|   | 
Details
   web
Records
Author Shevchenko, V.P.; Lisitsin, A.P.; Kuptsov, V.M.; van Malderen, H.; Martin, J.M.; Van Grieken, R.; Huang, W.W.
Title Composition of aerosols in the surface boundary layer of the atmosphere over the seas of the Western Russian Arctic Type A1 Journal article
Year 1999 Publication Oceanology Abbreviated Journal
Volume 39 Issue 1 Pages 128-136
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4370 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:24721 Serial 7707
Permanent link to this record
 

 
Author Shevchenko, V.P.; Lisitzin, A.P.; Kuptzov, V.M.; Ivanov, G.I.; Lukashin, V.N.; Martin, J.M.; Rusakov, V.Y.; Safarova, S.A.; Serova, V.V.; Van Grieken, R.; van Malderen, H.
Title Composition of aerosols over the Laptev, the Kara, the Barents, the Greenland and the Norwegian seas Type H3 Book chapter
Year 1995 Publication Abbreviated Journal
Volume Issue Pages 7-16 T2 - Russian-German cooperation: Laptev Sea s
Keywords H3 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:12358 Serial 7708
Permanent link to this record
 

 
Author Martin, J.-M.; Thomas, A.J.; Van Grieken, R.E.
Title Trace element composition of Zaire suspended sediments Type A1 Journal article
Year 1978 Publication Netherlands journal of sea research Abbreviated Journal
Volume 12 Issue 3/4 Pages 414-420
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2003-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-7579; 1873-1406 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116609 Serial 8688
Permanent link to this record
 

 
Author Guzzinati, G.; Béché, A.; Lourenço-Martins, H.; Martin, J.; Kociak, M.; Verbeeck, J.
Title Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams Type A1 Journal article
Year 2017 Publication Nature communications Abbreviated Journal Nat Commun
Volume 8 Issue 8 Pages 14999
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations’ symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations’ symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399084300001 Publication Date 2017-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 84 Open Access OpenAccess
Notes ; We thank F.J. Garcia de Abajo and D.M. Ugarte for interesting and fruitful discussion. This work was supported by funding from the European Research Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX. Financial support from the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference number 312483 ESTEEM2) is also gratefully acknowledged. Aluminum nanostructures were fabricated using the Nanomat nanofabrication facility. ; Approved Most recent IF: 12.124
Call Number EMAT @ emat @ c:irua:142205UA @ admin @ c:irua:142205 Serial 4548
Permanent link to this record
 

 
Author Krehl, J.; Guzzinati, G.; Schultz, J.; Potapov, P.; Pohl, D.; Martin, J.; Verbeeck, J.; Fery, A.; Büchner, B.; Lubk, A.
Title Spectral field mapping in plasmonic nanostructures with nanometer resolution Type A1 Journal article
Year 2018 Publication Nature communications Abbreviated Journal Nat Commun
Volume 9 Issue 1 Pages 4207
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Plasmonic nanostructures and -devices are rapidly transforming light manipulation technology by allowing to modify and enhance optical fields on sub-wavelength scales. Advances in this field rely heavily on the development of new characterization methods for the fundamental nanoscale interactions. However, the direct and quantitative mapping of transient electric and magnetic fields characterizing the plasmonic coupling has been proven elusive to date. Here we demonstrate how to directly measure the inelastic momentum transfer of surface plasmon modes via the energy-loss filtered deflection of a focused electron beam in a transmission electron microscope. By scanning the beam over the sample we obtain a spatially and spectrally resolved deflection map and we further show how this deflection is related quantitatively to the spectral component of the induced electric and magnetic fields pertaining to the mode. In some regards this technique is an extension to the established differential phase contrast into the dynamic regime.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000447074200005 Publication Date 2018-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 15 Open Access OpenAccess
Notes G.G. acknowledges support from a postdoctoral fellowship grant from the Fonds Wetenschappelijk Onderzoke-Vlaanderen (FWO). A.L. and J.K. have received funding from the European Research Council (ERC) under the Horizon 2020 research and innovation program of the European Union (grant agreement no. 715620). Approved Most recent IF: 12.124
Call Number EMAT @ emat @c:irua:154355 Serial 5058
Permanent link to this record