toggle visibility
Search within Results:
Display Options:
Number of records found: 746

Select All    Deselect All
 | 
Citations
 | 
   print
Modelling the dynamics of hydrogen synthesis from methane in nanosecond‐pulsed plasmas”. Morais E, Bogaerts A, Plasma processes and polymers 21 (2024). http://doi.org/10.1002/ppap.202300149
toggle visibility
Effects of Nitro-Oxidative Stress on Biomolecules: Part 1—Non-Reactive Molecular Dynamics Simulations”. Ghasemitarei M, Ghorbi T, Yusupov M, Zhang Y, Zhao T, Shali P, Bogaerts A, Biomolecules 13, 1371 (2023). http://doi.org/10.3390/biom13091371
toggle visibility
Plasma‐driven<scp>CO2</scp>hydrogenation to<scp>CH3OH</scp>over<scp>Fe2O3</scp>/<scp>γ‐Al2O3</scp>catalyst”. Meng S, Wu L, Liu M, Cui Z, Chen Q, Li S, Yan J, Wang L, Wang X, Qian J, Guo H, Niu J, Bogaerts A, Yi Y, AIChE Journal 69, e18154 (2023). http://doi.org/10.1002/aic.18154
toggle visibility
Plasma-Assisted Dry Reforming of CH4: How Small Amounts of O2Addition Can Drastically Enhance the Oxygenate Production─Experiments and Insights from Plasma Chemical Kinetics Modeling”. Li S, Sun J, Gorbanev Y, van’t Veer K, Loenders B, Yi Y, Kenis T, Chen Q, Bogaerts A, ACS Sustainable Chemistry &, Engineering 11, 15373 (2023). http://doi.org/10.1021/acssuschemeng.3c04352
toggle visibility
NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts”. Meng S, Li S, Sun S, Bogaerts A, Liu Y, Yi Y, Chemical engineering science 283, 119449 (2024). http://doi.org/10.1016/j.ces.2023.119449
toggle visibility
Special Issue on “Dielectric Barrier Discharges and their Applications&rdquo, in Commemoration of the 20th Anniversary of Dr. Ulrich Kogelschatz’s Work”. Bogaerts A, Plasma Chemistry and Plasma Processing 43, 1281 (2023). http://doi.org/10.1007/s11090-023-10431-x
toggle visibility
Characterization of Non-Thermal Dielectric Barrier Discharges for Plasma Medicine: From Plastic Well Plates to Skin Surfaces”. Lin A, Gromov M, Nikiforov A, Smits E, Bogaerts A, Plasma Chemistry and Plasma Processing 43, 1587 (2023). http://doi.org/10.1007/s11090-023-10389-w
toggle visibility
Plasma-based dry reforming of CH4: Plasma effects vs. thermal conversion”. Slaets J, Loenders B, Bogaerts A, Fuel 360, 130650 (2024). http://doi.org/10.1016/j.fuel.2023.130650
toggle visibility
In Situ Plasma Studies Using a Direct Current Microplasma in a Scanning Electron Microscope”. Grünewald L, Chezganov D, De Meyer R, Orekhov A, Van Aert S, Bogaerts A, Bals S, Verbeeck J, Advanced Materials Technologies (2024). http://doi.org/10.1002/admt.202301632
toggle visibility
Accurate Reaction Probabilities for Translational Energies on Both Sides of the Barrier of Dissociative Chemisorption on Metal Surfaces”. Gerrits N, Jackson B, Bogaerts A, The Journal of Physical Chemistry Letters 15, 2566 (2024). http://doi.org/10.1021/acs.jpclett.3c03408
toggle visibility
Importance of plasma discharge characteristics in plasma catalysis: Dry reforming of methane vs. ammonia synthesis”. De Meyer R, Gorbanev Y, Ciocarlan R-G, Cool P, Bals S, Bogaerts A, Chemical engineering journal 488, 150838 (2024). http://doi.org/10.1016/j.cej.2024.150838
toggle visibility
Plasma catalysis in ammonia production and decomposition: Use it, or lose it?”.Gorbanev Y, Fedirchyk I, Bogaerts A, Current Opinion in Green and Sustainable Chemistry 47, 100916 (2024). http://doi.org/10.1016/j.cogsc.2024.100916
toggle visibility
Machine learning-driven optimization of plasma-catalytic dry reforming of methane”. Cai Y, Mei D, Chen Y, Bogaerts A, Tu X, Journal of Energy Chemistry 96, 153 (2024). http://doi.org/10.1016/j.jechem.2024.04.022
toggle visibility
Investigation of O atom kinetics in O2plasma and its afterglow”. Albrechts M, Tsonev I, Bogaerts A, Plasma Sources Science and Technology 33, 045017 (2024). http://doi.org/10.1088/1361-6595/ad3f4a
toggle visibility
Effect of Gas Composition on Temperature and CO2Conversion in a Gliding Arc Plasmatron reactor: Insights for Post‐Plasma Catalysis from Experiments and Computation”. Xu W, Van Alphen S, Galvita VV, Meynen V, Bogaerts A, ChemSusChem (2024). http://doi.org/10.1002/cssc.202400169
toggle visibility
Improving the performance of gliding arc plasma-catalytic dry reforming via a new post-plasma tubular catalyst bed”. Xu W, Buelens LC, Galvita VV, Bogaerts A, Meynen V, Journal of CO2 Utilization 83, 102820 (2024). http://doi.org/10.1016/j.jcou.2024.102820
