toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Morozov, V.; Deyneko, D.; Basoyich, O.; Khaikina, E.G.; Spassky, D.; Morozov, A.; Chernyshev, V.; Abakumov, A.; Hadermann, J. pdf  doi
openurl 
  Title Incommensurately modulated structures and luminescence properties of the AgxSm(2-x)/3WO4 (x=0.286, 0.2) scheelites as thermographic phosphors Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 14 Pages 4788-4798  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Ag+ for Sm3+ substitution in the scheelite-type AgxSm(2-x)/3 square(1-2x)/3WO4 tungstates has been investigated for its influence on the cation-vacancy ordering and luminescence properties. A solid state method was used to synthesize the x = 0.286 and x = 0.2 compounds, which exhibited (3 + 1)D incommensurately modulated structures in the transmission electron microscopy study. Their structures were refined using high resolution synchrotron powder X-ray diffraction data. Under near-ultraviolet light, both compounds show the characteristic emission lines for (4)G(5/2) -> H-6(J) (J = 5/2, 7/2, 9/2, and 11/2) transitions of the Sm3+ ions in the range 550-720 nm, with the J = 9/2 transition at the similar to 648 nm region being dominant for all photoluminescence spectra. The intensities of the (4)G(5/2) -> H-6(9/2) and (4)G(5/2) -> H-6(7/2) bands have different temperature dependencies. The emission intensity ratios (R) for these bands vary reproducibly with temperature, allowing the use of these materials as thermographic phosphors.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000440105500037 Publication Date 2018-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 2 Open Access Not_Open_Access  
  Notes ; This research was supported by FWO (Project G039211N), Flanders Research Foundation. The research was carried out within the state assignment of FASO of Russia (Themes No. 0339-2016-0007). V.M. thanks the Russian Foundation for Basic Research (Grant 18-03-00611) for financial support. E.G.K. and O.B. acknowledge financial support from the Russian Foundation for Basic Research (Grant 16-03-00510). D.D. thanks the Foundation of the Russian Federation President (Grant MK-3502.2018.5) for financial support. We are grateful to the ESRF for granting the beamtime. V.C. is grateful for the financial support of the Russian Ministry of Science and Education (Project No. RFMEFI61616X0069). We are grateful to the ESRF for the access to ID22 station (experiment MA-3313). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:153156 Serial 5107  
Permanent link to this record
 

 
Author Linssen, T.; Cassiers, K.; Cool, P.; Lebedev, O.; Whittaker, A.; Vansant, E.F. doi  openurl
  Title Physicochemical and structural characterization of mesoporous aluminosilicates synthesized from leached saponite with additional aluminum incorporation Type A1 Journal article
  Year 2003 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 15 Issue 25 Pages 4863-4873  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract (down) A thorough investigation was performed on the physical (mechanical, thermal, and hydrothermal stability) and chemical (ion exchange capacity and silanol number) characteristics of aluminosilicate FSMs, synthesized via a new successful short-time synthesis route using leached saponite and a low concentration of CTAB. Moreover, the influence of an additional Al incorporation, utilizing different aluminum sources, on the structure of the FSM derived from saponite is studied. A mesoporous aluminosilicate with a low Si/Al ratio of 12.8 is synthesized, and still has a very large surface area of 1130 m(2)/g and pore volume of 0.92 cm(3)/g. The aluminum-containing samples all have a high cation exchange capacity of around 1 mmol/9 while they still have a silanol number of about 0.9 OH/nm(2); both characteristics being interesting for high-yield postsynthesis modification reactions. Finally, a study is performed on the transformation of the aluminosilicates into their Bronsted acid form via the exchange with ammonium ions and a consecutive heat treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000187250800026 Publication Date 2003-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 11 Open Access  
  Notes Approved Most recent IF: 9.466; 2003 IF: 4.374  
  Call Number UA @ lucian @ c:irua:103265 Serial 2618  
Permanent link to this record
 

 
Author Li, Y.; Yang, X.-Y.; Tian, G.; Vantomme, A.; Yu, J.; Van Tendeloo, G.; Su, B.-L. doi  openurl
  Title Chemistry of trimethyl aluminum: a spontaneous route to thermally stable 3D crystalline macroporous alumina foams with a hierarchy of pore sizes Type A1 Journal article
  Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 22 Issue 10 Pages 3251-3258  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A simple and spontaneous one-pot self-formation procedure that is easy to scale up has been developed based on the chemistry of trimethylaluminum (TMA), leading to thermally stable macroporous crystalline alumina with a very unique and unprecedented three-dimensional (3D) hierarchical pore structure consisting of well-defined wormlike mesopores. TMA is the precursor of both product and porogene (viz, two working functions within the same molecule (2 in 1)). The materials obtained have been intensively characterized by powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), N2 adsorption−desorption, and mercury porosimetry. The open cagelike macrocavities are self-constructed by mesoporous nanorods (diameter of ca. 40−70 nm), which are themselves formed by a random assembly of fibrous nanoparticles 5−6 nm in size. Optical microscopy (OM) has been used in situ to follow the synthesis procedure, which led to the proposal of the formation mechanism. Methane molecules as porogens, which were instantaneously released because of the fast hydrolysis of the chemical precursor, were the key factor in producing these 3D structures with uniform co-continuous macropores that interconnected directly with the wormlike mesopores. The important characteristic of this procedure is the concurrent formation of a multiscaled porous network. The material exhibits great thermal stability. The hierarchically mesoporous−macroporous Al2O3 obtained is quite attractive for a myriad of applications, from catalysis to biomedicine. The present work illustrates that the one-pot self-formation concept, based on the chemistry of alkyl metals, is a versatile method to design industrially valuable hierarchically porous materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000277635000030 Publication Date 2010-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 38 Open Access  
  Notes Approved Most recent IF: 9.466; 2010 IF: 6.400  
  Call Number UA @ lucian @ c:irua:82760 Serial 356  
Permanent link to this record
 

 
Author Feng, H.L.; Kang, C.-J.; Manuel, P.; Orlandi, F.; Su, Y.; Chen, J.; Tsujimoto, Y.; Hadermann, J.; Kotliar, G.; Yamaura, K.; McCabe, E.E.; Greenblatt, M. pdf  url
doi  openurl
  Title Antiferromagnetic order breaks inversion symmetry in a metallic double perovskite, Pb₂NiOsO₆ Type A1 Journal article
  Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 33 Issue 11 Pages 4188-4195  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A polycrystalline sample of Pb2NiOsO6 was synthesized under high-pressure (6 GPa) and high-temperature (1575 K) conditions. Pb2NiOsO6 crystallizes in a monoclinic double perovskite structure with a centrosymmetric space group P2(1)/n at room temperature. Pb2NiOsO6 is metallic down to 2 K and shows a single antiferromagnetic (AFM) transition at T-N = 58 K. Pb2NiOsO6 is a new example of a metallic and AFM oxide with three-dimensional connectivity. Neutron powder diffraction and first-principles calculation studies indicate that both Ni and Os moments are ordered below T-N and the AFM magnetic order breaks inversion symmetry. This loss of inversion symmetry driven by AFM order is unusual in metallic systems, and the 3d-Sd double-perovskite oxides represent a new class of noncentrosymmetric AFM metallic oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000661521800032 Publication Date 2021-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:179679 Serial 6854  
Permanent link to this record
 

 
Author Minjauw, M.M.; Solano, E.; Sree, S.P.; Asapu, R.; Van Daele, M.; Ramachandran, R.K.; Heremans, G.; Verbruggen, S.W.; Lenaerts, S.; Martens, J.A.; Detavernier, C.; Dendooven, J. pdf  doi
openurl 
  Title Plasma-enhanced atomic layer deposition of silver using Ag(fod)(PEt3) and NH3-plasma Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 17 Pages 7114-7121  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) A plasma-enhanced atomic layer deposition (ALD) process using the Ag(fod)(PEt3) precursor [(triethylphosphine)(6,6,7,7,8,8,8-heptafluoro-2,2-dimethy1-3,5-octanedionate)silver(I)] in combination with NH3-plasma is reported. The steady growth rate of the reported process (0.24 +/- 0.03 nm/cycle) was found to be 6 times larger than that of the previously reported Ag ALD process based on the same precursor in combination with H-2-plasma (0.04 +/- 0.02 nm/cycle). The ALD characteristics of the H-2-plasma and NH3-plasma processes were verified. The deposited Ag films were polycrystalline face-centered cubic Ag for both processes. The film morphology was investigated by ex situ scanning electron microscopy and grazing-incidence small-angle X-ray scattering, and it was found that films grown with the NH3-plasma process exhibit a much higher particle areal density and smaller particle sizes on oxide substrates compared to those deposited using the H-2-plasma process. This control over morphology of the deposited Ag is important for applications in catalysis and plasmonics. While films grown with the H-2-plasma process had oxygen impurities (similar to 9 atom %) in the bulk, the main impurity for the NH3-plasma process was nitrogen (similar to 7 atom %). In situ Fourier transform infrared spectroscopy experiments suggest that these nitrogen impurities are derived from NH surface groups generated during the NH3-plasma, which interact with the precursor molecules during the precursor pulse. We propose that the reaction of these surface groups with the precursor leads to additional deposition of Ag atoms during the precursor pulse compared to the H-2-plasma process, which explains the enhanced growth rate of the NH3-plasma process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000410868600012 Publication Date 2017-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 9 Open Access  
  Notes ; M.M.M. and J.D. acknowledge the Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO Vlaanderen) for financial support through a personal research grant. We also acknowledge FWO Vlaanderen for providing project funding for this work. We are grateful to the ESRF staff for smoothly running the synchrotron and beamline facilities. We also thank Olivier Janssens for performing the SEM measurements and Stefaan Broekaert for mechanical assistance. J.A.M. acknowledges the Flemish Government for long-term structural funding (Methusalem). ; Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:146757 Serial 5983  
Permanent link to this record
 

