystallographic misorientation due to the nanostripes has been found. Scanning tunneling spectroscopic experiments revealed nonsuperconducting regions, running along twin directions, which presumably constitute strong pinning sites.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000259022600032 Publication Date 2008-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 5 Open Access
Notes Approved Most recent IF: 1.957; 2008 IF: 2.203
Call Number UA @ lucian @ c:irua:76496 Serial 719
Permanent link to this record
 

 
Author Ke, X.; Turner, S.; Quintana, M.; Hadad, C.; Montellano-López, A.; Carraro, M.; Sartorel, A.; Bonchio, M.; Prato, M.; Bittencourt, C.; Van Tendeloo, G.;
Title Dynamic motion of Ru-polyoxometalate ions (POMs) on functionalized few-layer graphene Type A1 Journal article
Year 2013 Publication Small Abbreviated Journal Small
Volume 9 Issue 23 Pages 3922-3927
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The interaction and stability of Ru4POM on few layer graphene via functional groups is investigated by time-dependent imaging using aberration-corrected transmission electron microscopy. The Ru4POM demonstrates dynamic motion on the graphene surface with its frequency and amplitude of rotation related to the nature of the functional group used. The stability of the Ru4POMgraphene hybrid corroborates its long-term robustness when applied to multielectronic catalytic processes.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000331282400003 Publication Date 2013-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 16 Open Access
Notes IAP-7; Countatoms; Approved Most recent IF: 8.643; 2013 IF: 7.514
Call Number UA @ lucian @ c:irua:115768 Serial 763
Permanent link to this record
 

 
Author Comrie, C.M.; Ahmed, A.; Smeets, D.; Demeulemeester, J.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Vantomme, A.
Title Effect of high temperature deposition on CoSi2 phase formation Type A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 113 Issue 23 Pages 234902-234908
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This paper discusses the nucleation behaviour of the CoSi to CoSi2 transformation from cobalt silicide thin films grown by deposition at elevated substrate temperatures ranging from 375 °C to 600 °C. A combination of channelling, real-time Rutherford backscattering spectrometry, real-time x-ray diffraction, and transmission electron microscopy was used to investigate the effect of the deposition temperature on the subsequent formation temperature of CoSi2, its growth behaviour, and the epitaxial quality of the CoSi2 thus formed. The temperature at which deposition took place was observed to exert a significant and systematic influence on both the formation temperature of CoSi2 and its growth mechanism. CoSi films grown at the lowest temperatures were found to increase the CoSi2 nucleation temperature above that of CoSi2 grown by conventional solid phase reaction, whereas the higher deposition temperatures reduced the nucleation temperature significantly. In addition, a systematic change in growth mechanism of the subsequent CoSi2 growth occurs as a function of deposition temperature. First, the CoSi2 growth rate from films grown at the lower reactive deposition temperatures is substantially lower than that grown at higher reactive deposition temperatures, even though the onset of growth occurs at a higher temperature, Second, for deposition temperatures below 450 °C, the growth appears columnar, indicating nucleation controlled growth. Elevated deposition temperatures, on the other hand, render the CoSi2 formation process layer-by-layer which indicates enhanced nucleation of the CoSi2 and diffusion controlled growth. Our results further indicate that this observed trend is most likely related to stress and changes in microstructure introduced during reactive deposition of the CoSi film. The deposition temperature therefore provides a handle to tune the CoSi2 growth mechanism.
Address (down)
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000321011700077 Publication Date 2013-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 2 Open Access
Notes Fwo; Countatoms Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number UA @ lucian @ c:irua:109266 Serial 815
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Gasparotto, A.; Montini, T.; Turner, S.; Lebedev, O.I.; Gombac, V.; Adami, G.; Van Tendeloo, G.; Barreca, D.; Fornasiero, P.;
Title Enhanced hydrogen production by photoreforming of renewable oxygenates through nanostructured Fe2O3 polymorphs Type A1 Journal article
Year 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 24 Issue 3 Pages 372-378
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sunlight-driven hydrogen production via photoreforming of aqueous solutions containing renewable compounds is an attractive option for sustainable energy generation with reduced carbon footprint. Nevertheless, the absence of photocatalysts combining high efficiency and stability upon solar light activation has up to date strongly hindered the development of this technology. Herein, two scarcely investigated iron(III) oxide polymorphs, β- and ε-Fe2O3, possessing a remarkable activity in sunlight-activated H2 generation from aqueous solutions of renewable oxygenates (i.e., ethanol, glycerol, glucose) are reported. For β-Fe2O3 and ε-Fe2O3, H2 production rates up to 225 and 125 mmol h−1 m−2 are obtained, with significantly superior performances with respect to the commonly investigated α-Fe2O3.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000332832500011 Publication Date 2013-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 95 Open Access
Notes Countatoms; Hercules; Fwo Approved Most recent IF: 12.124; 2014 IF: 11.805
Call Number UA @ lucian @ c:irua:113090 Serial 1051
Permanent link to this record
 