toggle visibility
Coupled multi-dimensional modelling of warm plasmas: Application and validation for an atmospheric pressure glow discharge in CO2/CH4/O2”. Maerivoet S, Tsonev I, Slaets J, Reniers F, Bogaerts A, Chemical Engineering Journal 492, 152006 (2024). http://doi.org/10.1016/j.cej.2024.152006
toggle visibility
Improving Molecule–Metal Surface Reaction Networks Using the Meta-Generalized Gradient Approximation: CO2Hydrogenation”. Cai Y, Michiels R, De Luca F, Neyts E, Tu X, Bogaerts A, Gerrits N, The Journal of Physical Chemistry C 128, 8611 (2024). http://doi.org/10.1021/acs.jpcc.4c01110
toggle visibility
Plasma Catalysis Modeling: How Ideal Is Atomic Hydrogen for Eley–Rideal?”.Michiels R, Gerrits N, Neyts E, Bogaerts A, The Journal of Physical Chemistry C 128, 11196 (2024). http://doi.org/10.1021/acs.jpcc.4c02193
toggle visibility
Insight in NO synthesis in a gliding arc plasma via gas temperature and density mapping by laser-induced fluorescence”. Manaigo F, Chatterjee A, Bogaerts A, Snyders R, Plasma Sources Science and Technology 33, 075005 (2024). http://doi.org/10.1088/1361-6595/ad5df5
toggle visibility
Plasma-based conversion of CO2 and CH4 into syngas: A dive into the effect of adding water”. Wanten B, Gorbanev Y, Bogaerts A, Fuel 374, 132355 (2024). http://doi.org/10.1016/j.fuel.2024.132355
toggle visibility
Effect of O2on Plasma-Based Dry Reforming of Methane: Revealing the Optimal Gas Composition via Experiments and Modeling of an Atmospheric Pressure Glow Discharge”. Maerivoet S, Wanten B, De Meyer R, Van Hove M, Van Alphen S, Bogaerts A, ACS Sustainable Chemistry &, Engineering 12, 11419 (2024). http://doi.org/10.1021/acssuschemeng.4c04283
toggle visibility
Plasma-catalytic direct oxidation of methane to methanol over Cu-MOR: Revealing the zeolite-confined Cu2+ active sites”. Lv H, Meng S, Cui Z, Li S, Li D, Gao X, Guo H, Bogaerts A, Yi Y, Chemical Engineering Journal 496, 154337 (2024). http://doi.org/10.1016/j.cej.2024.154337
toggle visibility
Unlocking Novel Anticancer Strategies: Bioactive Hydrogels for Local Delivery of Plasma‐Derived Oxidants in an In Ovo Cancer Model”. Espona‐Noguera A, Živanić, M, Smits E, Bogaerts A, Privat‐Maldonado A, Canal C, Macromolecular Bioscience (2024). http://doi.org/10.1002/mabi.202400213
toggle visibility
Sorption-Enhanced Dry Reforming of Methane in a DBD Plasma Reactor for Single-Stage Carbon Capture and Utilization”. Vertongen R, De Felice G, van den Bogaard H, Gallucci F, Bogaerts A, Li S, ACS Sustainable Chemistry &, Engineering 12, 10841 (2024). http://doi.org/10.1021/acssuschemeng.4c02502
toggle visibility
Can post-plasma CH4injection improve plasma-based dry reforming of methane? A modeling study”. Albrechts M, Tsonev I, Bogaerts A, Green Chemistry 26, 9712 (2024). http://doi.org/10.1039/D4GC02889A
toggle visibility
Plasma-catalytic dry reforming of CH4: Effects of plasma-generated species on the surface chemistry”. Sun J, Chen Q, Qin W, Wu H, Liu B, Li S, Bogaerts A, Chemical Engineering Journal 498, 155847 (2024). http://doi.org/10.1016/j.cej.2024.155847
toggle visibility
Plasma-assisted NH3 cracking in warm plasma reactors for green H2 production”. Fedirchyk I, Tsonev I, Quiroz Marnef R, Bogaerts A, Chemical Engineering Journal 499, 155946 (2024). http://doi.org/10.1016/j.cej.2024.155946
toggle visibility
Characterization of regulated cancer cell death pathways induced by the different modalities of non-thermal plasma treatment”. Biscop E, Baroen J, De Backer J, Vanden Berghe W, Smits E, Bogaerts A, Lin A, Cell Death Discovery 10, 416 (2024). http://doi.org/10.1038/s41420-024-02178-x
toggle visibility
Plasma power-to-X (PP2X): status and opportunities for non-thermal plasma technologies”. Sun J, Qu Z, Gao Y, Li T, Hong J, Zhang T, Zhou R, Liu D, Tu X, Chen G, Brüser V, Weltmann K-D, Mei D, Fang Z, Borras A, Barranco A, Xu S, Ma C, Dou L, Zhang S, Shao T, Chen G, Liu D, Lu X, Bo Z, Chiang W-H, Vasilev K, Keidar M, Nikiforov A, Jalili AR, Cullen PJ, Dai L, Hessel V, Bogaerts A, Murphy AB, Zhou R, Ostrikov K(K), Journal of Physics D: Applied Physics 57, 503002 (2024). http://doi.org/10.1088/1361-6463/ad7bc4
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print

Save Citations:
Export Records: