|   | 
Details
   web
Records
Author Borah, R.; Verbruggen, S.W.
Title Effect of size distribution, skewness and roughness on the optical properties of colloidal plasmonic nanoparticles Type A1 Journal article
Year 2022 Publication Colloids and surfaces: A: physicochemical and engineering aspects Abbreviated Journal Colloid Surface A
Volume 640 Issue Pages 128521
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) It is a generally accepted idea that the particle size distribution strongly affects the optical spectra of colloidal plasmonic nanoparticles. It is often quoted as one of the main reasons while explaining the mismatch between the theoretical and experimental optical spectra of such nanoparticles. In this work, these aspects are critically analyzed by means of a bottom up statistical approach that considers variables such as mean, standard deviation and skewness of the nanoparticle size distribution independently from one another. By assuming normal and log-normal distributions of the particle size, the effect of the statistical parameters on the Mie analytical optical spectra of colloidal nanoparticles was studied. The effect of morphology was also studied numerically in order to understand to what extent it can play a role. It is our finding that the particle polydispersity, skewness and surface morphology in fact only weakly impact the optical spectra. While, the selection of suitable optical constants with regard to the crystallinity of the nanoparticles is a far more influential factor for correctly predicting both the plasmon band position and the plasmon bandwidth in theoretical simulations of the optical spectra. It is shown that the mean particle size can be correctly estimated directly from the plasmon band position, as it is the mean that determines the resonance wavelength. The standard deviation can on the other hand be estimated from the intensity distribution data obtained from dynamic light scattering experiments. The results reported herein clear the ambiguity around particle size distribution and optical response of colloidal plasmonic nanoparticles.
Address
Corporate Author Thesis
Publisher Elservier Place of Publication Editor
Language Wos 000765946900002 Publication Date 2022-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-7757 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.2
Call Number DuEL @ duel @c:irua:185704 Serial 6908
Permanent link to this record
 

 
Author Verbeeck, J.; Bertoni, G.; Lichte, H.
Title A holographic biprism as a perfect energy filter? Type A1 Journal article
Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 111 Issue 7 Pages 887-893
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) It has often been stated that a holographic biprism represents a near perfect energy filter and only elastically scattered electrons can participate in the interference fringes. This is based on the assumption that the reference wave does not contain inelastically scattered electrons. In this letter we show that this is not exactly true because of the delocalised inelastic interaction of the reference wave with the sample. We experimentally and theoretically show that inelastic scattering plays a role in the fringe formation, but it is shown that this contribution is small and can usually be neglected in practice. (C) 2011 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300461000021 Publication Date 2011-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 13 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:97250UA @ admin @ c:irua:97250 Serial 1482
Permanent link to this record
 

 
Author Zhang, L.; Lin, B.-C.; Wu, Y.-F.; Wu, H.; Huang, T.-W.; Chang, C.-R.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Xu, J.; Yu, D.; Liao, Z.-M.
Title Electronic Coupling between Graphene and Topological Insulator Induced Anomalous Magnetotransport Properties Type A1 Journal article
Year 2017 Publication ACS nano Abbreviated Journal Acs Nano
Volume 11 Issue 11 Pages 6277-6285
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) It has been theoretically proposed that the spin textures of surface states in a topological insulator can be directly transferred to graphene by means of the proximity effect, which is very important for realizing the two-dimensional topological insulator based on graphene. Here we report the anomalous magnetotransport properties of graphene-topological insulator Bi2Se3 heterojunctions, which are sensitive to the electronic coupling between graphene and the topological surface state. The coupling between the p_z orbitals of graphene and the p orbitals of the surface states on the Bi2Se3 bottom surface can be enhanced by applying a perpendicular negative magnetic field, resulting in a giant negative magnetoresistance at the Dirac point up to about -91%. Obvious resistances dip in the transfer curve at the Dirac point is also observed in the hybrid devices, which is consistent with theoretical predictions of the distorted Dirac bands with nontrivial spin textures inherited from the Bi2Se3 surface states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404808000110 Publication Date 2017-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 12 Open Access OpenAccess
Notes ; This work was supported by National Key Research and Development Program of China (Nos. 2016YFA0300802, 2013CB934600) and NSFC (No. 11234001). ; Approved Most recent IF: 13.942
Call Number EMAT @ emat @ c:irua:143192 Serial 4569
Permanent link to this record
 

 
Author Biely, K.; Mathijs, E.; Van Passel, S.
Title Causal loop diagrams to systematically analyze market power in the Belgian sugar value chain Type A1 Journal article
Year 2019 Publication AIMS Agriculture and Food Abbreviated Journal
Volume 4 Issue 3 Pages 711-730
Keywords A1 Journal article; Engineering Management (ENM)
Abstract (down) It has been acknowledged that power is a fundamental aspect that needs to be considered when performing a value chain analysis. The structure of the value chain is indicative of the power distribution along the chain. By employing systems thinking the structure of the value chain can be further investigated and inferences on market power issues can be made. This novel approach connects value chain research with insights from Industrial Organization (IO) literature. Depending on the case, market power may not be measurable by traditional economic tools. Systems thinking offers an alternative tool, allowing the employment of qualitative and quantitative data, overcoming drawbacks of IO methods and providing more depth to value chain analysis. In this paper the valuable contribution of systems thinking to market power analysis is exemplified by the Belgian sugar beet case. The analysis showed that transportability and perishability of sugar beet are key causes of market failure in the Belgian sugar value chain. Systems thinking can support understanding potential future behavior of the market based on the thorough understanding of the current market structure. We illustrate how to integrate factors determining the market structure into causal loop diagrams. This novel approach allows a comprehensive evaluation and thus opens up market power analysis to interdisciplinary research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000488251600014 Publication Date 2019-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-2086 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This research was performed within the frame of the EU's HORIZON 2020 project SUFISA with the grant agreement number 635577. The authors want to thank colleagues from the SUFISA project for stimulating and inspiring discussions on this topic. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:163833 Serial 6165
Permanent link to this record
 