 
Author Lisiecki, I.; Turner, S.; Bals, S.; Pileni, M.P.; Van Tendeloo, G.
Title Enhanced stability against oxidation due to 2D self-organisation of hcp cobalt nanocrystals Type H1 Book chapter
Year 2008 Publication Abbreviated Journal
Volume Issue Pages 273-274
Keywords H1 Book chapter; Electron microscopy for materials research (EMAT)
Abstract
Address (down)
Corporate Author Thesis
Publisher Springer Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-540-85226-1 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:87610 Serial 1055
Permanent link to this record
 

 
Author Mei, B.; Wiktor, C.; Turner, S.; Pougin, A.; Van Tendeloo, G.; Fischer, R.A.; Muhler, M.; Strunk, J.
Title Evidence for metalsupport interactions in Au modified TiOx/SBA-15 materials prepared by photodeposition Type A1 Journal article
Year 2013 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 3 Issue 12 Pages 3041-3049
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Gold nanoparticles have been efficiently photodeposited onto titanate-loaded SBA-15 (Ti(x)/SBA-15) with different titania coordination. Transmission electron microscopy shows that relatively large Au nanoparticles are photodeposited on the outer surface of the Ti(x)/SBA-15 materials and that TiOx tends to form agglomerates in close proximity to the Au nanoparticles, often forming coreshell Au/TiOx structures. This behavior resembles typical processes observed due to strong-metal support interactions. In the presence of gold, the formation of hydrogen on Ti(x)/SBA-15 during the photodeposition process and the performance in the hydroxylation of terephthalic acid is greatly enhanced. The activity of the Au/Ti(x)/SBA-15 materials is found to depend on the TiOx loading, increasing with a larger amount of initially isolated TiO4 tetrahedra. Samples with initially clustered TiOx species show lower photocatalytic activities. When isolated zinc oxide (ZnOx) species are present on Ti(x)/SBA-15, gold nanoparticles are smaller and well dispersed within the pores. Agglomeration of TiOx species and the formation of Au/TiOx structures is negligible. The dispersion of gold and the formation of Au/TiOx in the SBA-15 matrix seem to depend on the mobility of the TiOx species. The mobility is determined by the initial degree of agglomeration of TiOx. Effective hydrogen evolution requires Au/TiOx coreshell composites as in Au/Ti(x)/SBA-15, whereas hydroxylation of terephthalic acid can also be performed with Au/ZnOx/TiOx/SBA-15 materials. However, isolated TiOx species have to be grafted onto the support prior to the zinc oxide species, providing strong evidence for the necessity of TiOSi bridges for high photocatalytic activity in terephthalic acid hydroxylation.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328231400044 Publication Date 2013-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435;2155-5435; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.614 Times cited 22 Open Access
Notes 262348 ESMI; FWO; 246791 COUNTATOMS; IAP-PAI; Hercules Approved Most recent IF: 10.614; 2013 IF: 7.572
Call Number UA @ lucian @ c:irua:112502 Serial 1094
Permanent link to this record
 

 
Author Rehor, I.; Slegerova, J.; Kucka, J.; Proks, V.; Petrakova, V.; Adam, M.P.; Treussart, F.; Turner, S.; Bals, S.; Sacha, P.; Ledvina, M.; Wen, A.M.; Steinmetz, N.F.; Cigler, P.;
Title Fluorescent nanodiamonds embedded in biocompatible translucent shells Type A1 Journal article
Year 2014 Publication Small Abbreviated Journal Small
Volume 10 Issue 6 Pages 1106-1115
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract High pressure high temperature (HPHT) nanodiamonds (NDs) represent extremely promising materials for construction of fluorescent nanoprobes and nanosensors. However, some properties of bare NDs limit their direct use in these applications: they precipitate in biological solutions, only a limited set of bio-orthogonal conjugation techniques is available and the accessible material is greatly polydisperse in shape. In this work, we encapsulate bright 30-nm fluorescent nanodiamonds (FNDs) in 1020-nm thick translucent (i.e., not altering FND fluorescence) silica shells, yielding monodisperse near-spherical particles of mean diameter 66 nm. High yield modification of the shells with PEG chains stabilizes the particles in ionic solutions, making them applicable in biological environments. We further modify the opposite ends of PEG chains with fluorescent dyes or vectoring peptide using click chemistry. High conversion of this bio-orthogonal coupling yielded circa 2000 dye or peptide molecules on a single FND. We demonstrate the superior properties of these particles by in vitro interaction with human prostate cancer cells: while bare nanodiamonds strongly aggregate in the buffer and adsorb onto the cell membrane, the shell encapsulated NDs do not adsorb nonspecifically and they penetrate inside the cells.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000333538000012 Publication Date 2014-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 79 Open Access Not_Open_Access
Notes 262348 ESMI; Hercules; FWO Approved Most recent IF: 8.643; 2014 IF: 8.368
Call Number UA @ lucian @ c:irua:115566 Serial 1234
Permanent link to this record
 

 
Author Rehor, I.; Mackova, H.; Filippov, S.K.; Kucka, J.; Proks, V.; Slegerova, J.; Turner, S.; Van Tendeloo, G.; Ledvina, M.; Hruby, M.; Cigler, P.;
Title Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings Type A1 Journal article
Year 2014 Publication ChemPlusChem Abbreviated Journal Chempluschem
Volume 79 Issue 1 Pages 21-24
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The novel synthesis of a polymeric interface grown from the surface of bright fluorescent nanodiamonds is reported. The polymer enables bioorthogonal attachment of various molecules by click chemistry; the particles are resistant to nonspecific protein adsorption and show outstanding colloidal stability in buffers and biological media. The coating fully preserves the unique optical properties of the nitrogen-vacancy centers that are crucial for bioimaging and sensoric applications.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000337974900002 Publication Date 2013-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2192-6506; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.797 Times cited 34 Open Access
Notes EU 7FP Program (no.262348); European Soft Matter Infrastructure; ESMI; ERC (grant no.246791)-COUNTATOMS; FWO Approved Most recent IF: 2.797; 2014 IF: 2.997
Call Number UA @ lucian @ c:irua:113088 Serial 1235
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Turner, S.; Sada, C.; Depero, L.E.; Van Tendeloo, G.; Barreca, D.
Title Fluorine doped Fe2O3 nanostructures by a one-pot plasma-assisted strategy Type A1 Journal article
Year 2013 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 3 Issue 45 Pages 23762-23768
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The present work reports on the synthesis of fluorine doped Fe2O3 nanomaterials by a single-step plasma enhanced-chemical vapor deposition (PE-CVD) strategy. In particular, Fe(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) was used as molecular source for both Fe and F in Ar/O2 plasmas. The structure, morphology and chemical composition of the synthesized nanosystems were thoroughly analyzed by two-dimensional X-ray diffraction (XRD2), field emission-scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS) and transmission electron microscopy (TEM). A suitable choice of processing parameters enabled the selective formation of α-Fe2O3 nanomaterials, characterized by an homogeneous F doping, even at 100 °C. Interestingly, a simultaneous control of the system nanoscale organization and fluorine content could be achieved by varying the sole growth temperature. The tailored properties of the resulting materials can be favourably exploited for several technological applications, ranging from photocatalysis, to photoelectrochemical cells and gas sensing.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326395800141 Publication Date 2013-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 23 Open Access
Notes Fwo Approved Most recent IF: 3.108; 2013 IF: 3.708
Call Number UA @ lucian @ c:irua:111091 Serial 1237
Permanent link to this record
 

