|   | 
Details
   web
Records
Author Eren, I.; Ozen, S.; Sozen, Y.; Yagmurcukardes, M.; Sahin, H.
Title Vertical van der Waals heterostructure of single layer InSe and SiGe Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 51 Pages 31232-31237
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (down) We present a first-principles investigation on the stability, electronic structure, and mechanical response of ultrathin heterostructures composed of single layers of InSe and SiGe. First, by performing total energy optimization and phonon calculations, we show that single layers of InSe and SiGe can form dynamically stable heterostructures in 12 different stacking types. Valence and conduction band edges of the heterobilayers form a type-I heterojunction having a tiny band gap ranging between 0.09 and 0.48 eV. Calculations on elastic-stiffness tensor reveal that two mechanically soft single layers form a heterostructure which is stiffer than the constituent layers because of relatively strong interlayer interaction. Moreover, phonon analysis shows that the bilayer heterostructure has highly Raman active modes at 205.3 and 43.7 cm(-1), stemming from the out-of-plane interlayer mode and layer breathing mode, respectively. Our results show that, as a stable type-I heterojunction, ultrathin heterobilayer of InSe/SiGe holds promise for nanoscale device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000505632900050 Publication Date 2019-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:165718 Serial 6332
Permanent link to this record
 

 
Author Fedina, L.; Lebedev, O.I.; Van Tendeloo, G.; van Landuyt, J.; Mironov, O.A.; Parker, E.H.C.
Title In situ HREM irradiation study of point-defect clustering in MBE-grown strained Si1-xGex/(001)Si structures Type A1 Journal article
Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 61 Issue 15 Pages 10336-10345
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) We present a detailed analysis of the point-defect clustering in strained Si/Si(1-x)Ge(x)/(001)Si structures, including the interaction of the point defects with the strained interfaces and the sample surface during 400 kV electron irradiation at room temperature. Point-defect cluster formation is very sensitive to the type and magnitude of the strain in the Si and Si(1-x)Ge(x) layers. A small compressive strain (-0.3%) in the SiGe alloy causes an aggregation of vacancies in the form of metastable [110]-oriented chains. They are located on {113} planes and further recombine with interstitials. Tensile strain in the Si layer causes an aggregation of interstitial atoms in the forms of additional [110] rows which are inserted on {113} planes with [001]-split configurations. The chainlike configurations are characterized by a large outward lattice relaxation for interstitial rows (0.13 +/-0.01 nm) and a very small inward relaxation for vacancy chains (0.02+/-0.01 nm). A compressive strain higher than -0.5% strongly decreases point-defect generation inside the strained SiGe alloy due to the large positive value of the formation volume of a Frenkel pair. This leads to the suppression of point-defect clustering in a strained SiGe alloy so that SiGe relaxes via a diffusion of vacancies from the Si layer, giving rise to an intermixing at the Si/SiGe interface. In material with a 0.9% misfit a strongly increased flow of vacancies from the Si layer to the SiGe layer and an increased biaxial strain in SiGe bath promote the preferential aggregation of vacancies in the (001) plane, which relaxes to form intrinsic 60 degrees dislocation loops.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000086606200082 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes Conference Name: Microsc. Semicond. Mater. Conf. Approved Most recent IF: 3.836; 2000 IF: NA
Call Number UA @ lucian @ c:irua:103456 Serial 1577
Permanent link to this record
 

 
Author Snoeckx, R.; Aerts, R.; Tu, X.; Bogaerts, A.
Title Plasma-based dry reforming : a computational study ranging from the nanoseconds to seconds time scale Type A1 Journal article
Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 117 Issue 10 Pages 4957-4970
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) We present a computational study for the conversion of CH4 and CO2 into value-added chemicals, i.e., the so-called dry reforming of methane, in a dielectric barrier discharge reactor. A zero-dimensional chemical kinetics model is applied to study the plasma chemistry in a 1:1 CH4/CO2 mixture. The calculations are first performed for one microdischarge pulse and its afterglow, to study in detail the chemical pathways of the conversion. Subsequently, long time-scale simulations are carried out, corresponding to real residence times in the plasma, assuming a large number of consecutive microdischarge pulses, to mimic the conditions of the filamentary discharge regime in a dielectric barrier discharge (DBD) reactor. The conversion of CH4 and CO2 as well as the selectivity of the formed products and the energy cost and energy efficiency of the process are calculated and compared to experiments for a range of different powers and gas flows, and reasonable agreement is reached.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000316308400010 Publication Date 2013-02-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 118 Open Access
Notes Approved Most recent IF: 4.536; 2013 IF: 4.835
Call Number UA @ lucian @ c:irua:106516 Serial 2628
Permanent link to this record
 