 
Author Fedotov, S.S.; Khasanova, N.R.; Samarin, A.S.; Drozhzhin, O.A.; Batuk, D.; Karakulina, O.M.; Hadermann, J.; Abakumov, A.M.; Antipov, E.V. pdf  url
doi  openurl
  Title AVPO4F (A = Li, K): A 4 V Cathode Material for High-Power Rechargeable Batteries Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 411-415  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A novel potassium-based fluoride-phosphate, KVPO4F, with a KTiOPO4 (KTP) type structure is synthesized and characterized. About 85% of potassium has been electrochemically extracted on oxidation producing a cathode material with attractive performance for Li-ion batteries. The material operates at the electrode potential near 4V vs Li/Li+ exhibiting a sloping voltage profile, extremely low polarization, small volume change of about 2% and excellent rate capability, maintaining more than 75% of the initial capacity at 40C discharge rate without significant fading.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368949900002 Publication Date 2016-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 46 Open Access  
  Notes The authors kindly thank Dr. S. N. Putilin for XRD measurements, Dr. O. A. Shlyakhtin for the assistance in cryochemical synthesis, Ph.D. students A. A. Sadovnikov and E. A. Karpukhina for SEM imaging and FTIR spectra respectively. The work was partly supported by Russian Science Foundation (grant 16-19-00190), Skoltech Center for Electrochemical Energy Storage and Moscow State University Devel-opment Program up to 2020. J. Hadermann, O.M. Karakulina and A.M. Abakumov acknowledge support from FWO under grant G040116N. Approved Most recent IF: 9.466  
  Call Number c:irua:131583 Serial 4001  
Permanent link to this record
 

 
Author Lepoittevin, C.; Malo, S.; Nguyen, N.; Hebert, S.; Van Tendeloo, G.; Hervieu, M. doi  openurl
  Title A layered iron-rich 2234-type with a mixed valence of iron: the ferrimagnetic Tl-doped Fe2(Sr2-\varepsilonTl\varepsilon)Sr3Fe4O14.65 Type A1 Journal article
  Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 20 Issue 20 Pages 6468-6476  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A new Tl-doped strontium ferrite Fe2(Sr2-Tl)Sr3Fe4O14.65, with an original structure, has been synthesized and structurally characterized by powder X-ray diffraction and transmission electron microscopy. The TGA and Mssbauer studies evidence a mixed valence of iron. The structure exhibits a commensurate modulation, with a F-type subcell a ≈ b ≈ 5.4 Å (≈ ap√2), c ≈ 42 Å with a modulation vector q = αa* with α = 0.4. The supercell parameters have been refined as a= 27.1101(8) Å, b= 5.5187(2) Å and c= 42.0513(9) Å, in the space group Fmmm. The electron diffraction and electron microscopy data of this novel ferrite show that it can be described as a FeTl-2234-type structure corresponding to the intergrowth of a quadruple perovskite slice [(SrFeO2.8)4], with a complex rock salt related slice [Fe2(Sr2-Tl)O3.4]∞, built up of one double iron layer [Fe2O2.4] sandwiched between two [SrO] layers. The HRTEM images show that the oxygen atoms and vacancies are randomly distributed in the perovskite layers while the HAADF STEM images evidence the absence of Tl segregation in the matrix. Fe2(Sr2-Tl)Sr3Fe4O14.65 exhibits a very large value of χ (11emu/mol) at 5 K, which remains large at 400 K; the M(H) loop presents a shape characteristic of ferrimagnetism, with a large coercive field of 0.3 T. The value of magnetization saturates at 400 K at 0.68 μB/Fe. At 10 K, the value of magnetization reaches a maximum of 2 μB/Fe. The resistivity presents a semiconducting-like behavior, with ρ 800 Ω·cm at 300 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000260254400030 Publication Date 2008-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 8 Open Access  
  Notes Approved Most recent IF: 9.466; 2008 IF: 5.046  
  Call Number UA @ lucian @ c:irua:76671 Serial 1804  
Permanent link to this record
 