 
Author Maignan, A.; Martin, C.; Singh, K.; Simon, C.; Lebedev, O.I.; Turner, S.
Title From spin induced ferroelectricity to dipolar glasses : spinel chromites and mixed delafossites Type A1 Journal article
Year 2012 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 195 Issue Pages 41-49
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Magnetoelectric multiferroics showing coupling between polarization and magnetic order are attracting much attention. For instance, they could be used in memory devices. Metal-transition oxides are provided several examples of inorganic magnetoelectric multiferroics. In the present short review, spinel and delafossite chromites are described. For the former, an electric polarization is evidenced in the ferrimagnetic state for ACr2O4 polycrystalline samples (A=Ni, Fe, Co). The presence of a JahnTeller cation such as Ni2+ at the A site is shown to yield larger polarization values. In the delafossites, substitution by V3+ at the Cr or Fe site in CuCrO2 (CuFeO2) suppresses the complex antiferromagnetic structure at the benefit of a spin glass state. The presence of cation disorder, probed by transmission electron microscopy, favors relaxor-like ferroelectricity. The results on the ferroelectricity of ferrimagnets and insulating spin glasses demonstrate that, in this research field, transition-metal oxides are worth to be studied.
Address (down)
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000309783600006 Publication Date 2012-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 27 Open Access
Notes Fwo Approved Most recent IF: 2.299; 2012 IF: 2.040
Call Number UA @ lucian @ c:irua:101219 Serial 1286
Permanent link to this record
 

 
Author Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Ding, X.; Salje, E.K.H.
Title Functional twin boundaries Type A1 Journal article
Year 2013 Publication Phase transitions Abbreviated Journal Phase Transit
Volume 86 Issue 11 Pages 1052-1059
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Functional interfaces are at the core of research in the emerging field of domain boundary engineering where polar, conducting, chiral, and other interfaces and twin boundaries have been discovered. Ferroelectricity was found in twin walls of paraelectric CaTiO3. We show that the effect of functional interfaces can be optimized if the number of twin boundaries is increased in densely twinned materials. Such materials can be produced by shear in the ferroelastic phase rather than by rapid quench from the paraelastic phase.
Address (down)
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000327475900002 Publication Date 2013-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.06 Times cited 5 Open Access
Notes Approved Most recent IF: 1.06; 2013 IF: 1.044
Call Number UA @ lucian @ c:irua:107344 Serial 1304
Permanent link to this record
 

 
Author Esken, D.; Turner, S.; Wiktor, C.; Kalidindi, S.B.; Van Tendeloo, G.; Fischer, R.A.
Title GaN@ZIF-8 : selective formation of gallium nitride quantum dots inside a zinc methylimidazolate framework Type A1 Journal article
Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 133 Issue 41 Pages 16370-16373
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microporous zeolitic imidazolate framework [Zn(MeIM)2; ZIF-8; MeIM = imidazolate-2-methyl] was quantitatively loaded with trimethylamine gallane [(CH3)3NGaH3]. The obtained inclusion compound [(CH3)3NGaH3]@ZIF-8 reveals three precursor molecules per host cavity. Treatment with ammonia selectively yields the caged cyclotrigallazane intermediate (H2GaNH2)3@ZIF-8, and further annealing gives GaN@ZIF-8. This new composite material was characterized with FT-IR spectroscopy, solid-state NMR spectroscopy, powder X-ray diffraction, elemental analysis, (scanning) transmission electron microscopy combined with electron energy-loss spectroscopy, photoluminescence (PL) spectroscopy, and N2 sorption measurements. The data give evidence for the presence of GaN nanoparticles (13 nm) embedded in the cavities of ZIF-8, including a blue-shift of the PL emission band caused by the quantum size effect.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000295997500014 Publication Date 2011-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 82 Open Access
Notes Hercules Approved Most recent IF: 13.858; 2011 IF: 9.907
Call Number UA @ lucian @ c:irua:93582 Serial 1315
Permanent link to this record
 