 
Author Tsirlin, A.A.; Abakumov, A.M.; Ritter, C.; Henry, P.F.; Janson, O.; Rosner, H.
Title Short-range order of Br and three-dimensional magnetism in (CuBr)LaNb2O7 Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 21 Pages 214427
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) We present a comprehensive study of the crystal structure, magnetic structure, and microscopic magnetic model of (CuBr)LaNb2O7, the Br analog of the spin-gap quantum magnet (CuCl) LaNb2O7. Despite similar crystal structures and spin lattices, the magnetic behavior and even peculiarities of the atomic arrangement in the Cl and Br compounds are very different. The high- resolution x-ray and neutron data reveal a split position of Br atoms in (CuBr) LaNb2O7. This splitting originates from two possible configurations developed by [CuBr] zigzag ribbons. While the Br atoms are locally ordered in the ab plane, their arrangement along the c direction remains partially disordered. The predominant and energetically more favorable configuration features an additional doubling of the c lattice parameter that was not observed in (CuCl) LaNb2O7. (CuBr) LaNb2O7 undergoes long-range antiferromagnetic ordering at T-N = 32 K, which is nearly 70% of the leading exchange coupling J4 similar or equal to 48 K. The Br compound does not show any experimental signatures of low-dimensional magnetism because the underlying spin lattice is three-dimensional. The coupling along the c direction is comparable to the couplings in the ab plane, even though the shortest Cu-Cu distance along c (11.69 angstrom) is three times larger than nearest-neighbor distances in the ab plane (3.55 angstrom). The stripe antiferromagnetic long-range order featuring columns of parallel spins in the ab plane and antiparallel spins along c is verified experimentally and confirmed by the microscopic analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000305557600002 Publication Date 2012-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:100289 Serial 2998
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.
Title Heating of quasiparticles driven by oscillations of the order parameter in short superconducting microbridges Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 22 Pages 224523-224523,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We predict heating of quasiparticles driven by order parameter oscillations in the resistive state of short superconducting microbridges. The finite relaxation time of the magnitude of the order parameter |Δ| and the dependence of the spectral functions both on |Δ| and the supervelocity Q are the origin of this effect. Our results are opposite to those of Aslamazov and Larkin [ Zh. Eks. Teor. Fiz. 70 1340 (1976)] and Schmid et al. [ Phys. Rev. B 21 5076 (1980)] where cooling of quasiparticles was found.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000292218200010 Publication Date 2011-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes ; This work was supported by the Russian Foundation for Basic Research, Russian Agency of Education under the Federal Target Programme “Scientific and educational personnel of innovative Russia in 2009-2013,” Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:90924 Serial 1415
Permanent link to this record
 

 
Author Scarrozza, M.; Pourtois, G.; Houssa, M.; Heyns, M.; Stesmans, A.
Title Oxidation of the GaAs(001) surface : insights from first-principles calculations Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 19 Pages 195307-195307,8
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) We performed a detailed investigation of the oxidation of the technologically relevant GaAs(001)-beta 2(2x4) surface via density functional calculations. The purpose is to gain insights on the atomistic mechanisms and local bondings that underlie the degradation of the surface properties once exposed to oxygen. The study comprises the adsorption of single O atoms, through the sampling of several adsorption sites, and the subsequent formation of the O adsorbate at increasing coverage by taking into account multiple-atom adsorption. Based on the evaluation of the energetics and the structural properties of the atomistic models generated, the results here reported delineate a consistent picture of the initial stage of the surface oxidation: (i) at low coverage, in the limit of single O insertions, oxygen is incorporated on the surface forming a twofold-bridging Ga-O-As bond; (ii) at increasing coverage, as multiple O atoms are involved, this is accompanied by the formation of a threefold-coordinated bond (with two Ga and one As atoms); (iii) the latter has important implications regarding the electronic properties of the adsorbate since this O bonding may result in the formation of As dangling bonds. Moreover, a clear trend of increased energy gain for the incorporation of neighboring O atoms compared to single O insertions indicates that the formation of oxide clusters is favored over a regime of uniform oxidation. Our findings provide a detailed description of the O bonding and stress the importance of modeling the adsorption of multiple O atoms for an accurate description of the surface oxidation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303755700006 Publication Date 2012-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:99122 Serial 2538
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P.
Title Majorana fermion states and fractional flux periodicity in mesoscopic d-wave superconducting loops with spin-orbit interaction Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 1 Pages 014522
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We numerically investigate the spin-orbit (SO) coupling effect on the magnetic flux evolution of energy and supercurrent in mesoscopic d-wave superconducting loops by solving the spin-generalized Bogoliubov-de Gennes equations self-consistently. It is found that the energy spectrum splits when the SO interaction is involved and the Majorana zero mode can be realized in the [100] edges of square systems for an appropriate SO coupling strength. Superconducting phase transitions appear when the energy gap closes, accompanied by energy jumps between different energy parabolas in the ground state, which provides a possible mechanism to support fractional flux periodicity of supercurrent. Moreover, in the case of rectangular loops with SO coupling, the jumps of the ground-state energy gradually disappear by increasing the ratio of length to height of the sample, and a paramagnetic response with opposite direction of the screening current around zero flux value can occur in such systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000341233800010 Publication Date 2014-07-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This work was supported by National Natural Science Foundation of China under Grants No. 61371020 and No. 61271163, by Visiting Scholar Program of Shanghai Municipal Education Commission, by Innovation Program of Shanghai Municipal Education Commission under Grant No. 13YZ006, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119266 Serial 1938
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P.
Title Mixed pairing symmetries and flux-induced spin current in mesoscopic superconducting loops with spin correlations Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 214504
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We numerically investigate the mixed pairing symmetries inmesoscopic superconducting loops in the presence of spin correlations by solving the Bogoliubov-de Gennes equations self-consistently. The spatial variations of the superconducting order parameters and the spontaneous magnetization are determined by the band structure. When the threaded magnetic flux turns on, the charge and spin currents both emerge and depict periodic evolution. In the case of a mesoscopic loop with dominant triplet p(x) +/- ip(y)-wave symmetry, a slight change of the chemical potential may lead to novel flux-dependent evolution patterns of the ground-state energy and the magnetization. The spin-polarized currents show pronounced quantum oscillations with fractional periods due to the appearance of energy jumps in flux, accompanied with a steplike feature of the enhanced spin current. Particularly, at some appropriate flux, the peaks of the zero-energy local density of states clearly indicate the occurrence of the odd-frequency pairing. In the case of a superconducting loop with dominant singlet d(x2-y2)-wave symmetry, the spatial profiles of the zero-energy local density of states and the magnetization show spin-dependent features on different sample diagonals. Moreover, the evolution of the flux-induced spin current always exhibits an hc/e periodicity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000355647100003 Publication Date 2015-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China under Grants No. 61371020 and No. 61271163, by the Visiting Scholar Program of Shanghai Municipal Education Commission, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:126433 Serial 2089
Permanent link to this record
 