 
Author Gillie, L.J.; Hadermann, J.; Hervieu, M.; Maignan, A.; Martin, C. doi  openurl
  Title Oxygen vacancy ordering in the double-layered Ruddlesden-Popper cobaltite Sm2BaCo2O7-\delta Type A1 Journal article
  Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 20 Issue 19 Pages 6231-6237  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A new oxygen-deficient Ruddlesden−Popper (RP) cobaltite Sm2BaCo2O7−δ (δ ≈ 1.0) has been synthesized and the crystal structure elucidated by Rietveld analysis of X-ray powder diffraction (XRD) data and transmission electron microscopy (TEM). The phase crystallizes in a primitive orthorhombic unit cell, with lattice parameters a = 5.4371(4) Å; b = 5.4405(4) Å and c = 19.8629(6) Å, and space group Pnnm. Contrary to other oxygen-deficient cobalt RP phases, the oxygen vacancies are located in the equatorial positions of the [CoO] layers to give an intralayer structure similar to Sr2Mn2O5, which is not usually observed for cobalt-containing materials. The Sm3+ and Ba2+ cations show a strong preference for distinct sites, with the majority of the larger Ba2+ cations situated in the perovskite block layers and Sm3+ cations predominantly in the rock salt layers. Magnetic susceptibility data demonstrate the strong antiferromagnetic (AFM) character of Sm2BaCo2O7−δ.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000259871500038 Publication Date 2008-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 7 Open Access  
  Notes Approved Most recent IF: 9.466; 2008 IF: 5.046  
  Call Number UA @ lucian @ c:irua:72946 Serial 2548  
Permanent link to this record
 

 
Author Kerkhofs, S.; Willhammar, T.; Van Den Noortgate, H.; Kirschhock, C.E.A.; Breynaert, E.; Van Tendeloo, G.; Bals, S.; Martens, J.A. pdf  url
doi  openurl
  Title Self-Assembly of Pluronic F127—Silica Spherical Core–Shell Nanoparticles in Cubic Close-Packed Structures Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 5161-5169  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A new ordered mesoporous silica material (COK-19) with cubic symmetry is synthesized by silicate polycondensation in a citric acid/citrate buffered micellar solution of Pluronic F127 triblock copolymer near neutral pH. SAXS, nitrogen adsorption, TEM, and electron tomography reveal the final material has a cubic close packed symmetry (Fm3̅m) with isolated spherical mesopores interconnected through micropores. Heating of the synthesis medium from room temperature to 70 °C results in a mesopore size increase from 7.0 to 11.2 nm. Stepwise addition of the silicate source allows isolation of a sequence of intermediates that upon characterization with small-angle X-ray scattering uncovers the formation process via formation and aggregation of individual silica-covered Pluronic micelles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000359499100003 Publication Date 2015-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 39 Open Access OpenAccess  
  Notes J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem, METH/08/04). The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI, P7/05 FS2). G.V.T., S.B. and T.W. acknowledge financial support from European Research Council (ERC Starting Grant no. 335078-COLOURATOMS). E.B. acknowledges financial support the Flemish FWO for a postdoctoral fellowship (1265013N). The authors gratefully thank Kristof Houthoofd for performing the NMR experiments.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:127758 Serial 3977  
Permanent link to this record
 

 
Author Caignaert, V.; Abakumov, A.M.; Pelloquin, D.; Pralong, V.; Maignan, A.; Van Tendeloo, G.; Raveau, B. pdf  doi
openurl 
  Title A new mixed-valence ferrite with a cubic structure, YBaFe4O7: spin-glass-like behavior Type A1 Journal article
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 21 Issue 6 Pages 1116-1122  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A new mixed-valence ferrite, YBaFe4O7, has been synthesized. Its unique cubic structure, with a = 8.9595(2) Å, is closely related to that of the hexagonal 114 oxides YBaCo4O7 and CaBaFe4O7. It consists of corner-sharing FeO4 tetrahedra, forming triangular and kagome layers parallel to (111)C. In fact, the YBaFe4O7 and CaBaFe4O7 structures can be described as two different ccc and chch close packings of [BaO3]∞ and [O4]∞ layers, respectively, whose tetrahedral cavities are occupied by Fe2+/Fe3+ cations. The local structure of YBaFe4O7 is characterized by a large amount of stacking faults originating from the presence of hexagonal layers in the ccc cubic close-packed YBaFe4O7 structure. In this way, they belong to the large family of spinels and hexagonal ferrites studied for their magnetic properties. Differently from all the ferrites and especially from CaBaFe4O7, which are ferrimagnetic, YBaFe4O7 is an insulating spin glass with Tg = 50 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000264310900019 Publication Date 2009-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 39 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2009 IF: 5.368  
  Call Number UA @ lucian @ c:irua:76432 Serial 2325  
Permanent link to this record
 