 
Author Zhang, G.; Turner, S.; Ekimov, E.A.; Vanacken, J.; Timmermans, M.; Samuely, T.; Sidorov, V.A.; Stishov, S.M.; Lu, Y.; Deloof, B.; Goderis, B.; Van Tendeloo, G.; Van de Vondel, J.; Moshchalkov, V.V.;
Title Global and local superconductivity in boron-doped granular diamond Type A1 Journal article
Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 26 Issue 13 Pages 2034-2040
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Strong granularity-correlated and intragrain modulations of the superconducting order parameter are demonstrated in heavily boron-doped diamond situated not yet in the vicinity of the metal-insulator transition. These modulations at the superconducting state (SC) and at the global normal state (NS) above the resistive superconducting transition, reveal that local Cooper pairing sets in prior to the global phase coherence.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000333616700008 Publication Date 2013-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 34 Open Access
Notes Methusalem Funding; FWO projects; MP1201 COST Action; ERC Grant N246791-COUNTATOMS; post-doctoral grant (S.T.) and for project no. G.0568.10N.;Hercules Foundation Approved Most recent IF: 19.791; 2014 IF: 17.493
Call Number UA @ lucian @ c:irua:116150 Serial 1346
Permanent link to this record
 

 
Author Filippov, S.K.; Sedlacek, O.; Bogomolova, A.; Vetrik, M.; Jirak, D.; Kovar, J.; Kucka, J.; Bals, S.; Turner, S.; Stepanek, P.; Hruby, M.;
Title Glycogen as a biodegradable construction nanomaterial for in vivo use Type A1 Journal article
Year 2012 Publication Macromolecular bioscience Abbreviated Journal Macromol Biosci
Volume 12 Issue 12 Pages 1731-1738
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract It is demonstrated that glycogen as a biodegradable and inexpensive material coming from renewable resources can be used as a carrier for the construction of in vivo imaging nanoagents. The model system considered is composed of glycogen modified with gadolinium and fluorescent labels. Systematic studies of properties of these nanocarriers by a variety of physical methods and results of in vivo tests of biodegradability are reported. This represents, to the authors' best knowledge, the first such use of glycogen.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000312242600016 Publication Date 2012-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-5187; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.238 Times cited 22 Open Access
Notes 262348 ESMI; FWO; Hercules Approved Most recent IF: 3.238; 2012 IF: 3.742
Call Number UA @ lucian @ c:irua:105286 Serial 1354
Permanent link to this record
 

 
Author Pospisilova, A.; Filippov, S.K.; Bogomolova, A.; Turner, S.; Sedlacek, O.; Matushkin, N.; Cernochova, Z.; Stepanek, P.; Hruby, M.
Title Glycogen-graft-poly(2-alkyl-2-oxazolines) – the new versatile biopolymer-based thermoresponsive macromolecular toolbox Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue 106 Pages 61580-61588
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study is focused on thermoresponsive glycogen-graft-poly(2-alkyl-2-oxazolines), a new group of nanostructured hybrid dendrimeric stimuli-responsive polymers connecting the body's own biodegradable polysaccharidic dendrimer glycogen with the widely tuneable thermoresponsive behavior of polypeptide-analogic poly(2-alkyl-2-oxazolines), which are known to be biocompatible. Glycogen-graft-poly(2-alkyl-2-oxazolines) were prepared by a simple one-pot two-step procedure involving cationic ring-opening polymerization of 2-alkyl-2-oxazolines followed by termination of the living cationic ends with sodium glycogenate. As confirmed by light and X-ray scattering, as well as cryo-transmission electron microscopy, the grafted dendrimer structure allows easy adjustment of the cloud point temperature, the concentration dependence and nanostructure of the self-assembled phase separated polymer by crosstalk during graft composition, the graft length and the grafting density, in a very wide range.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000345656600045 Publication Date 2014-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 15 Open Access
Notes Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:122222 Serial 1355
Permanent link to this record
 