 
Author Čukarić, N.A.; Tadić, M.Z.; Partoens, B.; Peeters, F.M.
Title 30-band k\cdot p model of electron and hole states in silicon quantum wells Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 20 Pages 205306
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We modeled the electron and hole states in Si/SiO2 quantum wells within a basis of standing waves using the 30-band k . p theory. The hard-wall confinement potential is assumed, and the influence of the peculiar band structure of bulk silicon on the quantum-well sub-bands is explored. Numerous spurious solutions in the conduction-band and valence-band energy spectra are found and are identified to be of two types: (1) spurious states which have large contributions of the bulk solutions with large wave vectors (the high-k spurious solutions) and (2) states which originate mainly from the spurious valley outside the Brillouin zone (the extravalley spurious solutions). An algorithm to remove all those nonphysical solutions from the electron and hole energy spectra is proposed. Furthermore, slow and oscillatory convergence of the hole energy levels with the number of basis functions is found and is explained by the peculiar band mixing and the confinement in the considered quantum well. We discovered that assuming the hard-wall potential leads to numerical instability of the hole states computation. Nonetheless, allowing the envelope functions to exponentially decay in a barrier of finite height is found to improve the accuracy of the computed hole states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000327161500007 Publication Date 2013-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia, the Belgian Science Policy (IAP), the Flemish fund for Scientific Research (FWO-Vl), and the Methusalem programme of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:112704 Serial 18
Permanent link to this record
 

 
Author Zha, G.-Q.; Milošević, M.V.; Zhou, S.-P.; Peeters, F.M.
Title Influence of impurities and surface defects on the flux-induced current in mesoscopic d-wave superconducting loops Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 13 Pages 132501-132501,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigated the magnetic flux dependence of the supercurrent in mesoscopic d-wave superconducting loops, containing impurities and surface defects, by numerically solving the Bogoliubovde Gennes equations self-consistently. In the presence of impurities, bound states arise close to the Fermi energy. In the case of a single impurity, the flux-induced current is found to be suppressed. This can be different when more impurities are introduced in the sample due to the quantum interference effect, which depends sensitively on the relative position between the impurities. We further analyze the effect of small surface defects at the inner or outer edge of the loop, and show that indentation and bulge defects have pronounced and different effects on the supercurrent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000295713600002 Publication Date 2011-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), by Belgian Science Policy (IAP), by National Science Foundation of China (Grant Nos. 10904089 and 60971053), and by research funds under Grant Nos. 20093108120005, S30105, 09JC1406000, and 10zz63. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:92811 Serial 1623
Permanent link to this record
 

 
Author Avetisyan, A.A.; Partoens, B.; Peeters, F.M.
Title Electric field tuning of the band gap in four layers of graphene with different stacking order Type P1 Proceeding
Year 2012 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers T2 – Conference on Photonics and Micro and Nano-structured Materials, JUN 28-30, 2011, Yerevan, ARMENIA Abbreviated Journal
Volume Issue Pages 84140-84148
Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (down) We investigated the effect of different stacking order of the four graphene layer system on the induced band gap when positively charged top and negatively charged back gates are applied to the system. A tight-binding approach within a self-consistent Hartree approximation is used to calculate the induced charges on the different graphene layers. We show that the electric field does not open an energy gap if the multilayer graphene system contains a trilayer part with the ABA Bernal stacking.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303856600012 Publication Date 2012-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume 8414 Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), and the BelgianScience Policy (IAP). One of us (A.A.A.) was supported by a fellowship from the Belgian Federal Science Policy Office (BELSPO). ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:113046 Serial 886
Permanent link to this record
 