 
Author Savina, A.A.; Morozov, V.A.; Buzlukov, A.L.; Arapova, I.Y.; Stefanovich, S.Y.; Baklanova, Y.V.; Denisova, T.A.; Medvedeva, N.I.; Bardet, M.; Hadermann, J.; Lazoryak, B.I.; Khaikina, E.G. url  doi
openurl 
  Title New solid electrolyte Na9Al(MoO4)6 : structure and Na+ ion conductivity Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 20 Pages 8901-8913  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) <script type='text/javascript'>document.write(unpmarked('Solid electrolytes are important materials with a wide range of technological applications. This work reports the crystal structure and electrical properties of a new solid electrolyte Na9Al(MoO4)(6). The monoclinic Na9Al(MoO4)(6) consists of isolated polyhedral, [Al(MoO4)(6)](9-) clusters composed of a central AlO6 octahedron sharing vertices with six MoO4 tetrahedra to form a three-dimensional framework. The AlO6 octahedron also shares edges with one NalO(6) octahedron and two Na2O(6) octahedra. Na3-Na5 atoms are located in the framework cavities. The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)(3). High-temperature conductivity measurements revealed that the conductivity (sigma) of Na9Al(MoO4)(6) at 803 K equals 1.63 X 10(-2) S cm(-1). The temperature behavior of the Na-23 and Al-27 nuclear magnetic resonance spectra and the spin-lattice relaxation rates of the Na-23 nuclei indicate the presence of fast Na+ ion diffusion in the studied compound. At T\u003C490 K, diffusion occurs by means of Na+ ion jumps exclusively through the sublattice of Na3-Na5 positions, whereas Na1 and Na2 become involved in the diffusion processes (through chemical exchange with the Na3-Na5 sublattice) only at higher temperatures.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000413884900037 Publication Date 2017-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 13 Open Access OpenAccess  
  Notes ; The research was performed within the state assignment of FASO of Russia (Themes 01201463330, A16-116122810214-9, and 0339-2016-0007), supported in part by the Russian Foundation for Basic Research (Projects 16-03-00510, 16-03-00164, and 17-03-00333). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:147432 Serial 4886  
Permanent link to this record
 

 
Author Pimenta, V.; Sathiya, M.; Batuk, D.; Abakumov, A.M.; Giaume, D.; Cassaignon, S.; Larcher, D.; Tarascon, J.-M. pdf  doi
openurl 
  Title Synthesis of Li-Rich NMC : a comprehensive study Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 23 Pages 9923-9936  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) <script type='text/javascript'>document.write(unpmarked('Li-rich NMC are considered nowadays as one of the most promising candidates for high energy density cathodes. One significant challenge is nested in adjusting their synthesis conditions to reach optimum electrochemical performance, but no consensus has been reached yet on the ideal synthesis protocol. Herein, we revisited the elaboration of Li-rich NMC electrodes by focusing on the science involved through each synthesis steps using carbonate Ni0.1625Mn0.675Co0.1625CO3 precursor coprecipitation combined with solid state synthesis. We demonstrated the effect of precursors concentration on the kinetics of the precipitation reaction and provided clues to obtain spherically agglomerated NMC carbonates of different sizes. Moreover, we highlighted the strong impact of the Li2CO3/NMC carbonate ratio on the morphology and particles size of Li-rich NMC and subsequently on their electrochemical performance. Ratio of 1.35 was found to reproducibly give the best performance with namely a first discharge capacity of 269 mAh g(-1) and capacity retention of 89.6% after 100 cycles. We hope that our results, which reveal how particle size, morphology, and phase composition affect the materials electrochemical performance, will help in reconciling literature data while providing valuable fundamental information for up scaling approaches.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000418206600010 Publication Date 2017-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 23 Open Access Not_Open_Access  
  Notes ; The authors acknowledge the French Research Network on Electrochemical Energy Storage (RS2E). V.P and J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. The authors are thankful to Dr. G. Rousse for the help on Rietveld refinements. ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:148530 Serial 4899  
Permanent link to this record
 