 
Author Turner, S.; Lazar, S.; Freitag, B.; Egoavil, R.; Verbeeck, J.; Put, S.; Strauven, Y.; Van Tendeloo, G.
Title High resolution mapping of surface reduction in ceria nanoparticles Type A1 Journal article
Year 2011 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 3 Issue 8 Pages 3385-3390
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Surface reduction of ceria nano octahedra with predominant {111} and {100} type surfaces is studied using a combination of aberration-corrected Transmission Electron Microscopy (TEM) and spatially resolved electron energy-loss spectroscopy (EELS) at high energy resolution and atomic spatial resolution. The valency of cerium ions at the surface of the nanoparticles is mapped using the fine structure of the Ce M4,5 edge as a fingerprint. The valency of the surface cerium ions is found to change from 4+ to 3+ owing to oxygen deficiency (vacancies) close to the surface. The thickness of this Ce3+ shell is measured using atomic-resolution Scanning Transmission Electron Microscopy (STEM)-EELS mapping over a {111} surface (the predominant facet for this ceria morphology), {111} type surface island steps and {100} terminating planes. For the {111} facets and for {111} surface islands, the reduction shell is found to extend over a single fully reduced surface plane and 12 underlying mixed valency planes. For the {100} facets the reduction shell extends over a larger area of 56 oxygen vacancy-rich planes. This finding provides a plausible explanation for the higher catalytic activity of the {100} surface facets in ceria.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000293521700057 Publication Date 2011-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 127 Open Access
Notes Fwo Approved Most recent IF: 7.367; 2011 IF: 5.914
Call Number UA @ lucian @ c:irua:90361UA @ admin @ c:irua:90361 Serial 1458
Permanent link to this record
 

 
Author Orlinskii, S.B.; Bogomolov, R.S.; Kiyamova, A.M.; Yavkin, B.V.; Mamin, G.M.; Turner, S.; Van Tendeloo, G.; Shiryaev, A.A.; Vlasov, I.I.; Shenderova, O.
Title Identification of substitutional nitrogen and surface paramagnetic centers in nanodiamond of dynamic synthesis by electron paramagnetic resonance Type A1 Journal article
Year 2011 Publication Nanoscience and nanotechnology letters Abbreviated Journal Nanosci Nanotech Let
Volume 3 Issue 1 Pages 63-67
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Production of nanodiamond particles containing substitutional nitrogen is important for a wide variety of advanced applications. In the current work nanodiamond particles synthesized from a mixture of graphite and hexogen were analyzed to determine the presence of substitutional nitrogen using pulsed electron paramagnetic resonance (EPR) spectroscopy. Nitrogen paramagnetic centers in the amount of 1.2 ppm have been identified. The spin relaxation characteristics for both nitrogen and surface defects are also reported. A new approach for efficient depletion of the strong non-nitrogen EPR signal in nanodiamond material by immersing nanodiamond particles into ice matrix is suggested. This approach allows an essential decrease of the spin relaxation time of the dominant non-nitrogen defects, while preserving the substitutional nitrogen spin relaxation time.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000293211200012 Publication Date 2011-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1941-4900;1941-4919; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.889 Times cited 14 Open Access
Notes Approved Most recent IF: 1.889; 2011 IF: 0.528
Call Number UA @ lucian @ c:irua:91943 Serial 1548
Permanent link to this record
 

 
Author Wiktor, C.; Turner, S.; Zacher, D.; Fischer, R.A.; Van Tendeloo, G.
Title Imaging of intact MOF-5 nanocrystals by advanced TEM at liquid Type A1 Journal article
Year 2012 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 162 Issue Pages 131-135
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract First results on the imaging of intact metalorganic framework (MOF) pores in MOF-5 nanocrystals by aberration corrected transmission electron microscopy (TEM) under liquid nitrogen conditions are presented. The applied technique is certainly transferable to other MOF systems, permitting detailed studies of MOF interfaces, MOFnanoparticle interaction and MOF thin films.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000308284800018 Publication Date 2012-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 30 Open Access
Notes Fwo Approved Most recent IF: 3.615; 2012 IF: 3.365
Call Number UA @ lucian @ c:irua:100467 Serial 1554
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Bontempi, E.; Gasparotto, A.; Lebedev, O.I.; Turner, S.; Depero, L.E.; Van Tendeloo, G.; Barreca, D.
Title Insights on growth and nanoscopic investigation of uncommon iron oxide polymorphs Type A1 Journal article
Year 2013 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume Issue 31 Pages 5454-5461
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Si(100)-supported Fe2O3 nanomaterials were developed by a chemical vapor deposition (CVD) approach. The syntheses, which were performed at temperatures between 400 and 550 °C, selectively yielded the scarcely studied β- and ϵ-Fe2O3 polymorphs under O2 or O2 + H2O reaction environments, respectively. Correspondingly, the observed morphology underwent a progressive evolution from interconnected nanopyramids to vertically aligned nanorods. The present study aims to provide novel insights into Fe2O3 nano-organization by a systematic investigation of the system structure/morphology and of their interrelations with growth conditions. In particular, for the first time, the β- and ϵ-Fe2O3 preparation process has been accompanied by a thorough multitechnique investigation, which, beyond X-ray photoelectron spectroscopy (XPS) and field-emission scanning electron microscopy (FESEM), is carried out by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDXS), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), scanning TEM electron energy-loss spectroscopy (STEM-EELS), and high-angle annular dark-field STEM (HAADF-STEM). Remarkably, the target materials showed a high structural and compositional homogeneity throughout the whole thickness of the nanodeposit. In particular, spatially resolved EELS chemical maps through the spectrum imaging (SI) technique enabled us to gain important information on the local Fe coordination, which is of crucial importance in determining the system reactivity. The described preparation method is in fact a powerful tool to simultaneously tailor phase composition and morphology of iron(III) oxide nanomaterials, the potential applications of which include photocatalysis, magnetic devices, gas sensors, and anodes for Li-ion batteries.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000330567000009 Publication Date 2013-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 18 Open Access
Notes Fwo; Countatoms Approved Most recent IF: 2.444; 2013 IF: 2.965
Call Number UA @ lucian @ c:irua:110946 Serial 1676
Permanent link to this record
 