 
Author Peeters, H.; Raes, A.; Verbruggen, S.W.
Title Plasmonic photocatalytic coatings with self-cleaning, antibacterial, air and water purifying properties tested according to ISO standards Type A1 Journal article
Year 2024 Publication Journal of photochemistry and photobiology: A: chemistry Abbreviated Journal
Volume 451 Issue Pages 115529-10
Keywords A1 Journal article; Engineering sciences. Technology
Abstract (down) ISO 10678:2010, ISO 22197–1 and 2, ISO 27447:2019 and ISO 27448:2009 for the photocatalytic degradation of organic dyes (methylene blue), air pollution (NOx and acetaldehyde), bacteria (E. coli and S. aureus) and solid organic fouling (oleic acid) are performed on plasmon-embedded TiO2 thin films on Borofloat® glass, as well as the commercially available titania-based self-cleaning glass PilkingtonActivTM. These standardised protocols measure the performance for the four main applications of photocatalytic materials: water purification, air purification, antibacterial and self-cleaning activity, respectively. The standards are performed exactly as prescribed to measure the activity under UV irradiation, and also in a slightly adapted manner to measure the performance under simulated solar light or visible light. Performing experiments according to ISO standards, enables an objective comparison amongst samples tested here, as well as with results from literature. This is a major asset compared to the myriad of customised setups used in laboratories worldwide that hinder a fair comparison. We point at the importance of meticulously following the ISO instructions, as we have noticed that multiple published studies adopting the ISO standards too often deviate from these protocols, thereby nullifying the added value of standardized testing. Following the ISO tests to the letter, we have demonstrated the superior performance of a previously developed plasmonic titania coating with fully embedded gold-silver nanoparticles towards all four application areas. Furthermore, our empirical data strongly support the need for a nuanced understanding of standardized testing, to ensure accurate assessment of photocatalytic materials. An examination of the ISO standards used in this work reveals notable drawbacks, including concerns about the reliability of the methylene blue degradation protocol, the issues of HNO3 accumulation in the NOx removal test, and limitations in assessing antibacterial activity and water contact angles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001188107100001 Publication Date 2024-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1010-6030 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.3; 2024 IF: 2.625
Call Number UA @ admin @ c:irua:203203 Serial 9075
Permanent link to this record
 

 
Author Filippousi, M.; Angelakeris, M.; Katsikini, M.; Paloura, E.; Efthimiopoulos, I.; Wang, Y.; Zamboulis, D.; Van Tendeloo, G.
Title Surfactant effects on the structural and magnetic properties of iron oxide nanoparticles Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 29 Pages 16209-16217
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Iron oxide nanoparticles were prepared using the simplest and most efficient chemical route, the coprecipitation, in the absence and the presence of three different and widely used surfactants. The purpose of this study is to investigate the possible influence of the different surfactants on the structure and therefore on the magnetic properties of the iron oxide nanoparticles. Thus, different techniques were employed in order to elucidate the composition and structure of the magnetic iron oxide nanoparticles. By combining transmission electron microscopy with X-ray powder diffraction and X-ray absorption fine structure measurements, we were able to determine and confirm the crystal structure of the constituent iron oxides. The magnetic properties were investigated by measuring the hysteresis loops where the surfactant influence on their collective magnetic behavior and subsequent AC magnetic hyperthermia response is apparent. The results indicate that the produced iron oxide nanoparticles may be considered as good candidates for biomedical applications in hyperthermia treatments because of their high heating capacity exhibited under an alternating magnetic field, which is sufficient to provoke damage to the cancer cells.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000339540700073 Publication Date 2014-07-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 47 Open Access
Notes European Research Council under the seventh Framework Program (FP7); ERC Grant No. 246791 – COUNTATOMS; IAP-AIP functional Supramolecular structure IUAP P7/05 Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:118129 Serial 3398
Permanent link to this record
 

 
Author Falkenberg, G.; Fleissner, G.E.; Fleissner, G.U.E.; Schuchardt, K.; Kühbacher, M.; Chalmin, E.; Janssens, K.
Title High resolution micro-XRF maps of iron oxides inside sensory dendrites of putative avian magnetoreceptors Type A1 Journal article
Year 2009 Publication Journal of physics : conference series Abbreviated Journal
Volume 186 Issue 1 Pages 012084-3
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Iron mineral containing sensory dendrites in the inner lining of the upper beak of homing pigeons [1] and various bird species [2] are the first candidate structures for an avian magnetic field receptor. A new concept of magnetoreception [3, 4] is based on detailed ultra-structural optical and electron microscopy analyses in combination with synchrotron radiation microscopic X-ray fluorescence analysis (micro-XRF) and microscopic X-ray absorption near edge structures (micro-XANES). Several behavioral experiments [5, 6] and first mathematical simulations [6] affirm our avian magnetoreceptor model. The iron minerals inside the dendrites are housed in three different subcellular compartments (bullets, platelets, vesicles), which could be clearly resolved and identified by electron microscopy on ultrathin sections [1, 3]. Micro-XRF and micro-XANES data obtained at HASYLAB beamline L added information about the elemental distribution and Fe speciation [3], but are averaged over the complete dendrite due to limited spatial resolution. Here we present recently performed micro-XRF maps with sub-micrometer resolution (ESRF ID21), which reveal for the first time subcellular structural information from almost bulk-like dendrite sample material. Due to the thickness of 30 μm the microarchitecture of the dendrites can be considered as undisturbed and artefacts introduced by sectioning might be widely reduced.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000282023900084 Publication Date 2009-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588; 1742-6596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:111317 Serial 5642
Permanent link to this record
 

 
Author He, Z.; Maurice, J.-L.; Gohier, A.; Lee, C.S.; Pribat, D.; Cojocaru, C.S.
Title Iron catalysts for the growth of carbon nanofibers : Fe, Fe3C or both? Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue 24 Pages 5379-5387
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Iron is a widely used catalyst for the growth of carbon nanotubes (CNTs) or carbon nanofibers (CNFs) by catalytic chemical vapor deposition. However, both Fe and FeC compounds (generally, Fe3C) have been found to catalyze the growth of CNTs/CNFs, and a comparison study of their respective catalytic activities is still missing. Furthermore, the control of the crystal structure of iron-based catalysts, that is α-Fe or Fe3C, is still a challenge, which not only obscures our understanding of the growth mechanisms of CNTs/CNFs, but also complicates subsequent procedures, such as the removal of catalysts for better industrial applications. Here, we show a partial control of the phase of iron catalysts (α-Fe or Fe3C), obtained by varying the growth temperatures during the synthesis of carbon-based nanofibers/nanotubes in a plasma-enhanced chemical vapor deposition reactor. We also show that the structure of CNFs originating from Fe3C is bamboo-type, while that of CNFs originating from Fe is not. Moreover, we directly compare the growth rates of carbon-based nanofibers/nanotubes during the same experiments and find that CNFs/CNTs grown by α-Fe nanoparticles are longer than CNFs grown from Fe3C nanoparticles. The influence of the type of catalyst on the growth of CNFs is analyzed and the corresponding possible growth mechanisms, based on the different phases of the catalysts, are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000298197300014 Publication Date 2011-11-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 91 Open Access
Notes Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:94297 Serial 1748
Permanent link to this record
 