 
Author Heyne, M.H.; Chiappe, D.; Meersschaut, J.; Nuytten, T.; Conard, T.; Bender, H.; Huyghebaert, C.; Radu, I.P.; Caymax, M.; de Marneffe, J.F.; Neyts, E.C.; De Gendt, S.;
Title Multilayer MoS2 growth by metal and metal oxide sulfurization Type A1 Journal article
Year 2016 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 4 Issue 4 Pages 1295-1304
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) We investigated the deposition of MoS2 multilayers on large area substrates. The pre-deposition of metal or metal oxide with subsequent sulfurization is a promising technique to achieve layered films. We distinguish a different reaction behavior in metal oxide and metallic films and investigate the effect of the temperature, the H2S/H-2 gas mixture composition, and the role of the underlying substrate on the material quality. The results of the experiments suggest a MoS2 growth mechanism consisting of two subsequent process steps. At first, the reaction of the sulfur precursor with the metal or metal oxide occurs, requiring higher temperatures in the case of metallic film compared to metal oxide. At this stage, the basal planes assemble towards the diffusion direction of the reaction educts and products. After the sulfurization reaction, the material recrystallizes and the basal planes rearrange parallel to the substrate to minimize the surface energy. Therefore, substrates with low roughness show basal plane assembly parallel to the substrate. These results indicate that the substrate character has a significant impact on the assembly of low dimensional MoS2 films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370723300020 Publication Date 2016-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited Open Access
Notes Approved Most recent IF: 5.256
Call Number UA @ lucian @ c:irua:132327 Serial 4211
Permanent link to this record
 

 
Author Pina, J.C.; de Souza Silva, C.C.; Milošević, M.V.
Title Stability of fractional vortex states in a two-band mesoscopic superconductor Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 2 Pages 024512
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the stability of noncomposite fractional vortex states in a mesoscopic two-band superconductor within the two-component Ginzburg-Landau model. Our analysis explicitly takes into account the relationship between the model parameters and microscopic material parameters, such as partial density of states, Fermi velocities and elements of the electron-phonon coupling matrix. We have found that states with different phase winding number in each band (L-1 not equal L-2) and fractional flux can exist in many different configurations, including rather unconventional ones where the dominating band carries larger winding number and states where vertical bar L-1 – L-2 vertical bar > 1. We present a detailed analysis of the stability of the observed vortex structures with respect to changing the microscopic parameters, showing that, in the weak coupling case, fractional vortex states can be assessed in essentially the whole range of temperatures and applied magnetic fields in which both bands are active. Finally, we propose an efficient way of increasing the range of parameters for which these fractional vortex states can be stabilized. In particular, our proposal allows for observation of fractional vortex structures in materials with stronger coupling, where those states are forbidden at a homogeneous field. This is accomplished with the help of the stray fields of a suitably prepared magnetic dot placed nearby the superconducting disk.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000306309600006 Publication Date 2012-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes ; We thank Eric B. Claude, Miguel A. Zorro, and Rogerio M. da Silva for assistance in the development of the numerical code used in our simulations. This work was supported by the Brazilian science agencies CNPq and FACEPE, by the FACEPE/CNPq-PRONEX program, under Grant No. APQ-0589-1.05/08, and by CNPq-FWO Brazil-Flanders co-operation program. M.V.M. acknowledges support from the CAPES-PVE program. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:100766 Serial 3126
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M., Jr.; Peeters, F.M.; Farias, G.A.
Title Snake states in graphene quantum dots in the presence of a p-n junction Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 3 Pages 035426
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the magnetic interface states of graphene quantum dots that contain p-n junctions. Within a tight-binding approach, we consider rectangular quantum dots in the presence of a perpendicular magnetic field containing p-n as well as p-n-p and n-p-n junctions. The results show the interplay between the edge states associated with the zigzag terminations of the sample and the snake states that arise at the p-n junction due to the overlap between electron and hole states at the potential interface. Remarkable localized states are found at the crossing of the p-n junction with the zigzag edge having a dumb-bell-shaped electron distribution. The results are presented as a function of the junction parameters and the applied magnetic flux. DOI: 10.1103/PhysRevB.87.035426
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000313941000003 Publication Date 2013-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CONGRAN), the Brazilian agency CNPq (Pronex), and the bilateral projects between Flanders and Brazil and the collaboration project FWO-CNPq. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:110087 Serial 3048
Permanent link to this record
 

 
Author Couet, S.; Peelaers, H.; Trekels, M.; Houben, K.; Petermann, C.; Hu, M.Y.; Zhao, J.Y.; Bi, W.; Alp, E.E.; Menéndez, E.; Partoens, B.; Peeters, F.M.; Van Bael, M.J.; Vantomme, A.; Temst, K.;
Title Interplay between lattice dynamics and superconductivity in Nb3Sn thin films Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 4 Pages 045437-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the link between superconductivity and atomic vibrations in Nb3Sn films with a thickness ranging from 10 to 50 nm. The challenge of measuring the phonon density of states (PDOS) of these films has been tackled by employing the technique of nuclear inelastic scattering by Sn-119 isotopes to reveal the Sn-partial phonon density of states. With the support of ab initio calculations, we evaluate the effect of reduced film thickness on the PDOS. This approach allows us to estimate the changes in superconducting critical temperature T-c induced by phonon confinement, which turned out to be limited to a few tenths of K. The presented method is successful for the Nb3Sn system and paves the way for more systematic studies of the role of phonon confinement in Sn-containing superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322529900004 Publication Date 2013-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; The authors would like to cordially thank Dr. Rudolf Ruffer from the nuclear resonant scattering group of the ESRF for the support and gratefully acknowledge the ESRF for providing beamtime for the preliminary phonon study. S. C., K. H., and E. M. thank the Flemish Science Foundation (FWO-Vl) for their personal fellowship. This work was supported by FWO-Vl, the Methusalem program of the Flemish government, and the Concerted Research Action program (GOA/09/ 006) and (GOA/14/007). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109801 Serial 1702
Permanent link to this record
 

 
Author Li, B.; Djotyan, A.P.; Hao, Y.L.; Avetisyan, A.A.; Peeters, F.M.
Title Effect of a perpendicular magnetic field on the shallow donor states near a semiconductor-metal interface Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 7 Pages 075313-75319
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the influence of an external perpendicular magnetic field on the lowest-energy states of an electron bound to a donor which is located near a semiconductor-metal interface. The problem is treated within the effective mass approach and the lowest-energy states are obtained through (1) the “numerically exact” finite element method, and (2) a variational approach using a trial wave function where all image charges that emerge due to the presence of the metallic gate are taken into account. The trial wave functions are constructed such that they reduce to an exponential behavior for sufficiently small magnetic fields and become Gaussian for intermediate and large magnetic fields. The average electron-donor distance can be controlled by the external magnetic field. We find that the size of the 2p(z) state depends strongly on the magnetic field when the donor is close to the interface, showing a nonmonotonic behavior, in contrast with the ground and the other excited states. DOI: 10.1103/PhysRevB.87.075313
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000314874800017 Publication Date 2013-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107664 Serial 793
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P.
Title Electrical and thermal-properties of a 2-dimensional electron-gas in a one-dimensional periodic potential Type A1 Journal article
Year 1992 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 46 Issue 8 Pages 4667-4680
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the influence of a periodic weak modulation along the x direction on the electrical and thermal properties of a two-dimensional electron gas in the presence of a perpendicular magnetic field. The modulation lifts the degeneracy of the Landau levels and leads to one-dimensional magnetic bands whose bandwidth oscillates as a function of the magnetic field. At weak magnetic fields this gives rise to the Weiss oscillations in the magnetoresistance, discovered recently, which have a very weakly temperature-dependent amplitude and a period proportional to square-root n(e), when n(e) is the electron density. Diffusion-current contributions, proportional to the square of the bandwidth, dominate rho(xx), and collisional contributions, varying approximately as the square of the density of states, dominate rho(yy). The result is that rho(xx) and rho(yy) oscillate out of phase as observed. Asymptotic analytical expressions are presented for the conductivity tensor. Similar oscillations, of much smaller amplitude, occur in the thermodynamic quantities, such as the magnetization, the susceptibility, and the specific heat. We also predict oscillations in the Hall resistance, the cyclotron resonance position, the linewidth, as well as in the thermal conductivity and thermopower. The components of the thermal-resistance tensor have a magnetic-field dependence similar to that of the electrical-resistivity tensor.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1992JK72500032 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 148 Open Access
Notes Approved INSTRUMENTS & INSTRUMENTATION 31/56 Q3 # NUCLEAR SCIENCE & TECHNOLOGY 9/32 Q2 # PHYSICS, PARTICLES & FIELDS 24/28 Q4 # SPECTROSCOPY 28/43 Q3 #
Call Number UA @ lucian @ c:irua:103028 Serial 889
Permanent link to this record
 