 
Author Ding, J.F.; Lebedev, O.I.; Turner, S.; Tian, Y.F.; Hu, W.J.; Seo, J.W.; Panagopoulos, C.; Prellier, W.; Van Tendeloo, G.; Wu, T.
Title Interfacial spin glass state and exchange bias in manganite bilayers with competing magnetic orders Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 5 Pages 054428-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The magnetic properties of manganite bilayers composed of G-type antiferromagnetic (AFM) SrMnO3 and double-exchange ferromagnetic (FM) La0.7Sr0.3MnO3 are studied. A spin-glass state is observed as a result of competing magnetic orders and spin frustration at the La0.7Sr0.3MnO3/SrMnO3 interface. The dependence of the irreversible temperature on the cooling magnetic field follows the Almeida-Thouless line. Although an ideal G-type AFM SrMnO3 is featured with a compensated spin configuration, the bilayers exhibit exchange bias below the spin glass freezing temperature, which is much lower than the Néel temperature of SMO, indicating that the exchange bias is strongly correlated with the spin glass state. The results indicate that the spin frustration that originates from the competition between the AFM super-exchange and the FM double-exchange interactions can induce a strong magnetic anisotropy at the La0.7Sr0.3MnO3/SrMnO3 interface.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315271200002 Publication Date 2013-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 98 Open Access
Notes FWO; COUNTATOMS; Hercules Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107349 Serial 1696
Permanent link to this record
 

 
Author Van Rompaey, S.; Dachraoui, W.; Turner, S.; Podyacheva, O.Y.; Tan, H.; Verbeeck, J.; Abakumov, A.; Hadermann, J.
Title Layered oxygen vacancy ordering in Nb-doped SrCo1-xFexO3-\delta perovskite Type A1 Journal article
Year 2013 Publication Zeitschrift für Kristallographie Abbreviated Journal Z Krist-Cryst Mater
Volume 228 Issue 1 Pages 28-34
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of SrCo0.7Fe0.2Nb0.1O2.72 was determined using a combination of precession electron diffraction (PED), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and spatially resolved electron energy loss spectroscopy (STEM-EELS). The structure has a tetragonal P4/mmm symmetry with cell parameters a = b = a(p), c = 2a(p) (a(p) being the cell parameter of the perovskite parent structure). Octahedral BO2 layers alternate with the anion-deficient BO1.4 layers, the different B cations are randomly distributed over both layers. The specific feature of the SrCo0.7Fe0.2NB0.1O2.72 microstructure is a presence of extensive nanoscale twinning resulting in domains with alignment of the tetragonal c-axis along all three cubic direction of the perovskite subcell.
Address (down)
Corporate Author Thesis
Publisher Place of Publication München Editor
Language Wos 000315475900004 Publication Date 2013-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4946; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.179 Times cited 9 Open Access
Notes Fwo; Countatoms Approved Most recent IF: 3.179; 2013 IF: NA
Call Number UA @ lucian @ c:irua:107698UA @ admin @ c:irua:107698 Serial 1808
Permanent link to this record