 
Author Fang, C.M.; van Huis, M.A.; Thijsse, B.J.; Zandbergen, H.W.
Title Stability and crystal structures of iron carbides : a comparison between the semi-empirical modified embedded atom method and quantum-mechanical DFT calculations Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 5 Pages 054116-054116,7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Iron carbides play a crucial role in steel manufacturing and processing and to a large extent determine the physical properties of steel products. The modified embedded atom method (MEAM) in combination with Lee's Fe-C potential is a good candidate for molecular dynamics simulations on larger Fe-C systems. Here, we investigate the stability and crystal structures of pure iron and binary iron carbides using MEAM and compare them with the experimental data and quantum-mechanical density functional theory calculations. The analysis shows that the Fe-C potential gives reasonable results for the relative stability of iron and iron carbides. The performance of MEAM for the prediction of the potential energy and the calculated lattice parameters at elevated temperature for pure iron phases and cementite are investigated as well. The conclusion is that Lee's MEAM Fe-C potential provides a promising basis for further molecular dynamics simulations of Fe-C alloys and steels at lower temperatures (up to 800 K).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000300931900004 Publication Date 2012-02-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97201 Serial 3117
Permanent link to this record
 

 
Author Zanin, L.; Tomasi, N.; Rizzardo, C.; Gottardi, S.; Terzano, R.; Alfeld, M.; Janssens, K.; De Nobili, M.; Mimmo, T.; Cesco, S.
Title Iron allocation in leaves of Fe-deficient cucumber plants fed with natural Fe complexes Type A1 Journal article
Year 2015 Publication Physiologia plantarum Abbreviated Journal Physiol Plantarum
Volume 154 Issue 1 Pages 82-94
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Iron (Fe) sources available for plants in the rhizospheric solution are mainly a mixture of complexes between Fe and organic ligands, including phytosiderophores (PS) and water-extractable humic substances (WEHS). In comparison with the other Fe sources, Fe-WEHS are more efficiently used by plants, and experimental evidences show that Fe translocation contributes to this better response. On the other hand, very little is known on the mechanisms involved in Fe allocation in leaves. In this work, physiological and molecular processes involved in Fe distribution in leaves of Fe-deficient Cucumis sativus supplied with Fe-PS or Fe-WEHS up to 5days were studied combining different techniques, such as radiochemical experiments, synchrotron micro X-ray fluorescence, real-time reverse transcription polymerase chain reaction and in situ hybridization. In Fe-WEHS-fed plants, Fe was rapidly (1day) allocated into the leaf veins, and after 5days, Fe was completely transferred into interveinal cells; moreover, the amount of accumulated Fe was much higher than with Fe-PS. This redistribution in Fe-WEHS plants was associated with an upregulation of genes encoding a ferric(III)-chelate reductase (FRO), a Fe2+ transporter (IRT1) and a natural resistance-associated macrophage protein (NRAMP). The localization of FRO and IRT1 transcripts next to the midveins, beside that of NRAMP in the interveinal area, may suggest a rapid and efficient response induced by the presence of Fe-WEHS in the extra-radical solution for the allocation in leaves of high amounts of Fe. In conclusion, Fe is more efficiently used when chelated to WEHS than PS and seems to involve Fe distribution and gene regulation of Fe acquisition mechanisms operating in leaves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353067500007 Publication Date 2014-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9317 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.33 Times cited 14 Open Access
Notes ; Research was supported by grants from Italian MIUR (FIRB-Programma 'Futuro in Ricerca') and Free University of Bolzano (TN5056). Synchrotron experiments at HASYLAB were financially supported by the European Community-Research Infrastructure Action under the FP6 'Structuring the European Research Area' Program I (Integrating Activity on Synchrotron and Free Electron Laser Science; project: contract RII3-CT-2004-506008). We thank Karen Appel for her scientific and technical support in obtaining the experimental data at Beamline L (HASYLAB, DESY, Hamburg, Germany). ; Approved Most recent IF: 3.33; 2015 IF: 3.138
Call Number UA @ admin @ c:irua:132500 Serial 5678
Permanent link to this record
 

 
Author Terzano, R.; Alfeld, M.; Janssens, K.; Vekemans, B.; Schoonjans, T.; Vincze, L.; Tomasi, N.; Pinton, R.; Cesco, S.
Title Spatially resolved (semi)quantitative determination of iron (Fe) in plants by means of synchrotron micro X-ray fluorescence Type A1 Journal article
Year 2013 Publication Analytical and bioanalytical chemistry Abbreviated Journal Anal Bioanal Chem
Volume 405 Issue 10 Pages 3341-3350
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Iron (Fe) is an essential element for plant growth and development; hence determining Fe distribution and concentration inside plant organs at the microscopic level is of great relevance to better understand its metabolism and bioavailability through the food chain. Among the available microanalytical techniques, synchrotron mu-XRF methods can provide a powerful and versatile array of analytical tools to study Fe distribution within plant samples. In the last years, the implementation of new algorithms and detection technologies has opened the way to more accurate (semi)quantitative analyses of complex matrices like plant materials. In this paper, for the first time the distribution of Fe within tomato roots has been imaged and quantified by means of confocal mu-XRF and exploiting a recently developed fundamental parameter-based algorithm. With this approach, Fe concentrations ranging from few hundreds of ppb to several hundreds of ppm can be determined at the microscopic level without cutting sections. Furthermore, Fe (semi)quantitative distribution maps were obtained for the first time by using two opposing detectors to collect simultaneously the XRF radiation emerging from both sides of an intact cucumber leaf.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316338700033 Publication Date 2013-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.431 Times cited 27 Open Access
Notes ; Research was supported by grants from Italian MIUR (FIRB-Programma “Futuro in Ricerca”) and Free University of Bolzano (TN5046 and TN5056). Synchrotron experiments at HASY-LAB were financially supported by the European Community Research Infrastructure Action under the FP6 “Structuring the European Research Area” Program I (Integrating Activity on Synchrotron and Free Electron Laser Science; project: contract RII3-CT-2004-506008). Matthias Alfeld receives a Ph.D. fellowship of the Research Foundation-Flanders (FWO). We thank Karen Rickers-Appel for her scientific and technical support in obtaining the experimental data at Beamline L (HASYLAB, DESY, Hamburg, Germany). ; Approved Most recent IF: 3.431; 2013 IF: 3.578
Call Number UA @ admin @ c:irua:108261 Serial 5838
Permanent link to this record
 

 
Author Evangelista, H.; Maldonado, J.; dos Santos, E.A.; Godoi, R.H.M.; Garcia, C.A.E.; Garcia, V.M.T.; Johnson, E.; da Cunha, K.D.; Leite, C.B.; Van Grieken, R.; van Meel, K.; Makarovska, Y.; Gaiero, D.M.
Title Inferring episodic atmospheric iron fluxes in the Western South Atlantic Type A1 Journal article
Year 2010 Publication Atmospheric environment : an international journal Abbreviated Journal
Volume 44 Issue 5 Pages 703-712
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Iron (Fe) and other trace elements such as Zn, Mn, Ni and Cu are known as key-factors in marine biogeochemical cycles. It is believed that ocean primary productivity blooms in iron deficient regions can be triggered by iron in aeolian dust. Up to now, scarce aerosol elemental composition, based on measurements over sea at the Western South Atlantic (WSA), exist. An association between the Patagonian semi-desert dust/Fe and chlorophyll-a variability at the Argentinean continental shelf is essentially inferred from models. We present here experimental data of Fe enriched aerosols over the WSA between latitudes 22°S62°S, during 4 oceanographic campaigns between 2002 and 2005. These data allowed inferring the atmospheric Fe flux onto different latitudinal bands which varied from 30.4 to 1688 nmolFe m−2 day−1 (October 29thNovember 15th, 2003); 5.831586 nmolFe m−2 day−1 (February 15thMarch 6th, 2004) and 4.73586 nmolFe m−2 day−1(October 21stNovember 5th, 2005).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000274931800012 Publication Date 2009-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:80695 Serial 8086
Permanent link to this record
 

 
Author Mirbagheri, N.; Campos, R.; Ferapontova, E.E.
Title Electrocatalytic oxidation of water by OH- – and H₂O-capped IrOx nanoparticles electrophoretically deposited on graphite and basal plane HOPG : effect of the substrate electrode Type A1 Journal article
Year 2021 Publication Chemelectrochem Abbreviated Journal Chemelectrochem
Volume 8 Issue 9 Pages 1632-1641
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Iridium oxide (IrOx) is one of the most efficient electrocatalysts for water oxidation reaction (WOR). Here, WOR electrocatalysis by 1.6 nm IrOx nanoparticles (NPs) electrophoretically deposited onto spectroscopic graphite (Gr) and basal plane highly ordered pyrolytic graphite (HOPG) was studied as a function of NPs' capping ligands and electrodeposition substrate. On Gr, OH-- and H2O-capped NPs exhibited close sub-monolayer surface coverages and specific electrocatalytic activity of 18.9-23.5 mA nmol(-1) of Ir-IV/V sites, at 1 V and pH 7. On HOPG, OH--capped NPs produced films with a diminished WOR activity of 5.17 +/- 2.40 mA nmol(-1). Electro-wettability-induced changes impeded electrophoretic deposition of H2O-capped NPs on HOPG, WOR currents being 25-fold lower than observed for OH--capped ones. The electrocatalysis efficiency correlated with hydrophilic properties of the substrate electrodes, affecting morphological and as a result catalytic properties of the formed IrOx films. These results, important both for studied and related carbon nanomaterials systems, allow fine-tuning of electrocatalysis by a proper choice of the substrate electrode.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000664219100012 Publication Date 2021-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.136 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.136
Call Number UA @ admin @ c:irua:179719 Serial 7859
Permanent link to this record
 

 
Author Fatima; Oguz, I.C.; Çakir, D.; Hossain, S.; Mohottige, R.; Gulseren, O.; Oncel, N.
Title On the structural and electronic properties of Ir-silicide nanowires on Si(001) surface Type A1 Journal article
Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 120 Issue 120 Pages 095303
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) Iridium (Ir) modified Silicon (Si) (001) surface is studied with Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Density Functional Theory (DFT). A model for Ir-silicide nanowires based on STM images and ab-initio calculations is proposed. According to our model, the Ir adatom is on the top of the substrate dimer row and directly binds to the dimer atoms. I-V curves measured at 77K shows that the nanowires are metallic. DFT calculations confirm strong metallic nature of the nanowires. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000383978100030 Publication Date 2016-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 7 Open Access
Notes ; We gratefully acknowledge the NSF (Grant No. DMR-1306101) for financial support. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. ; Approved Most recent IF: 2.068
Call Number UA @ lucian @ c:irua:137132 Serial 4359
Permanent link to this record
 

 
Author Afsharzade, N.; Papzan, A.; Ashjaee, M.; Delangizan, S.; Van Passel, S.; Azadi, H.
Title Renewable energy development in rural areas of Iran Type A1 Journal article
Year 2016 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 65 Issue Pages 743-755
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract (down) Iran's energy system is extremely dependent on fossil fuels which, in turn, have led to problems such as fossil fuels depletion, social, economic and environmental damage and territorial imbalance. The country should therefore design a sustainable energy system based on clean energy as well as renewable energy. Accordingly, and given that Iran's rural areas suffer from the unsustainable energy system, it is necessary to integrate renewable energy into comprehensive development programs in general, and into rural development programs, specifically. This review paper answers the following questions: Why is renewable energy important for Iran at national and rural levels? How is renewable energy related to sustainable rural development? and What are the challenges in the promotion of renewable energy technologies in Iran? The paper concludes that although renewable energy has potential for development in Iran's rural areas due to environmental, social and economic advantages, it could face some infrastructural, managerial, socio-cultural and economic challenges. Accordingly, aggressive and innovative policy making is required to meet these challenges. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383293800053 Publication Date 2016-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited 41 Open Access
Notes ; ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:137105 Serial 6243
Permanent link to this record
 

 
Author Mees, M.J.; Pourtois, G.; Rosciano, F.; Put, B.; Vereecken, P.M.; Stesmans, A.
Title First-principles material modeling of solid-state electrolytes with the spinel structure Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) Ionic diffusion through the novel (AlxMg1-2xLix)Al2O4 spinel electrolyte is investigated using first-principles calculations, combined with the Kinetic Monte Carlo algorithm. We observe that the ionic diffusion increases with the lithium content x. Furthermore, the structural parameters, formation enthalpies and electronic structures of (AlxMg1-2xLix)Al2O4 are calculated for various stoichiometries. The overall results indicate the (AlxMg1-2xLix)Al2O4 stoichiometries x = 0.2...0.3 as most promising. The (AlxMg1-2xLix)Al2O4 electrolyte is a potential candidate for the all-spinel solid-state battery stack, with the material epitaxially grown between well-known spinel electrodes, such as LiyMn2O4 and Li4+3yTi5O12 (y = 0...1). Due to their identical crystal structure, a good electrolyte-electrode interface is expected.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000332395700048 Publication Date 2014-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 8 Open Access
Notes Approved Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:128893 Serial 4520
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A.
Title Ion irradiation for improved graphene network formation in carbon nanotube growth Type A1 Journal article
Year 2014 Publication Carbon Abbreviated Journal Carbon
Volume 77 Issue Pages 790-795
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) Ion irradiation of carbon nanotubes very often leads to defect formation. However, we have recently shown that Ar ion irradiation in a limited energy window of 1025 eV may enhance the initial cap nucleation process, when the carbon network is in contact with the metal nanocatalyst. Here, we employ reactive molecular dynamics simulations to demonstrate that ion irradiation in a higher energy window of 1035 eV may also heal network defects after the nucleation stage through a non-metal-mediated mechanism, when the carbon network is no longer in contact with the metal nanocatalyst. The results demonstrate the possibility of beneficially utilizing ions in e.g. plasma-enhanced chemical vapour deposition of carbon nanotubes.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000340689400083 Publication Date 2014-06-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 7 Open Access
Notes Approved Most recent IF: 6.337; 2014 IF: 6.196
Call Number UA @ lucian @ c:irua:118062 Serial 1745
Permanent link to this record
 

 
Author Kontozova-Deutsch, V.; Deutsch, F.; Bencs, L.; Krata, A.; Van Grieken, R.; De Wael, K.
Title Optimization of the ion chromatographic quantification of airborne fluoride, acetate and formate in the Metropolitan Museum of Art, New York Type A1 Journal article
Year 2011 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal Talanta
Volume 86 Issue Pages 372-376
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Ion chromatographic (IC) methods have been compared in order to achieve an optimal separation of fluoride, acetate and formate under various elution conditions on two formerly introduced analytical columns (i and ii) and a novel one (iii): (i) an IonPac AS14 (250 mm × 4 mm I.D.), (ii) Allsep A-2 (150 mm × 4.6 mm I.D.), and (iii) an IC SI-50 4E (250 mm (length) × 4 mm (internal diameter – I.D.)). The IC conditions for the separation of the anions concerned were optimized on the IC SI-50 4E column. A near baseline separation of these anions was attained on the IonPac AS14, whereas the peaks of fluoride and acetate could not be resolved on the Allsep A-2. A baseline separation for the three anions was achieved on the IC SI-50 4E column, when applying an eluent mixture of 3.2 mmol/L Na2CO3 and 1.0 mmol/L NaHCO3 with a flow rate of 1.0 mL/min. The highest precision of 1.7, 3.0 and 2.8% and the best limits of detection (LODs) of 0.014, 0.22 and 0.17 mg/L for fluoride, acetate and formate, respectively, were obtained with the IC SI-50 4E column. Hence, this column was applied for the determination of the acetic and formic acid contents of air samples taken by means of passive gaseous sampling at the Metropolitan Museum of Art in New York, USA. Atmospheric concentrations of acetic and formic acid up to 1050 and 450 μg/m3, respectively, were found in non-aerated showcases of the museum. In galleries and outdoors, rather low levels of acetic and formic acid were detected with average concentrations of 50 and 10 μg/m3, respectively. The LOD data of acetate and formate on the IC SI-50 4E column correspond to around 0.5 μg/m3 for both acetic and formic acid in air samples.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298126300048 Publication Date 2011-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.162 Times cited 19 Open Access
Notes ; The authors gratefully acknowledge the support of Marco Leona and the staff of the Metropolitan Museum of Art in New York during the sampling campaigns. The technical assistance and advice by Dr. Takashi Kotsuka and Shodex Benelux are acknowledged as well. ; Approved Most recent IF: 4.162; 2011 IF: 3.794
Call Number UA @ admin @ c:irua:92066 Serial 5762
Permanent link to this record
 

 
Author Schryvers, D.; Van Aert, S.; Delville, R.; Idrissi, H.; Turner, S.; Salje, E.K.H.
Title Dedicated TEM on domain boundaries from phase transformations and crystal growth Type A1 Journal article
Year 2013 Publication Phase transitions Abbreviated Journal Phase Transit
Volume 86 Issue 1 Pages 15-22
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Investigating domain boundaries and their effects on the behaviour of materials automatically implies the need for detailed knowledge on the structural aspects of the atomic configurations at these interfaces. Not only in view of nearest neighbour interactions but also at a larger scale, often surpassing the unit cell, the boundaries can contain structural elements that do not exist in the bulk. In the present contribution, a number of special boundaries resulting from phase transformations or crystal growth and those recently investigated by advanced transmission electron microscopy techniques in different systems will be reviewed. These include macrotwins between microtwinned martensite plates in NiAl, austenite-single variant martensite habit planes in low hysteresis NiTiPd, nanotwins in non-textured nanostructured Pd and ferroelastic domain boundaries in CaTiO3. In all discussed cases these boundaries play an essential role in the properties of the respective materials.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000312586700003 Publication Date 2012-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.06 Times cited Open Access
Notes Fwo; Iap Approved Most recent IF: 1.06; 2013 IF: 1.044
Call Number UA @ lucian @ c:irua:101222 Serial 612
Permanent link to this record
 