 
Author Anisimovas, E.; Peeters, F.M.
Title Correlated few-particle states in artificial bipolar molecule Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 65 Issue 23 Pages 233302-233304
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the ground and excited states of a bipolar artificial molecule composed of two vertically coupled quantum dots containing different type of carriers-electrons and holes-in equilibrium. The approach based on exact diagonalization is used and reveals an intricate pattern of ground-state angular momentum switching and a rearrangement of approximate single-particle levels as a function of the interdot coupling strength.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000176767900019 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:104154 Serial 519
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M.
Title Extra Dirac points in the energy spectrum for superlattices on single-layer graphene Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 7 Pages 075438,1-075438,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the emergence of extra Dirac points in the electronic structure of a periodically spaced barrier system, i.e., a superlattice, on single-layer graphene, using a Dirac-type Hamiltonian. Using square barriers allows us to find analytic expressions for the occurrence and location of these new Dirac points in k space and for the renormalization of the electron velocity near them in the low-energy range. In the general case of unequal barrier and well widths the new Dirac points move away from the Fermi level and for given heights of the potential barriers there is a minimum and maximum barrier width outside of which the new Dirac points disappear. The effect of these extra Dirac points on the density of states and on the conductivity is investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000274998200133 Publication Date 2010-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 211 Open Access
Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the Brazilian Council for Research (CNPq), and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:81767 Serial 1159
Permanent link to this record
 

 
Author Shakouri, K.; Masir, M.R.; Jellal, A.; Choubabi, E.B.; Peeters, F.M.
Title Effect of spin-orbit couplings in graphene with and without potential modulation Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 11 Pages 115408-115409
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the effect of Rashba and intrinsic spin-orbit couplings on the electronic properties and spin configurations of Dirac fermions confined in: (i) a flat graphene sheet, (ii) a graphene wire with p-n-p structure, and (iii) a superlattice of graphene wires. The interplay between the spin-orbit interaction mechanisms breaks the electron-hole symmetry and the spin configuration induced by Rashba spin-orbit coupling lacks inversion symmetry in k space. We show that the Rashba spin-orbit interaction doubles the Fabry-Perot resonant modes in the transmission spectrum of a graphene wire and opens new channels for the electron transmission. Moreover, it leads to the appearance of spin split extra Dirac cones in the energy spectrum of a graphene superlattice. It is shown that the spin of the electrons and holes confined in a flat graphene sheet is always perpendicular to their motion while this is not the case for the other nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000323944600005 Publication Date 2013-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 36 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. The generous support provided by the Saudi Center for Theoretical Physics (SCTP) is highly appreciated by A.J. and E.B.C. They also thank the Deanship of Scientific Research at King Faisal University for funding this work under the Project No. 130193. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:110716 Serial 836
Permanent link to this record
 

 
Author Moors, K.; Contino, A.; Van de Put, M.L.; Vandenberghe, W.G.; Fischetti, M., V; Magnus, W.; Sorée, B.
Title Theoretical study of scattering in graphene ribbons in the presence of structural and atomistic edge roughness Type A1 Journal article
Year 2019 Publication Physical review materials Abbreviated Journal
Volume 3 Issue 2 Pages 024001
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the diffusive electron-transport properties of charge-doped graphene ribbons and nanoribbons with imperfect edges. We consider different regimes of edge scattering, ranging from wide graphene ribbons with (partially) diffusive edge scattering to ribbons with large width variations and nanoribbons with atomistic edge roughness. For the latter, we introduce an approach based on pseudopotentials, allowing for an atomistic treatment of the band structure and the scattering potential, on the self-consistent solution of the Boltzmann transport equation within the relaxation-time approximation and taking into account the edge-roughness properties and statistics. The resulting resistivity depends strongly on the ribbon orientation, with zigzag (armchair) ribbons showing the smallest (largest) resistivity and intermediate ribbon orientations exhibiting intermediate resistivity values. The results also show clear resistivity peaks, corresponding to peaks in the density of states due to the confinement-induced subband quantization, except for armchair-edge ribbons that show a very strong width dependence because of their claromatic behavior. Furthermore, we identify a strong interplay between the relative position of the two valleys of graphene along the transport direction, the correlation profile of the atomistic edge roughness, and the chiral valley modes, leading to a peculiar strongly suppressed resistivity regime, most pronounced for the zigzag orientation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000458161800001 Publication Date 2019-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access
Notes ; We acknowledge the Research Foundation – Flanders (FWO) for supporting K.M.'s research visit at the University of Texas at Dallas, as well as the support by the National Research Fund Luxembourg (FNR) with ATTRACT Grant No. 7556175. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:157499 Serial 5235
Permanent link to this record
 

 
Author Galvan-Moya, J.E.; Misko, V.R.; Peeters, F.M.
Title Generic ordering of structural transitions in quasi-one-dimensional Wigner crystals Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 9 Pages 094111
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the dependence of the structural phase transitions in an infinite quasi-one-dimensional system of repulsively interacting particles on the profile of the confining channel. Three different functional expressions for the confinement potential related to real experimental systems are used that can be tuned continuously from a parabolic to a hard-wall potential in order to find a thorough understanding of the ordering of the chainlike structure transitions. We resolve the long-standing issue why the most theories predicted a 1-2-4-3-4 sequence of chain configurations with increasing density, while some experiments found the 1-2-3-4 sequence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342127000001 Publication Date 2014-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Odysseus and Methusalem programmes of the Flemish government. Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119904 Serial 1326
Permanent link to this record
 