 
Author Arias-Duque, C.; Bladt, E.; Munoz, M.A.; Hernandez-Garrido, J.C.; Cauqui, M.A.; Rodriguez-Izquierdo, J.M.; Blanco, G.; Bals, S.; Calvino, J.J.; Perez-Omil, J.A.; Yeste, M.P. url  doi
openurl 
  Title Improving the redox response stability of ceria-zirconia nanocatalysts under harsh temperature conditions Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 29 Pages 9340-9350  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) <script type='text/javascript'>document.write(unpmarked('By depositing ceria on the surface of yttrium stabilized zirconia (YSZ) nanocrystals and further activation under high-temperature reducing conditions, a 13% mol. CeO2/YSZ catalyst structured as subnanometer thick, pyrochlore-type, ceria-zirconia islands has been prepared. This nanostructured catalyst depicts not only high oxygen storage capacity (OSC) values but, more importantly, an outstandingly stable redox response upon oxidation and reduction treatments at very high temperatures, above 1000 degrees C. This behavior largely improves that observed on conventional ceria-zirconia solid solutions, not only of the same composition but also of those with much higher molar cerium contents. Advanced scanning transmission electron microscopy (STEM-XEDS) studies have revealed as key not only to detect the actual state of the lanthanide in this novel nanocatalyst but also to rationalize its unusual resistance to redox deactivation at very high temperatures. In particular, high-resolution X-ray dispersive energy studies have revealed the presence of unique bilayer ceria islands on top of the surface of YSZ nanocrystals, which remain at surface positions upon oxidation and reduction treatments up to 1000 degrees C. Diffusion of ceria into the bulk of these crystallites upon oxidation at 1100 degrees C irreversibly deteriorates both the reducibility and OSC of this nanostructured catalyst.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000415911600047 Publication Date 2017-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 20 Open Access OpenAccess  
  Notes ; Financial support from MINECO/FEDER (Project ref: MAT2013-40823-R), Junta de Andalucia (FQM334 and FQM110), and EU FP7 (ESTEEM2) are acknowledged. E.B. and S.B. acknowledges financial support from European Research Council (ERC- Starting Grant #33S078-COLOURA-TOM). J.C.H.-G. acknowledges support from the Ramon y Cajal Fellowships Program of MINECO (RYC-2012-10004). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:147706UA @ admin @ c:irua:147706 Serial 4880  
Permanent link to this record
 

 
Author Verchenko, V.Y.; Wei, Z.; Tsirlin, A.A.; Callaert, C.; Jesche, A.; Hadermann, J.; Dikarev, E.V.; Shevelkov, A.V. pdf  url
doi  openurl
  Title Crystal growth of the Nowotny chimney ladder phase Fe2Ge3 : exploring new Fe-based narrow-gap semiconductor with promising thermoelectric performance Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 23 Pages 9954-9963  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) <script type='text/javascript'>document.write(unpmarked('A new synthetic approach based on chemical transport reactions has been introduced to obtain the Nowotny chimney ladder phase Fe2Ge3 in the form of single crystals and polycrystalline powders. The single crystals possess the stoichiometric composition and the commensurate chimney ladder structure of the Ru2Sn3 type in contrast to the polycrystalline samples that are characterized by a complex microstructure. In compliance with the 18-n electron counting rule formulated for T-E intermetallics, electronic structure calculations reveal a narrow-gap semiconducting behavior of Fe2Ge3 favorable for high thermoelectric performance. Measurements of transport and thermoelectric properties performed on the polycrystalline samples confirm the formation of a narrow band gap of similar to 30 meV and reveal high absolute values of the Seebeck coefficient at elevated temperatures. Low glass-like thermal conductivity is observed in a wide temperature range that might be caused by the underlying complex microstructure.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000418206600013 Publication Date 2017-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 11 Open Access OpenAccess  
  Notes ; The authors thank Dr. Sergey Kazakov and Oleg Tyablikov for their help with the PXRD experiments. V.Y.V. appreciates the help of Dr. Sergey Dorofeev in provision and handling of the Mo(CO)<INF>6</INF> reagent. The work is supported by the Russian Science Foundation, Grant No. 17-13-01033. V.Y.V. appreciates the support from the European Regional Development Fund, Project No. TK134. A.A.T. acknowledges financial support by the Federal Ministry for Education and Research under the Sofia Kovalevskaya Award of the Alexander von Humboldt Foundation. E.V.D. thanks the National Science Foundation, Grant No. CHE-1152441. C.C. acknowledges the support from the University of Antwerp through the BOF Grant No. 31445. ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:148531 Serial 4869  
Permanent link to this record
 

 
Author Lisiecki, I.; Turner, S.; Bals, S.; Pileni, M.P.; Van Tendeloo, G. pdf  doi
openurl 
  Title The remarkable and intriguing resistance to oxidation of 2D ordered hcp Co nanocrystals: a new intrinsic property Type A1 Journal article
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 21 Issue 12 Pages 2335-2338  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000267049200001 Publication Date 2009-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 28 Open Access  
  Notes Iap-Vi; Esteem 026019 Approved Most recent IF: 9.466; 2009 IF: 5.368  
  Call Number UA @ lucian @ c:irua:77887 Serial 2867  
Permanent link to this record
 