 
Author Harrabi, K.; Gasmi, K.; Mekki, A.; Bahlouli, H.; Kunwar, S.; Milošević, M.V.
Title Detection and measurement of picoseconds-pulsed laser energy using a NbTiN superconducting filament Type A1 Journal article
Year 2023 Publication IEEE transactions on applied superconductivity Abbreviated Journal
Volume 33 Issue 5 Pages 2400205-5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) investigate non-equilibrium states created by a laser beam incident on a superconducting NbTiN filament subject to an electrical pulse at 4 K. In absence of the laser excitation, when the amplitude of the current pulse applied to the filament exceeds the critical current value, we monitored the delay time td that marks the collapse of the superconducting phase which is then followed by a voltage rise. We linked the delay time to the applied current using the time-dependent Ginzburg-Landau (TDGL) theory, which enabled us to deduce the cooling (or heat-removal) time from the fit to the experimental data. Subsequently, we exposed the filament biased with a current pulse close to its critical value to a focused laser beam, inducing a normal state in the impact region of the laser beam. We showed that the energy of the incident beam and the incurred delay time are related to each other by a simple expression, that enables direct measurement of incident beam energy by temporal monitoring of the transport response. This method can be extended for usage in single-photon detection regime, and be used for accurate calibration of an arbitrary light source.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000946265900016 Publication Date 2023-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.8; 2023 IF: NA
Call Number UA @ admin @ c:irua:195110 Serial 7295
Permanent link to this record
 

 
Author De Backer, L.; Vos, W.; Dieriks, B.; Daems, D.; Verhulst, S.; Vinchurkar, S.; Ides, K.; de Backer, J.; Germonpré, P.; de Backer, W.
Title The effects of long-term noninvasive ventilation in hypercapnic COPD patients : a randomized controlled pilot study Type A1 Journal article
Year 2011 Publication International journal of chronic obstructive pulmonary disease Abbreviated Journal Int J Chronic Obstr
Volume 6 Issue Pages 615-624
Keywords A1 Journal article; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract (down) Introduction: Noninvasive ventilation (NIV) is a well-established treatment for acute-on-chronic respiratory failure in hypercapnic COPD patients. Less is known about the effects of a long-term treatment with NIV in hypercapnic COPD patients and about the factors that may predict response in terms of improved oxygenation and lowered CO2 retention.Methods: In this study, we randomized 15 patients to a routine pharmacological treatment (n = 5, age 66 [standard deviation ± 6] years, FEV1 30.5 [±5.1] %pred, PaO2 65 [±6] mmHg, PaCO2 52.4 [±6.0] mmHg) or to a routine treatment and NIV (using the Synchrony BiPAP device [Respironics, Inc, Murrsville, PA]) (n = 10, age 65 [±7] years, FEV1 29.5 [±9.0] %pred, PaO2 59 [±13] mmHg, PaCO2 55.4 [±7.7] mmHg) for 6 months. We looked at arterial blood gasses, lung function parameters and performed a low-dose computed tomography of the thorax, which was later used for segmentation (providing lobe and airway volumes, iVlobe and iVaw) and post-processing with computer methods (providing airway resistance, iRaw) giving overall a functional image of the separate airways and lobes.Results: In both groups there was a nonsignificant change in FEV1 (NIV group 29.5 [9.0] to 38.5 [14.6] %pred, control group 30.5 [5.1] to 36.8 [8.7] mmHg). PaCO2 dropped significantly only in the NIV group (NIV: 55.4 [7.7] → 44.5 [4.70], P = 0.0076; control: 52.4 [6.0] → 47.6 [8.2], NS). Patients actively treated with NIV developed a more inhomogeneous redistribution of mass flow than control patients. Subsequent analysis indicated that in NIV-treated patients that improve their blood gases, mass flow was also redistributed towards areas with higher vessel density and less emphysema, indicating that flow was redistributed towards areas with better perfusion. There was a highly significant correlation between the % increase in mass flow towards lobes with a blood vessel density of >9% and the increase in PaO2. Improved ventilation–perfusion match and recruitment of previously occluded small airways can explain the improvement in blood gases.Conclusion: We can conclude that in hypercapnic COPD patients treated with long-term NIV over 6 months, a mass flow redistribution occurs, providing a better ventilation–perfusion match and hence better blood gases and lung function. Control patients improve homogeneously in iVaw and iRaw, without improvement in gas exchange since there is no improved ventilation/perfusion ratio or increased alveolar ventilation. These differences in response can be detected through functional imaging, which gives a more detailed report on regional lung volumes and resistances than classical lung function tests do. Possibly only patients with localized small airway disease are good candidates for long-term NIV treatment. To confirm this and to see if better arterial blood gases also lead to better health related quality of life and longer survival, we have to study a larger population.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000208709800066 Publication Date 2011-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1178-2005; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.157 Times cited 28 Open Access
Notes ; ; Approved Most recent IF: 3.157; 2011 IF: NA
Call Number UA @ lucian @ c:irua:93164 Serial 866
Permanent link to this record
 

 
Author Raes, A.; Minja, A.C.; Ag, K.R.; Verbruggen, S.W.
Title Recent advances in metal-doped defective TiO₂ for photocatalytic CO₂ conversion Type A1 Journal article
Year 2024 Publication Current Opinion in Chemical Engineering Abbreviated Journal
Volume 44 Issue Pages 101013-11
Keywords A1 Journal article; Engineering sciences. Technology
Abstract (down) Introducing defects in TiO2-based photocatalytic materials is a promising strategy for improving light-driven CO2 reduction. However, defects such as oxygen vacancies are generally unstable. As a solution and to further enhance the photocatalytic activity, metal doping has been applied. This mini review aims to summarize recent progress in this particular field. Herein, we have classified metal-doped architectures into three different categories: single metal doping, alloy- and co-doping, and doping of morphologically nanoengineered TiO2−x substrates. The direct relationship between specific metals and product selectivity remains complex, as selectivity can vary significantly among seemingly similar materials. However, numerous methods do show promise in fine-tuning selectivity towards either CO or CH4. In terms of photocatalytic turnover, remarkable yields have been reported in isolated reports, but insufficient experimental data and divergent reaction conditions hamper a true comparison. This puts an emphasis on the need for standardized activity testing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-3398 ISBN Additional Links UA library record
Impact Factor 6.6 Times cited Open Access
Notes Approved Most recent IF: 6.6; 2024 IF: 3.403
Call Number UA @ admin @ c:irua:204462 Serial 9221
Permanent link to this record
 