 
Author Richardson, C.L.; Edkins, S.D.; Berdiyorov, G.R.; Chua, C.J.; Griffiths, J.P.; Jones, G.A.C.; Buitelaar, M.R.; Narayan, V.; Sfigakis, F.; Smith, C.G.; Covaci, L.; Connolly, M.R.;
Title Vortex detection and quantum transport in mesoscopic graphene Josephson-junction arrays Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 245418
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate mesoscopic Josephson-junction arrays created by patterning superconducting disks on monolayer graphene, concentrating on the high-T/T-c regime of these devices and the phenomena which contribute to the superconducting glass state in diffusive arrays. We observe features in the magnetoconductance at rational fractions of flux quanta per array unit cell, which we attribute to the formation of flux-quantized vortices. The applied fields at which the features occur are well described by Ginzburg-Landau simulations that take into account the number of unit cells in the array. We find that the mean conductance and universal conductance fluctuations are both enhanced below the critical temperature and field of the superconductor, with greater enhancement away from the graphene Dirac point.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000356129800012 Publication Date 2015-06-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes ; This work was financially supported by the Engineering and Physical Sciences Research Council, and an NPL/EPSRC Joint Postdoctoral Partnership. Supporting data for this paper is available at the DSpace@Cambridge data repository (https://www.repository.cam.ac.uk/handle/1810/248242). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:126982 Serial 3865
Permanent link to this record
 

 
Author Shi, J.; Peeters, F.M.; Edmonds, K.W.; Gallagher, B.L.
Title Even-odd transition in the Shubnikov-de Haas oscillations in a two-dimensional electron gas subjected to periodic magnetic and electric modulations Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 66 Issue 3 Pages 035328-035328,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate low-temperature magnetotransport of high-mobility two-dimensional electron gases subjected to one-dimensional periodic magnetic and electric modulations. Our previous quantum perturbation theory is extended to lower temperatures and the energy broadening due to impurity scattering is incorporated. Numerical calculations are made for situations where several Landau bands overlap. We find that the Shubnikov-de Haas (SdH) oscillations are dominated by collisional resistance. The amplitudes of the SdH oscillations are strongly modulated and the positions of the SdH minima switch between even and odd Landau-level filling factors, in the resistance both parallel and perpendicular to the one-dimensional modulation. This is a consequence of the internal structure (i.e., smeared out van Hove singularities) of overlapping Landau bands. Our theoretical results are in good agreement with recent experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000177338500090 Publication Date 2002-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 32 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:94918 Serial 1091
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.; Axt, V.M.
Title Parity-fluctuation induced enlargement of the ratio \DeltaE/kBTc in metallic grains Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 21 Pages 214518-214518,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate how the interplay of quantum confinement and particle number-parity fluctuations affects superconducting correlations in ultra-small metallic grains. Using the number-parity projected BCS formalism we calculate the critical temperature and the excitation gap as a function of the grain size for grains with even and odd number of confined carriers. We show that the experimentally observed anomalous increase of the coupling ratio ΔE/kBTc with decreasing superconducting grain size can be attributed to an enhancement of the number-parity fluctuations in ultra-small grains.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298114100003 Publication Date 2011-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by the European Community under a Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR), the Flamish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). M. D. C. thanks A. S. Mel'nikov and N. B. Kopnin for fruitful discussions. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94373 Serial 2555
Permanent link to this record
 

 
Author Juchtmans, R.; Béché, A.; Abakumov, A.; Batuk, M.; Verbeeck, J.
Title Using electron vortex beams to determine chirality of crystals in transmission electron microscopy Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 094112
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) We investigate electron vortex beams elastically scattered on chiral crystals. After deriving a general expression for the scattering amplitude of a vortex electron, we study its diffraction on point scatterers arranged on a helix. We derive a relation between the handedness of the helix and the topological charge of the electron vortex on one hand and the symmetry of the higher-order Laue zones in the diffraction pattern on the other for kinematically and dynamically scattered electrons. We then extend this to atoms arranged on a helix as found in crystals which belong to chiral space groups and propose a method to determine the handedness of such crystals by looking at the symmetry of the diffraction pattern. In contrast to alternative methods, our technique does not require multiple scattering, which makes it possible to also investigate extremely thin samples in which multiple scattering is suppressed. In order to verify the model, elastic scattering simulations are performed, and an experimental demonstration on Mn2Sb2O7 is given in which we find the sample to belong to the right-handed variant of its enantiomorphic pair. This demonstrates the usefulness of electron vortex beams to reveal the chirality of crystals in a transmission electron microscope and provides the required theoretical basis for further developments in this field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352017000002 Publication Date 2015-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 54 Open Access
Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra1; esteem2jra2 ECASJO_; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:125512 c:irua:125512 Serial 3825
Permanent link to this record
 