 
Author Dendooven, J.; Goris, B.; Devloo-Casier, K.; Levrau, E.; Biermans, E.; Baklanov, M.R.; Ludwig, K.F.; van der Voort, P.; Bals, S.; Detavernier, C. pdf  doi
openurl 
  Title Tuning the pore size of ink-bottle mesopores by atomic layer deposition Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 11 Pages 1992-1994  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000305092600002 Publication Date 2012-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 52 Open Access  
  Notes Fwo Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:99078 Serial 3760  
Permanent link to this record
 

 
Author Karakulina, O.M.; Khasanova, N.R.; Drozhzhin, O.A.; Tsirlin, A.A.; Hadermann, J.; Antipov, E.V.; Abakumov, A.M. pdf  url
doi  openurl
  Title Antisite Disorder and Bond Valence Compensation in Li2FePO4F Cathode for Li-Ion Batteries Type A1 Journal article
  Year 2016 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 7578-7581  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387518500004 Publication Date 2016-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 10 Open Access  
  Notes Russian Science Foundation, 16-19-00190 ; Fonds Wetenschappelijk Onderzoek, G040116N ; Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @ c:irua:139170 c:irua:138599 Serial 4320  
Permanent link to this record
 

 
Author Corbel, G.; Attfield, J.P.; Hadermann, J.; Abakumov, A.M.; Alekseeva, A.M.; Rozova, M.G.; Antipov, E.V. pdf  doi
openurl 
  Title Anion rearrangements in fluorinated Nd2CuO3.5 Type A1 Journal article
  Year 2003 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 15 Issue Pages 189-195  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000180368000029 Publication Date 2003-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 9 Open Access  
  Notes Approved Most recent IF: 9.466; 2003 IF: 4.374  
  Call Number UA @ lucian @ c:irua:40348 Serial 123  
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Van Rompaey, S.; Mankevich, A.S.; Korsakov, I.E. doi  openurl
  Title Comment on ALaMn2O6-y (A = K, Rb): novel ferromagnetic manganites exhibiting negative giant magnetoresistance Type Editorial
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 21 Issue 9 Pages 2000-2001  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000265781000036 Publication Date 2009-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 4 Open Access  
  Notes Approved Most recent IF: 9.466; 2009 IF: 5.368  
  Call Number UA @ lucian @ c:irua:77055 Serial 411  
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Gillie, L.J.; Martin, C.; Hervieu, M. pdf  doi
openurl 
  Title Coupled cation and charge ordering in the CaMn306 tunnel structure Type A1 Journal article
  Year 2006 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 18 Issue 23 Pages 5530-5536  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000241808600021 Publication Date 2006-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 33 Open Access  
  Notes Iap V-1 Approved Most recent IF: 9.466; 2006 IF: 5.104  
  Call Number UA @ lucian @ c:irua:61374 Serial 534  
Permanent link to this record
 

 
Author Bune, R.O.; Lobanov, M.V.; Popov, G.; Greenblatt, M.; Botez, C.E.; Stephens, P.W.; Croft, M.; Hadermann, J.; Van Tendeloo, G. doi  openurl
  Title Crystal structure and properties of Ru-stoichiometric LaSrMnRuO6 Type A1 Journal article
  Year 2006 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 18 Issue 10 Pages 2611-2617  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000237593400022 Publication Date 2006-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 17 Open Access  
  Notes Approved Most recent IF: 9.466; 2006 IF: 5.104  
  Call Number UA @ lucian @ c:irua:59441 Serial 563  
Permanent link to this record
 

 
Author Panin, R.V.; Shpanchenko, R.V.; Mironov, A.V.; Velikodny, Y.A.; Antipov, E.V.; Hadermann, J.; Tarnopolsky, V.A.; Yaroslavtsev, A.B.; Kaul, E.E.; Geibel, C. pdf  doi
openurl 
  Title Crystal structure, polymorphism, and properties of the new vanadyl phosphate Na4VO(PO4)2 Type A1 Journal article
  Year 2004 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 16 Issue Pages 1048-1055  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000220304100014 Publication Date 2004-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 11 Open Access  
  Notes Approved Most recent IF: 9.466; 2004 IF: 4.103  
  Call Number UA @ lucian @ c:irua:43873 Serial 577  
Permanent link to this record
 