 
Author Jelić, Ž.L.; Milošević, M.V.; Van de Vondel, J.; Silhanek, A.V.
Title Stroboscopic phenomena in superconductors with dynamic pinning landscape Type A1 Journal article
Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 5 Issue 5 Pages 14604
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (down) Introducing artificial pinning centers is a well established strategy to trap quantum vortices and increase the maximal magnetic field and applied electric current that a superconductor can sustain without dissipation. In case of spatially periodic pinning, a clear enhancement of the superconducting critical current arises when commensurability between the vortex configurations and the pinning landscape occurs. With recent achievements in (ultrafast) optics and nanoengineered plasmonics it has become possible to exploit the interaction of light with superconductivity, and create not only spatially periodic imprints on the superconducting condensate, but also temporally periodic ones. Here we show that in the latter case, temporal matching phenomena develop, caused by stroboscopic commensurability between the characteristic frequency of the vortex motion under applied current and the frequency of the dynamic pinning. The matching resonances persist in a broad parameter space, including magnetic field, driving current, or material purity, giving rise to unusual features such as externally variable resistance/impedance and Shapiro steps in current-voltage characteristics. All features are tunable by the frequency of the dynamic pinning landscape. These findings open further exploration avenues for using flashing, spatially engineered, and/or mobile excitations on superconductors, permitting us to achieve advanced functionalities.
Address Departement de Physique, Universite de Liege, Allee du 6-Aout 17, B-4000 Liege, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000362082500001 Publication Date 2015-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 29 Open Access
Notes Acknowledgements: This work was supported by the Methusalem Funding of the Flemish Government, the Research Foundation-Flanders (FWO) and the COST Action MP1201. The work of Ž.L.J. and A.V.S. was partially supported by “Mandat d’Impulsion Scientifique” of the F.R.S.-FNRS. Approved Most recent IF: 4.259; 2015 IF: 5.578
Call Number c:irua:129807 c:irua:129807 Serial 3980
Permanent link to this record
 

 
Author Xu, P.; Neek-Amal, M.; Barber, S.D.; Schoelz, J.K.; Ackerman, M.L.; Thibado, P.M.; Sadeghi, A.; Peeters, F.M.
Title Unusual ultra-low-frequency fluctuations in freestanding graphene Type A1 Journal article
Year 2014 Publication Nature communications Abbreviated Journal Nat Commun
Volume 5 Issue Pages 3720
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (down) Intrinsic ripples in freestanding graphene have been exceedingly difficult to study. Individual ripple geometry was recently imaged using scanning tunnelling microscopy, but these measurements are limited to static configurations. Thermally-activated flexural phonon modes should generate dynamic changes in curvature. Here we show how to track the vertical movement of a one-square-angstrom region of freestanding graphene using scanning tunnelling microscopy, thereby allowing measurement of the out-of-plane time trajectory and fluctuations over long time periods. We also present a model from elasticity theory to explain the very-low-frequency oscillations. Unexpectedly, we sometimes detect a sudden colossal jump, which we interpret as due to mirror buckling. This innovative technique provides a much needed atomic-scale probe for the time-dependent behaviours of intrinsic ripples. The discovery of this novel progenitor represents a fundamental advance in the use of scanning tunnelling microscopy, which together with the application of a thermal load provides a low-frequency nano-resonator.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000335223200007 Publication Date 2014-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 62 Open Access
Notes ; This work was financially supported, in part, by the Office of Naval Research under grant N00014-10-1-0181, the National Science Foundation under grant DMR-0855358, the EU-Marie Curie IIF postdoc Fellowship/299855 (for M.N.-A.), the ESF-Euro-GRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 12.124; 2014 IF: 11.470
Call Number UA @ lucian @ c:irua:117201 Serial 3819
Permanent link to this record
 

 
Author Samaee, V.; Gatti, R.; Devincre, B.; Pardoen, T.; Schryvers, D.; Idrissi, H.
Title Dislocation driven nanosample plasticity: new insights from quantitative in-situ TEM tensile testing Type A1 Journal Article
Year 2018 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk
Volume 8 Issue 1 Pages 12012
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract (down) Intrinsic dislocation mechanisms in the vicinity of free surfaces of an almost FIB damage-free single crystal Ni sample have been quantitatively investigated owing to a novel sample preparation method combining twin-jet electro-polishing, in-situ TEM heating and FIB. The results reveal that the small-scale plasticity is mainly controlled by the conversion of few tangled dislocations, still present after heating, into stable single arm sources (SASs) as well as by the successive operation of these sources. Strain hardening resulting from the operation of an individual SAS is reported and attributed to the decrease of the length of the source. Moreover, the impact of the shortening of the dislocation source on the intermittent plastic flow, characteristic of SASs, is discussed. These findings provide essential information for the understanding of the regime of ‘dislocation source’ controlled plasticity and the related mechanical size effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460200900001 Publication Date 2018-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 9 Open Access Not_Open_Access
Notes Financial support from the Flemish (FWO) and German Research Foundation (DFG) through the European M-ERA.NET project “FaSS” (Fatigue Simulation near Surfaces) under the grant numbers GA.014.13 N and SCHW855/5-1, respectively, is gratefully acknowledged. V. Samaee also acknowledges the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations”. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Dr. Ruth Schwaiger is acknowledged for providing the Ni foils used to prepare the in-situ TEM tensile specimens. Approved Most recent IF: 4.259
Call Number EMAT @ emat @c:irua:155772 Serial 5136
Permanent link to this record
 

 
Author Idrissi, H.; Béché, A.; Gauquelin, N.; Ul-Haq, I.; Bollinger, C.; Demouchy, S.; Verbeeck, J.; Pardoen, T.; Schryvers, D.; Cordier, P.
Title On the formation mechanisms of intragranular shear bands in olivine by stress-induced amorphization Type A1 Journal article
Year 2022 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 239 Issue Pages 118247-118249
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Intragranular amorphization shear lamellae are found in deformed olivine aggregates. The detailed trans-mission electron microscopy analysis of intragranular lamella arrested in the core of a grain provides novel information on the amorphization mechanism. The deformation field is complex and heteroge-neous, corresponding to a shear crack type instability involving mode I, II and III loading components. The formation and propagation of the amorphous lamella is accompanied by the formation of crystal defects ahead of the tip. These defects are geometrically necessary [001] dislocations, characteristics of high-stress deformation in olivine, and rotational nanodomains which are tentatively interpreted as disclinations. We show that these defects play an important role in dictating the path followed by the amorphous lamella. Stress-induced amorphization in olivine would thus result from a direct crystal-to -amorphous transformation associated with a shear instability and not from a mechanical destabilization due to the accumulation of high number of defects from an intense preliminary deformation. The pref-erential alignment of some lamellae along (010) is a proof of the lower ultimate mechanical strength of these planes.(c) 2022 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000861076600004 Publication Date 2022-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.4 Times cited 5 Open Access OpenAccess
Notes The QuanTEM microscope was partially funded by the Flemish government. The K2 camera was funded by FWO Hercules fund G0H4316N 'Direct electron detector for soft matter TEM'. A. Beche acknowledges funding from FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy'). H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the FNRS under Grant PDR – T011322F and by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 787,198 Time Man. J-L Rouviere is acknowledged for his support with the GPA softawre. Approved Most recent IF: 9.4
Call Number UA @ admin @ c:irua:191432 Serial 7186
Permanent link to this record
 

 
Author Nguten, N.T.T.; Peeters, F.M.
Title Many-body effects in the cyclotron resonance of a magnetic dot Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 11 Pages 115335,1-115335,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) Intraband cyclotron resonance (CR) transitions of a two-electron quantum dot containing a single magnetic ion is investigated for different Coulomb interaction strengths and different positions of the magnetic ion. In contrast to the usual parabolic quantum dots where CR is independent of the number of electrons, we found here that due to the presence of the magnetic ion Kohn's theorem no longer holds and CR is different for systems with different number of electrons and different effective electron-electron Coulomb interaction strength. Many-body effects result in shifts in the transition energies and change the number of CR lines. The position of the magnetic ion inside the quantum dot affects the structure of the CR spectrum by changing the position and the number of crossings and anticrossings in the transition energies and oscillator strengths.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000270383200110 Publication Date 2009-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:79228 Serial 1941
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Hernandez, A.D.; Peeters, F.M.
Title Confinement effects on intermediate-state flux patterns in mesoscopic type-I superconductors Type A1 Journal article
Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 103 Issue 26 Pages 267002,1-267002,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) Intermediate-state flux structures in mesoscopic type-I superconductors are studied within the Ginzburg-Landau theory. In addition to well-established tubular and laminar structures, the strong confinement leads to the formation of (i) a phase of singly quantized vortices, which is typical for type-II superconductors and (ii) a ring of a normal domain at equilibrium. The stability region and the formation process of these intermediate-state structures are strongly influenced by the geometry of the sample.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000273232200042 Publication Date 2009-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 28 Open Access
Notes Approved Most recent IF: 8.462; 2009 IF: 7.328
Call Number UA @ lucian @ c:irua:80574 Serial 488
Permanent link to this record
 

 
Author Spreitzer, M.; Egoavil, R.; Verbeeck, J.; Blank, D.H.A.; Rijnders, G.
Title Pulsed laser deposition of SrTiO3 on a H-terminated Si substrate Type A1 Journal article
Year 2013 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 1 Issue 34 Pages 5216-5222
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Interfacing oxides with silicon is a long-standing problem related to the integration of multifunctional oxides with semiconductor devices and the replacement of SiO2 with high-k gate oxides. In our study, pulsed laser deposition was used to prepare a SrTiO3 (STO) thin film on a H-terminated Si substrate. The main purpose of our work was to verify the ability of H-termination against the oxidation of Si during the PLD process and to analyze the resulting interfaces. In the first part of the study, the STO was deposited directly on the Si, leading to the formation of a preferentially textured STO film with a (100) orientation. In the second part, SrO was used as a buffer layer, which enabled the partial epitaxial growth of STO with STO(110)parallel to Si(100) and STO[001]parallel to Si[001]. The change in the growth direction induced by the application of a SrO buffer was governed by the formation of a SrO(111) intermediate layer and subsequently by the minimization of the lattice misfit between the STO and the SrO. Under the investigated conditions, approximately 10 nm thick interfacial layers formed between the STO and the Si due to reactions between the deposited material and the underlying H-terminated Si. In the case of direct STO deposition, SiOx formed at the interface with the silicon, while in the case when SrO was used as a buffer, strontium silicate grew directly on the silicon, which improves the growth quality of the uppermost STO.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322911900005 Publication Date 2013-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 23 Open Access
Notes Ifox; Esteem2; Vortex; Countatoms; esteem2jra3 ECASJO; Approved Most recent IF: 5.256; 2013 IF: NA
Call Number UA @ lucian @ c:irua:110798UA @ admin @ c:irua:110798 Serial 2739
Permanent link to this record
 

 
Author Das, S.; Rata, A.D.; Maznichenko, I., V; Agrestini, I.S.; Pippel, E.; Gauquelin, N.; Verbeeck, J.; Chen, K.; Valvidares, S.M.; Vasili, H.B.; Herrero-Martin, J.; Pellegrin, E.; Nenkov, K.; Herklotz, A.; Ernst, A.; Mertig, I.; Hu, Z.; Doerr, K.
Title Low-field switching of noncollinear spin texture at La0.7Sr0.3MnO3-SrRuO3interfaces Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 2 Pages 024416
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Interfaces of ferroic oxides can show complex magnetic textures which have strong impact on spintronics devices. This has been demonstrated recently for interfaces with insulating antiferromagnets such as BiFeO3. Here, noncollinear spin textures which can be switched in very low magnetic field are reported for conducting ferromagnetic bilayers of La0.7Sr0.3MnO3-SrRuO3 (LSMO-SRO). The magnetic order and switching are fundamentally different for bilayers coherently grown in reversed stacking sequence. The SRO top layer forms a persistent exchange spring which is antiferromagnetically coupled to LSMO and drives switching in low fields of a few milliteslas. Density functional theory reveals the crucial impact of the interface termination on the strength of Mn-Ru exchange coupling across the interface. The observation of an exchange spring agrees with ultrastrong coupling for the MnO2/SrO termination. Our results demonstrate low-field switching of noncollinear spin textures at an interface between conducting oxides, opening a pathway for manipulating and utilizing electron transport phenomena in controlled spin textures at oxide interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455821400005 Publication Date 2019-01-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access OpenAccess
Notes ; The research in Halle was supported by Deutsche Forschungsgemeinschaft (DFG), SFB 762 Functional Oxide Interfaces (Projects No. A9 and No. B1). K.C. benefited from support of the DFG (Project 600575). Discussions with M. Trassin, M. Ziese, H. M. Christen, E.-J. Guo, F. Grcondciel, M. Bibes, and H. N. Lee are gratefully acknowledged. N. G. and J. V. acknowledge funding under the GOA project “Solarpaint” of the University of Antwerp. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:156717 Serial 5255
Permanent link to this record