 
Author De Backer, A.; Van Aert, S.; Faes, C.; Arslan Irmak, E.; Nellist, P.D.; Jones, L.
Title Experimental reconstructions of 3D atomic structures from electron microscopy images using a Bayesian genetic algorithm Type A1 Journal article
Year 2022 Publication N P J Computational Materials Abbreviated Journal npj Comput Mater
Volume 8 Issue 1 Pages 216
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) We introduce a Bayesian genetic algorithm for reconstructing atomic models of monotype crystalline nanoparticles from a single projection using Z-contrast imaging. The number of atoms in a projected atomic column obtained from annular dark field scanning transmission electron microscopy images serves as an input for the initial three-dimensional model. The algorithm minimizes the energy of the structure while utilizing a priori information about the finite precision of the atom-counting results and neighbor-mass relations. The results show promising prospects for obtaining reliable reconstructions of beam-sensitive nanoparticles during dynamical processes from images acquired with sufficiently low incident electron doses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000866500900001 Publication Date 2022-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2057-3960 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S.V.A. and Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0267.18N, G.0502.18N, G.0346.21N) and a postdoctoral grant to A.D.B. L.J. acknowledges Science Foundation Ireland (SFI – grant number URF/RI/191637), the Royal Society, and the AMBER Centre. The authors acknowledge Aakash Varambhia for his assistance and expertise with the experimental recording and use of characterization facilities within the David Cockayne Centre for Electron Microscopy, Department of Materials, University of Oxford, and in particular the EPSRC (EP/K040375/1 South of England Analytical Electron Microscope).; esteem3reported; esteem3JRA Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:191398 Serial 7114
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Schroeder, F.; Fischer, R.A.; Van Tendeloo, G.
Title Direct imaging of loaded metal-organic framework materials (metal@MOF-5) Type A1 Journal article
Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 20 Issue 17 Pages 5622-5627
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) We illustrate the potential of advanced transmission electron microscopy for the characterization of a new class of soft porous materials: metal@Zn4O(bdc)3 (metal@MOF-5; bdc = 1,4-benzenedicarboxylate). By combining several electron microscopy techniques (transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and electron tomography) and by carefully reducing the electron dose to avoid beam damage, it is possible to simultaneously characterize the MOF-5 framework material and the loaded metal nanoparticles. We also demonstrate that electron tomography can be used to accurately determine the position and distribution of the particles within the MOF-5 framework. To demonstrate the implementation of these microscopy techniques and what kind of results can be expected, measurements on gas-phase-loaded metal−organic framework materials Ru@MOF-5 and Pd@MOF-5 are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000258941400021 Publication Date 2008-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 112 Open Access
Notes Esteem 026019 Approved Most recent IF: 9.466; 2008 IF: 5.046
Call Number UA @ lucian @ c:irua:76595 Serial 714
Permanent link to this record
 

 
Author Vávra, O.; Gaži, S.; Golubović, D.S.; Vávra, I.; Dérer, J.; Verbeeck, J.; Van Tendeloo, G.; Moshchalkov, V.V.
Title 0 and π phase Josephson coupling through an insulating barrier with magnetic impurities Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 74 Issue 2 Pages 020502
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) We have studied the temperature and field dependencies of the critical current I(C) in the Nb-Fe(0.1)Si(0.9)-Nb Josephson junction with a tunneling barrier formed by a paramagnetic insulator. We demonstrate that in these junctions coexistence of both the 0 and the pi states within one tunnel junction occurs, and leads to the appearance of a sharp cusp in the temperature dependence I(C)(T), similar to the I(C)(T) cusp found for the 0-pi transition in metallic pi junctions. This cusp is not related to the 0-pi temperature-induced transition itself, but is caused by the different temperature dependencies of the opposing 0 and pi supercurrents through the barrier.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000239426600010 Publication Date 2006-07-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:60087 c:irua:60087 c:irua:60087 c:irua:60087UA @ admin @ c:irua:60087 Serial 1
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H.
Title Molecular terms and optical transitions of C60n+/- molecular ions Type P1 Proceeding
Year 2002 Publication AIP conference proceedings T2 – 16th International Winterschool on Electronic Properties of Novel, Materials, MAR 02-09, 2002, KIRCHBERG, AUSTRIA Abbreviated Journal
Volume Issue Pages 417-420
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract (down) We have studied the molecular energy terms of the hole configurations (h(u)(+))(m), m=2,3,4,5 of C-60(m+) cations and the electronic configurations (t(1u))(n) n=2,3,4, as well as (t(1u))(n-1)t(1g) of the C-60(n-) anions. The lowest terms (within an energy span of 0.03 eV) for C-60(2+) are three triplets T-3(1g), (3)G(g), T-3(2g) and for C-60(3+) are three quartets T-4(1u), (4)G(u), T-4(2u), which favor Jahn-Teller distortions. For the ground state of C-60(2-) we find a triplet T-3(1g) in agreement with Hund's rules. Our method takes into account intramolecular direct and exchange multipolar Coulomb interactions.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume 633 Series Issue Edition
ISSN 0-7354-0088-1 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:103905 Serial 2187
Permanent link to this record