 
Author Créon, N.; Pérez, O.; Hadermann, J.; Klein, Y.; Hébert, S.; Hervieu, M.; Raveau, B. doi  openurl
  Title Double modulation and microstructure of the thermoelectric misfit compound \left[Ca2-yLnyCu0.7+yCo1.3-yO4\right]\left[CoO2\right]b_{1/b2} (Ln = Pr, Y and 0\leq y\leq1/3) Type A1 Journal article
  Year 2006 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 18 Issue 22 Pages 5355-5362  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000241492900033 Publication Date 2006-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access  
  Notes Approved Most recent IF: 9.466; 2006 IF: 5.104  
  Call Number UA @ lucian @ c:irua:61846 Serial 755  
Permanent link to this record
 

 
Author Burriel, M.; Garcia, G.; Rossell, M.D.; Figueras, A.; Van Tendeloo, G.; Santiso, J. pdf  doi
openurl 
  Title Enhanced high-temperature electronic transport properties in nanostructured epitaxial thin films of the Lan+1NinO3n+1 Ruddlesden-Popper series (n = 1, 2, 3, ∞) Type A1 Journal article
  Year 2007 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 19 Issue 16 Pages 4056-4062  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000248439400029 Publication Date 2007-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 22 Open Access  
  Notes Approved Most recent IF: 9.466; 2007 IF: 4.883  
  Call Number UA @ lucian @ c:irua:65937 Serial 1050  
Permanent link to this record
 

 
Author Damm, H.; Adriaensens, P.; De Dobbelaere, C.; Capon, B.; Elen, K.; Drijkoningen, J.; Conings, B.; Manca, J.V.; D’Haen, J.; Detavernier, C.; Magusin, P.C.M.M.; Hadermann, J.; Hardy, A.; Van Bael, M.K.; doi  openurl
  Title Factors Influencing the Conductivity of Aqueous Sol(ution)-Gel-Processed Al-Doped ZnO Films Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 20 Pages 5839-5851  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343950300004 Publication Date 2014-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 24 Open Access  
  Notes Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:121211 Serial 1170  
Permanent link to this record
 

 
Author Lebedev, O.I.; Millange, F.; Serre, C.; Van Tendeloo, G.; Férey, G. pdf  doi
openurl 
  Title First direct imaging of giant pores of the metal-organic framework MIL-101 Type A1 Journal article
  Year 2005 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 17 Issue 26 Pages 6525-6527  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000234187300007 Publication Date 2005-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 191 Open Access  
  Notes Approved Most recent IF: 9.466; 2005 IF: 4.818  
  Call Number UA @ lucian @ c:irua:56404 Serial 1197  
Permanent link to this record
 

 
Author Zaikina, J.V.; Kovnir, K.A.; Sobolev, A.N.; Presniakov, I.A.; Kytin, V.G.; Kulbachinskii, V.A.; Olenev, A.V.; Lebedev, O.I.; Van Tendeloo, G.; Dikarev, E.V.; Shevelkov, A.V. pdf  doi
openurl 
  Title Highly disordered crystal structure and thermoelectric properties of Sn3P4 Type A1 Journal article
  Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 20 Issue 7 Pages 2476-2483  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000254605000011 Publication Date 2008-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 33 Open Access  
  Notes Fwo Approved Most recent IF: 9.466; 2008 IF: 5.046  
  Call Number UA @ lucian @ c:irua:69999 Serial 1470  
Permanent link to this record
 

 
Author Colomer, J.-F.; Marega, R.; Traboulsi, H.; Meneghetti, M.; Van Tendeloo, G.; Bonifazi, D. doi  openurl
  Title Microwave-assisted bromination of double-walled carbon nanotubes Type A1 Journal article
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 21 Issue 20 Pages 4747-4749  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000270807800001 Publication Date 2009-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 46 Open Access  
  Notes Approved Most recent IF: 9.466; 2009 IF: 5.368  
  Call Number UA @ lucian @ c:irua:94504 Serial 2080  
Permanent link to this record
 

 
Author Pelloquin, D.; Hadermann, J.; Giot, M.; Caignaert, V.; Michel, C.; Hervieu, M.; Raveau, B. pdf  doi
openurl 
  Title Novel, oxygen-deficient n=3 RP-member Sr3NdFe3O9-\delta and its topotactic derivatives Type A1 Journal article
  Year 2004 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 16 Issue Pages 1715-1724  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000221345000019 Publication Date 2004-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 24 Open Access  
  Notes Approved Most recent IF: 9.466; 2004 IF: 4.103  
  Call Number UA @ lucian @ c:irua:47318 Serial 2381  
Permanent link to this record
 

 
Author Abakumov, A.M.; Erni, R.; Tsirlin, A.A. doi  openurl
  Title Reply to Comment on “Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3-xTiO3 perovskites” Type Editorial
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 2 Pages 1288  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000330543600051 Publication Date 2014-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 1 Open Access  
  Notes Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:115730 Serial 2874  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: