|   | 
Details
   web
Records
Author Çakir, D.; Sevik, C.; Gulseren, O.; Peeters, F.M.
Title Mo2C as a high capacity anode material: a first-principles study Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 4 Issue 16 Pages 6029-6035
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) The adsorption and diffusion of Li, Na, K and Ca atoms on a Mo2C monolayer are systematically investigated by using first principles methods. We found that the considered metal atoms are strongly bound to the Mo2C monolayer. However, the adsorption energies of these alkali and earth alkali elements decrease as the coverage increases due to the enhanced repulsion between the metal ions. We predict a significant charge transfer from the ad-atoms to the Mo2C monolayer, which indicates clearly the cationic state of the metal atoms. The metallic character of both pristine and doped Mo2C ensures a good electronic conduction that is essential for an optimal anode material. Low migration energy barriers are predicted as small as 43 meV for Li, 19 meV for Na and 15 meV for K, which result in the very fast diffusion of these atoms on Mo2C. For Mo2C, we found a storage capacity larger than 400 mA h g(-1) by the inclusion of multilayer adsorption. Mo2C expands slightly upon deposition of Li and Na even at high concentrations, which ensures the good cyclic stability of the atomic layer. The calculated average voltage of 0.68 V for Li and 0.30 V for Na ions makes Mo2C attractive for low charging voltage applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000374790700033 Publication Date 2016-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 202 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C. S. acknowledges the support from Turkish Academy of Sciences (TUBA-GEBIP). C. S acknowledges the support from Anadolu University (Grant No. 1407F335). We acknowledge the support from TUBITAK, The Scientific and Technological Research Council of Turkey (Grant No. 115F024). ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:144763 Serial 4669
Permanent link to this record
 

 
Author Demiroglu, I.; Peeters, F.M.; Gulseren, O.; Cakir, D.; Sevik, C.
Title Alkali metal intercalation in MXene/graphene heterostructures : a new platform for ion battery applications Type A1 Journal article
Year 2019 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 10 Issue 4 Pages 727-734
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) The adsorption and diffusion of Na, K, and Ca atoms on MXene/graphene heterostructures of MXene systems Sc2C(OH)(2), Ti2CO2, and V2CO2 are systematically investigated by using first-principles methods. We found that alkali metal intercalation is energetically favorable and thermally stable for Ti2CO2/graphene and V2CO2/graphene heterostructures but not for Sc2C(OH)(2). Diffusion kinetics calculations showed the advantage of MXene/graphene heterostructures over sole MXene systems as the energy barriers are halved for the considered alkali metals. Low energy barriers are found for Na and K ions, which are promising for fast charge/discharge rates. Calculated voltage profiles reveal that estimated high capacities can be fully achieved for Na ion in V2CO2/graphene and Ti2CO2/graphene heterostructures. Our results indicate that Ti2CO2/graphene and V2CO2/graphene electrode materials are very promising for Na ion battery applications. The former could be exploited for low voltage applications while the latter will be more appropriate for higher voltages.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459948800005 Publication Date 2019-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.353 Times cited 67 Open Access
Notes ; We acknowledge the support from the TUBITAK (116F080) and the BAGEP Award of the Science Academy. Part of this work was supported by the FLAG -ERA project TRANS-2D-TMD. A part of this work was supported by University of North Dakota Early Career Award (Grant number: 20622-4000-02624). We also acknowledge financial support from ND EPSCoR through NSF grant OIA-1355466. Computational resources were provided by the High Performance and Grid Computing Center (TRGrid e-Infrastructure) of TUBITAK ULAKBIM, the National Center for High Performance Computing (UHeM) of Istanbul Technical University, and Computational Research Center (HPC Linux cluster) at the University of North Dakota. This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, and supported by the U.S. Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357. ; Approved Most recent IF: 9.353
Call Number UA @ admin @ c:irua:158618 Serial 5194
Permanent link to this record
 

 
Author Sahin, H.; Peeters, F.M.
Title Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 8 Pages 085423-85429
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale. DOI: 10.1103/PhysRevB.87.085423
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315146500008 Publication Date 2013-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 281 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107663 Serial 62
Permanent link to this record
 

 
Author Seyed-Talebi, S.M.; Beheshtian, J.; Neek-Amal, M.
Title Doping effect on the adsorption of NH3 molecule onto graphene quantum dot : from the physisorption to the chemisorption Type A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 114 Issue 12 Pages 124307-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The adsorption of ammonia molecule onto a graphene hexagonal flake, aluminum (Al) and boron (B) doped graphene flakes (graphene quantum dots, GQDs) are investigated using density functional theory. We found that NH3 molecule is absorbed to the hollow site through the physisorption mechanism without altering the electronic properties of GQD. However, the adsorption energy of NH3 molecule onto the Al- and B-doped GQDs increases with respect GQD resulting chemisorption. The adsorption of NH3 onto the Al-doped and B-doped GQDs makes graphene locally buckled, i.e., B-doped and Al-doped GQDs are not planar. The adsorption mechanism onto a GQD is different than that of graphene. This study reveals important features of the edge passivation and doping effects of the adsorption mechanism of external molecules onto the graphene quantum dots. (C) 2013 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000325391100057 Publication Date 2013-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 10 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF Fellowship/299855 for M.-N.A. ; Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number UA @ lucian @ c:irua:112201 Serial 750
Permanent link to this record
 

 
Author Huygh, S.; Neyts, E.C.
Title Adsorption of C and CHx radicals on anatase (001) and the influence of oxygen vacancies Type A1 Journal article
Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 119 Issue 119 Pages 4908-4921
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The adsorption of C and CHx radicals on anatase (001) was studied using DFT within the generalized gradient approximation using the Perde-Burke-Ernzerhof (PBE) functional. We have studied the influence of oxygen vacancies in and at the surface on the adsorption properties of the radicals. For the oxygen vacancies in anatase (001), the most stable vacancy is located at the surface. For this vacancy, the maximal adsorption strength of C and CH decreases compared to the adsorption on the stoichiometric surface, but it increases for CH2 and CH3. If an oxygen vacancy is present in the first subsurface layer, the maximal adsorption strength increases for C, CH, CH2, and CH3. When the vacancy is present in the next subsurface layer, we find that only the CH3 adsorption is enhanced, while the maximal adsorption energies for the other radical species decrease. Not only does the precise location of the oxygen vacancy determine the maximal adsorption interaction, it also influences the adsorption strengths of the radicals at different surface configurations. This determines the probability of finding a certain adsorption configuration at the surface, which in turn influences the possible surface reactions. We find that C preferentially adsorbs far away from the oxygen vacancy, while CH2 and CH3 adsorb preferentially at the oxygen vacancy site. A fraction of CH partially adsorbs at the oxygen vacancy, and another fraction adsorbs further away from the vacancy.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000350840700052 Publication Date 2015-02-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 13 Open Access
Notes Approved Most recent IF: 4.536; 2015 IF: 4.772
Call Number c:irua:124909 Serial 63
Permanent link to this record
 

 
Author Tit, N.; Al Ezzi, M.M.; Abdullah, H.M.; Yusupov, M.; Kouser, S.; Bahlouli, H.; Yamani, Z.H.
Title Detection of CO2 using CNT-based sensors: Role of Fe catalyst on sensitivity and selectivity Type A1 Journal article
Year 2017 Publication Materials chemistry and physics Abbreviated Journal Mater Chem Phys
Volume 186 Issue 186 Pages 353-364
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The adsorption of CO2 on surfaces of graphene and carbon nanotubes (CNTs), decorated with Fe atoms, are investigated using the self-consistent-charge density-functional tight-binding (SCC-DFTB) method, neglecting the heat effects. Fe ad-atoms are more stable when they are dispersed on hollow sites. They introduce a large density of states at the Fermi level (N-F); where keeping such density low would help in gas sensing. Furthermore, the Fe ad-atom can weaken the C=O double bonds of the chemisorbed CO2 molecule, paving the way for oxygen atoms to drain more charges from Fe. Consequently, chemisorption of CO2 molecules reduces both N-F and the conductance while it enhances the sensitivity with the increasing gas dose. Conducting armchair CNTs (ac-CNTs) have higher sensitivity than graphene and semiconducting zigzag CNTs (zz-CNT5). Comparative study of sensitivity of ac-CNT-Fe composite towards various gases (e.g., O-2, N-2, H-2, H2O, CO and CO2) has shown high sensitivity and selectivity towards CO, CO2 and H2O gases. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000390621200044 Publication Date 2016-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0254-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.084 Times cited 17 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.084
Call Number UA @ lucian @ c:irua:140333 Serial 4465
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Ziabari, A.A.; Khatibani, A.B.; Feghhi, S.A.H.; Ghergherehchi, M.; Gogova, D.
Title Adsorption of habitat and industry-relevant molecules on the MoSi₂N₄ monolayer Type A1 Journal article
Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci
Volume 564 Issue Pages 150326
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The adsorption of various environmental gas molecules, including H-2, N-2, CO, CO2, O-2, NO, NO2, SO2 H2O, H2S, NH3 and CH4, on the surface of the recently synthesized two dimensional MoSi2N4 (MSN) monolayer has been investigated by means of spin-polarized first-principles calculations. The most stable adsorption configuration, adsorption energy, and charge transfer have been computed. Due to the weak interaction between molecules studied with the MSN monolayer surface, the adsorption energy is small and does not yield any significant distortion of the MSN lattice, i.e., the interaction between the molecules and MSN monolayer surface is physisorption. We find that all molecules are physisorbed on the MSM surface with small charge transfer, acting as either charge acceptors or donors. The MSN monolayer is a semiconductor with an indirect band gap of 1.79 eV. Our theoretical estimations reveal that upon adsorption of H-2, N-2, CO, CO2, NO, H2O, H2S, NH3 and CH4 molecules, the semiconducting character of MSN monolayer is preserved and the band gap value is decreased to similar to 1.5 eV. However, the electronic properties of the MSN monolayer can be significantly altered by adsorption of O-2, NO and SO2, and a spin polarization with magnetic moments of 2, 1, 2 mu(B), respectively, can be introduced. Furthermore, we demonstrate that the band gap and the magnetic moment of adsorbed MSN monolayer can be significantly modulated by the concentration of NO and SO2 molecules. As the concentration of NO2 molecule increases, the magnetic moment increase from 1 mu(B) to 2 and 3 mu(B). In the case of the SO2 molecule with increasing of concentration, the band gap decreases from 1.2 eV to 1.1 and 0.9 eV. Obviously, our theoretical studies indicate that MSN monolayer-based sensor has a high application potential for O-2, NO, NO2 and SO2 detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000675534500002 Publication Date 2021-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.387
Call Number UA @ admin @ c:irua:180421 Serial 6970
Permanent link to this record
 

 
Author Somers, W.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C.
Title Plasma species interacting with nickel surfaces : toward an atomic scale understanding of plasma-catalysis Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue 39 Pages 20958-20965
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The adsorption probability and reaction behavior of CHx plasma species on various nickel catalyst surfaces is investigated by means of reactive molecular dynamics (MD) simulations using the ReaxFF potential. Such catalysts are used in the reforming of hydrocarbons and in the growth of carbon nanotubes, and further insight in the underlying mechanisms of these processes is needed to increase their applicability. Single and consecutive impacts of CHx radicals (x={1,2,3}) were performed on four different Ni surfaces, at a temperature of 400 K. The adsorption probability is shown to be related to the number of free electrons, i.e. a higher number leads to more adsorptions, and the steric hindrance caused by the hydrogen atoms bonded to the impacting CHx species. Furthermore, some of the CH bonds break after adsorption, which generally leads to diffusion of the hydrogen atom over the surface. Additionally, these adsorbed H-atoms can be used in reactions to form new molecules, such as CH4 and C2Hx, although this is dependent on the precise morphology of the surface. New molecules are also formed by subtraction of H-atoms from adsorbed radicals, leading to occasional formation of H2 and C2Hx molecules.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000309375700040 Publication Date 2012-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 37 Open Access
Notes Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:101522 Serial 2640
Permanent link to this record
 

 
Author Huygh, S.; Bogaerts, A.; Neyts, E.C.
Title How Oxygen Vacancies Activate CO2 Dissociation on TiO2 Anatase (001) Type A1 Journal article
Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 120 Issue 120 Pages 21659-21669
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The adsorption, dissociation, and diffusion of CO2 on the anatase (001) surface was studied using DFT by means of the generalized gradient approximation using the Perdew−Burcke−Ernzerhof (PBE)-functional and applying corrections for long-range dispersion interactions. Different stable adsorption configurations were identified for the fully oxidized surface. The most stable adsorption configuration is the monodentated carbonate-like structure. Small energy barriers were identified for the conversion of a physisorbed to a chemisorbed configuration.

CO2 dissociation is found to be unfeasible on the stoichiometric surface. The introduction of oxygen vacancy defects gives rise to new highly stable adsorption configurations with a stronger activation of the C−O bonds. This leads to the possibility of exothermic dissociation of CO2 with barriers up to 22.2 kcal/mol,

corresponding to chemical lifetimes of less than 4 s at 300 K. These reactions cause a CO molecule to be formed, which will easily desorb, and the reduced surface to become oxidized. It is clear that oxygen vacancy defects play a key role in the catalytic activity of an anatase (001) surface. Oxygen vacancies play an important role in the dissociation of CO2 on the anatase (001) surface, and will play a significant role in complex problems, such as the catalytic conversion of CO2 to value-added chemicals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384626800055 Publication Date 2016-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 49 Open Access
Notes Stijn Huygh is funded as an aspirant of the Research Foundation Flanders (FWO, project number 11C0115N). This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @ c:irua:136164 Serial 4291
Permanent link to this record
 

 
Author Jain, R.; Rather, J.A.
Title Stripping voltammetry of tinidazole in solubilized system and biological fluids Type A1 Journal article
Year 2011 Publication Colloids and surfaces: A: physicochemical and engineering aspects Abbreviated Journal
Volume 378 Issue Pages 27-33
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (up) The adsorptive voltammetric behaviour of tinidazole onto the HMDE was investigated and validated in solubilized system and biological fluids by CV, SWCAdSV and DPCAdSV. Addition of CTAB to the solution containing drug enhanced the peak current while anionic and non-ionic surfactants showed an opposite effect. The electrode process is irreversible and adsorption controlled. Various chemical and instrumental parameters affecting the monitored electroanalytical response were investigated and optimized for tinidazole determination. Under optimized conditions; the adsorptive stripping peak current is linear over the concentration range 7.0 × 10−9 to 6.2 × 10−7 mol/L with detection limit of 4.5 × 10−10 mol/L. The precision of the proposed method in terms of RSD is 1.2% and mean recovery of 100.01%. The applicability of proposed method is further extended to in vitro determination of the drug in biological fluids.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000289544600004 Publication Date 2011-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-7757 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:98688 Serial 8584
Permanent link to this record
 

 
Author Potgieter-Vermaak, S.; Maledi, N.; Wagner, N.; van Heerden, J.H.P.; Van Grieken, R.; Potgieter, J.H.
Title Raman spectroscopy for the analysis of coal : a review Type A1 Journal article
Year 2011 Publication Journal of Raman spectroscopy Abbreviated Journal
Volume 42 Issue 2 Pages 123-129
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (up) The advances in the characterization of amorphous carbons by Raman spectroscopy over the last four decades are of interest to many industries, especially those involving the combustion, gasification and pyrolysis of coal. Many researchers report on the Raman character of the natural organic matter in carbon-containing compounds, such as coal, and relate the Raman bands to the structural order of the amorphous carbons. The basis of most of these studies evolved around the assignment of the G (graphitic, ∼1580 cm−1) band to crystalline graphite and any other bands, called D bands, (disorder, various from 1100 to 1500 cm−1) to any type of structural disorder in the graphitic structure. Concerning coal analysis, the information gained by Raman investigations has been used to describe char evolution as a function of temperature, the presence of catalysts and different gasification conditions. In addition, researchers looked at maturation, grade, doppleritization and many more aspects of interest. One aspect that has, however, not been addressed by most of the researchers is the natural inorganic matter (NIM) in the carbon-containing compounds. Micro-Raman spectroscopy (MRS) has many advantages over other characterization tools, i.e. in situ analysis, nondestructive, no sample preparation, low detection limit, micrometer-scale characterization, versatility and sensitivity to many amorphous compounds. With the distinct advantages it has over that of other molecular characterization tools, such as powder X-ray diffraction (PXRD), Fourier-transform infrared spectrometry (FT-IR) and scanning electron microscopy with X-ray detection (SEM/EDS), it is surprising that it has not yet been fully exploited up to this point for the characterization of the NIM in coal and other amorphous carbons. This paper reviews the work published on the Raman characterization of the natural organic matter (NOM) of coals and reports on preliminary results of the NIM character of various South African coals, whereby various inorganic compounds and minerals in the coal have been characterized.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288543000001 Publication Date 2010-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0377-0486 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:87024 Serial 8452
Permanent link to this record
 

 
Author Zeng, C.Y.; Cao, S.; Li, Y.Y.; Zhao, Z.X.; Yao, X.Y.; Ma, X.; Zhang, X.P.
Title A hidden single-stage martensitic transformation from B2 parent phase to B19 ' martensite phase in an aged Ni51Ti49 alloy Type A1 Journal article
Year 2019 Publication Materials letters Abbreviated Journal Mater Lett
Volume 253 Issue 253 Pages 99-101
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) The aged Ni-rich NiTi shape memory alloys (SMAs) exhibit the multi-stage martensitic transformation (MMT), which has important influences on functional properties and practical applications of the NiTi SMAs. A hidden single-stage martensitic transformation from B2 parent phase to B19' martensite phase is found in an aged Ni51Ti49 alloy, which happens concurrently with a commonly observed two-stage martensitic transformation B2-R-B19' (R: martensite phase) and actually composes one stage of a multi-stage martensitic transformation (MMT) together with the two-stage one. B2-B19' martensitic transformation occurs in the NiTi matrix containing Ni4Ti3 precipitates with relatively large inter-particle space, while B2-R-B19' transformation takes place in the NiTi matrix with Ni4Ti3 precipitates having relatively small inter-particle space. (C) 2019 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000482629500025 Publication Date 2019-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-577x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.572 Times cited Open Access
Notes ; This work was supported by the Natural Science Foundation of Guangdong Province under Grant Nos. 2018B0303110012 and 2017A030313323, and the National Natural Science Foundation of China under Grant Nos. 51401081 and 51571092. ; Approved Most recent IF: 2.572
Call Number UA @ admin @ c:irua:162764 Serial 5381
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Bogaerts, A.
Title Oxidation destabilizes toxic amyloid beta peptide aggregation Type A1 Journal article
Year 2019 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 9 Issue 1 Pages 5476
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The aggregation of insoluble amyloid beta (Aβ) peptides in the brain is known to trigger the onset of neurodegenerative diseases, such as Alzheimer’s disease. In spite of the massive number of investigations, the underlying mechanisms to destabilize the Aβ aggregates are still poorly understood. Some studies indicate the importance of oxidation to destabilize the Aβ aggregates. In particular, oxidation induced by cold atmospheric plasma (CAP) has demonstrated promising results in eliminating these toxic aggregates. In this paper, we investigate the effect of oxidation on the stability of an Aβ pentamer. By means of molecular dynamics simulations and umbrella sampling, we elucidate the conformational changes of Aβ pentamer in the presence of oxidized residues, and we estimate the dissociation free energy of the terminal peptide out of the pentamer form. The calculated dissociation free energy of the terminal peptide is also found to decrease with increasing oxidation. This indicates that Aβ pentamer aggregation becomes less favorable upon oxidation. Our study contributes to a better insight in one of the potential mechanisms for inhibition of toxic Aβ peptide aggregation, which is considered to be the main culprit to Alzheimer’s disease.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000462990000018 Publication Date 2019-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 5 Open Access OpenAccess
Notes M.Y. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), grant 1200216N and 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 4.259
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159367 Serial 5182
Permanent link to this record
 

 
Author Vingerhoets, R.; Spiller, M.; De Backer, J.; Adriaens, A.; Vlaeminck, S.E.; Meers, E.
Title Detailed nitrogen and phosphorus flow analysis, nutrient use efficiency and circularity in the agri-food system of a livestock-intensive region Type A1 Journal article
Year 2023 Publication Journal of cleaner production Abbreviated Journal
Volume 410 Issue Pages 137278-13
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (up) The agri-food value chain is a major cause of nitrogen (N) and phosphorus (P) emissions and associated environmental and health impacts. The EU's farm-to-fork strategy (F2F) demands an agri-food value chain approach to reduce nutrient emissions by 50% and fertilizer use by 20%. Substance flow analysis (SFA) is a method that can be applied to study complex systems such as the agri-food chain. A review of 60 SFA studies shows that they often lack detail by not sufficiently distinguishing between nodes, products and types of emissions. The present study aims to assess the added value of detail in SFAs and to illustrate that valuable indicators can be derived from detailed assessments. This aim will be attained by presenting a highly-detailed SFA for the livestock-intensive region of Flanders, Belgium. The SFA distinguishes 40 nodes and 1827 flows that are classified into eight different categories (e.g. by-products, point source emissions) following life cycle methods. Eight novel indicators were calculated, including indicators that assess the N and P recovery potential. Flanders has a low overall nutrient use efficiency (11% N, 18% P). About 55% of the N and 56% of the P embedded in recoverable streams are reused providing 35% and 37% of the total N and P input. Optimized nutrient recycling could replace 45% of N and 48% of P of the external nutrient input, exceeding the target set by the F2F strategy. Detailed accounting for N and P flows and nodes leads to the identification of more recoverable streams and larger N and P flows. More detailed flow accounting is a prerequisite for the quantification of technological intervention options. Future research should focus on including concentration and quality as a parameter in SFAs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000991013600001 Publication Date 2023-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 11.1; 2023 IF: 5.715
Call Number UA @ admin @ c:irua:196227 Serial 7770
Permanent link to this record
 

 
Author Li, L.L.; Moldovan, D.; Vasilopoulos, P.; Peeters, F.M.
Title Aharonov-Bohm oscillations in phosphorene quantum rings Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 20 Pages 205426
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The Aharonov-Bohm (AB) effect in square phosphorene quantum rings, with armchair and zigzag edges, is investigated using the tight-binding method. The energy spectra and wave functions of such rings, obtained as a function of the magnetic flux Phi threading the ring, are strongly influenced by the ringwidthW, an in-plane electric field E-p, and a side-gating potential V-g. Compared to a square dot, the ring shows an enhanced confinement due to its inner edges and an interedge coupling along the zigzag direction, both of which strongly affect the energy spectrum and the wave functions. The energy spectrum that is gapped consists of a regular part, of conduction (valence) band states, that shows the usual AB oscillations in the higher-(lower-) energy region, and of edge states, in the gap, that exhibit no AB oscillations. As the width W decreases, the AB oscillations become more distinct and regular and their period is close to Phi(0)/2, where the flux quantum Phi(0) = h/e is the period of an ideal circular ring (W -> 0). Both the electric field E-p and the side-gating potential V-g reduce the amplitude of the AB oscillations. The amplitude can be effectively tuned by E-p or V-g and exhibits an anisotropic behavior for different field directions or side-gating configurations.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000402003700010 Publication Date 2017-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes ; This work was financially supported by the Chinese Academy of Sciences, the Flemish Science Foundation (FWO-V1), and by the Canadian NSERC Grant No. OGP0121756 (P.V.). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:144267 Serial 4638
Permanent link to this record
 

 
Author Piñera, I.; Abreu, Y.; van Espen, P.; Diaz, A.; Leyva, A.; Cruz, C.M.
Title Radiation damage evaluation on LYSO and LuYAP materials through Dpa calculation assisted by Monte Carlo method Type P1 Proceeding
Year 2011 Publication IEEE conference record T2 – IEEE Nuclear Science Symposium/Medical Imaging Conference (NSS/MIC)/18th, International Workshop on Room-Temperature Semiconductor X-Ray and, Gamma-Ray Detectors, OCT 23-29, 2011, Valencia, SPAIN Abbreviated Journal
Volume Issue Pages 1609-1611
Keywords P1 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (up) The aim of the present work is to study the radiation damage induced in LYSO and LuYAP crystals by the gamma radiation and the secondary electrons/positrons generated. The displacements per atom (dpa) distributions inside each material were calculated following the Monte Carlo assisted Classical Method (MCCM) introduced by the authors. As gamma sources were used Sc-44, Na-22 and V-48. Also the energy of gammas from the annihilation processes (511 keV) was included in the study. This procedure allowed studying the in-depth dpa distributions inside each crystal for all four sources. It was also possible to obtain the separate contribution from each atom to the total dpa. The LYSO crystals were found to receive more damage, mainly provoked by the displacements of silicon and oxygen atoms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304755601169 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-4673-0120-6 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:113072 Serial 8447
Permanent link to this record
 

 
Author Bouvier, S.; Benmhenni, N.; Tirry, W.; Gregory, F.; Nixon, M.E.; Cazacu, O.; Rabet, L.
Title Hardening in relation with microstructure evolution of high purity \alpha-titanium deformed under monotonic and cyclic simple shear loadings at room temperature Type A1 Journal article
Year 2012 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
Volume 535 Issue Pages 12-21
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (up) The aim of this paper is to gain understanding of the quasi-static, large strain deformation behavior at room-temperature of high-purity alpha-Ti with an initial split-basal texture. Simple shear tests were conducted along different directions in order to quantify the material's anisotropy and hardening evolution for different strain paths such as monotonic, Bauschinger, and cyclic loadings. The stress-strain curves indicate that the material displays strong anisotropy in the flow behavior. In order to capture the link between microstructure evolution (occurrence of twinning, grain size evolution, etc.) and the macroscopic response, a thoroughly detailed multi-scale characterization using scanning electron microscope (SEM) observations and electron backscattered diffraction (EBSD) analysis was also conducted. Specifically, EBSD analyses indicate that the twin activity and grain fragmentation are responsible for the observed difference between the macroscopic hardening rates corresponding to different directions and loading paths. (C) 2011 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000301402400003 Publication Date 2011-12-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.094 Times cited 22 Open Access
Notes Approved Most recent IF: 3.094; 2012 IF: 2.108
Call Number UA @ lucian @ c:irua:97824 Serial 1410
Permanent link to this record
 

 
Author Tirry, W.; Bouvier, S.; Benmhenni, N.; Hammami, W.; Habraken, A.M.; Coghe, F.; Schryvers, D.; Rabet, L.
Title Twinning in pure Ti subjected to monotonic simple shear deformation Type A1 Journal article
Year 2012 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 72 Issue Pages 24-36
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) The aim of this paper is to provide a thorough study on the occurrence and importance of deformation twinning in simple shear deformed pure α-Ti. A statistically relevant inspection of the morphology of the deformation twins in relation to the applied strain/deformation is performed. The investigated microstructural aspects are the twin volume fraction, the twin thickness distribution and the resolved shear stress distribution on the twin plane. All these aspects are examined as a function of the twin types and two initial textures. Monotonic simple shear experiments are carried out for three different loading directions with respect to a direction linked to the initial crystallographic texture. EBSD and TEM observations reveal the presence of View the MathML source and View the MathML source twins. The statistical analysis reveals that View the MathML source and View the MathML source twins have a similar average thickness around 1.9 nm, but the View the MathML source twins show a far larger spread on their thickness and can grow to almost the size of the original parent grain. Correlation of the twin fractions with the RSS analysis shows that RSS is an acceptable method explaining the difference in twin fractions for different textures and orientations. A detailed analysis shows that View the MathML source twins occur in average with a smaller volume fraction but with a higher RSS, indicating they are more difficult to nucleate or grow compared to View the MathML source twinning. In general a higher RSS value on the twin plane is not connected to a higher twin thickness; only in the case of View the MathML source twins the highest RSS values show clearly thicker twins.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000309086700004 Publication Date 2012-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 25 Open Access
Notes Iap Approved Most recent IF: 2.714; 2012 IF: 1.880
Call Number UA @ lucian @ c:irua:101225 Serial 3768
Permanent link to this record
 

 
Author Nabavi-Pelesaraei, A.; Azadi, H.; Van Passel, S.; Saber, Z.; Hosseini-Fashami, F.; Mostashari-Rad, F.; Ghasemi-Mobtaker, H.
Title Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment Type A1 Journal article
Year 2021 Publication Energy Abbreviated Journal Energy
Volume 223 Issue Pages 120117
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract (up) The aim of this study is determination of exergoenvironmental efficiency for using solar technologies in sunflower oil production in Iran. Accordingly, the applications of photovoltaic and photovoltaic/thermal systems were evaluated for both agricultural and industrial phases of sunflower oil production. Energy results reveal that 1 ton of sunflower oil consumes and produces about 180,354 and 39,400 MJ energy, respectively. About 86% of total energy consumption belongs to agricultural phase and electricity with 32%, has the highest share of total energy consumption. IMPACT 2002+ method and cumulative energy demand of life cycle assessment are applied to 3 defined scenarios including Present, photovoltaic and photovoltaic/thermal. Results indicate that total amounts of climate change in Present scenarios is 24537.53 kg CO2 eq.. The highest share of human health (90%), ecosystem quality (90%) and climate change (50%) in all scenarios belongs to direct emissions. Results also illustrates that total cumulative energy demand of Present, photovoltaic and photovoltaic/thermal scenarios are about 177,538, 99,054 and 132,158 MJ 1TSO(-1), respectively. Furthermore, the most contribution of non-renewable resources and fossil fuels belongs to electricity (37%), nitrogen (52%) and photovoltaic/thermal panels (39%) in Present, photovoltaic and photovoltaic/thermal scenarios, respectively. Finally the photovoltaic scenario is the best environmental-friendly scenario. (c) 2021 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000637964000003 Publication Date 2021-02-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-5442 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.52 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.52
Call Number UA @ admin @ c:irua:178193 Serial 6940
Permanent link to this record
 

 
Author Nikolova, I.; Janssen, S.; Vos, P.; Vrancken, K.; Mishra, V.; Berghmans, P.
Title Dispersion modelling of traffic induced ultrafine particles in a street canyon in Antwerp, Belgium and comparison with observations Type A1 Journal article
Year 2011 Publication The science of the total environment Abbreviated Journal
Volume 412 Issue Pages 336-343
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (up) The aim of this study is to investigate the dispersion of ultrafine particles and its spatial distribution in a street canyon and its neighbourhood with the 3D CFD model ENVI-met®. The performance of the model at street scale is evaluated and the importance of the boundary conditions like wind field and traffic emissions on the UFP concentration is demonstrated. To support and validate the modelled results, a short-term measurement campaign was conducted in a street canyon in Antwerp, Belgium. The UFP concentration was measured simultaneously with P-TRACK (TSI Model 8525) at four different locations in the canyon. The modelled UFP concentrations compare well with the measured data (correlation coefficient R from 0.44 to 0.93) within the standard deviation of the measurements. Despite the moderate traffic flow in the street canyon, UFP concentrations in the canyon are in general double of the background concentrations, indicating the high local contribution for this particle number concentration. Some of the observed concentration profiles are not resembled by the model simulations. For these specific anomalies, further analysis is performed and plausible explanations are put forward. The role of wind direction and traffic emissions is investigated. The performance evaluation of ENVI-met® shows that in general the model qualitatively and quantitatively describes the dispersion of UFP in the street canyon study.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298534300038 Publication Date 2011-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:94377 Serial 7815
Permanent link to this record
 

 
Author Paulussen, S.; Verheyde, B.; Tu, X.; De Bie, C.; Martens, T.; Petrovic, D.; Bogaerts, A.; Sels, B.
Title Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges Type A1 Journal article
Year 2010 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 19 Issue 3 Pages 034015,1-034015,6
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The aim of this work consists of the evaluation of atmospheric pressure dielectric barrier discharges for the conversion of greenhouse gases into useful compounds. Therefore, pure CO2 feed flows are administered to the discharge zone at varying discharge frequency, power input, gas temperature and feed flow rates, aiming at the formation of CO and O2. The discharge obtained in CO2 is characterized as a filamentary mode with a microdischarge zone in each half cycle of the applied voltage. It is shown that the most important parameter affecting the CO2-conversion levels is the gas flow rate. At low flow rates, both the conversion and the CO-yield are significantly higher. In addition, also an increase in the gas temperature and the power input give rise to higher conversion levels, although the effect on the CO-yield is limited. The optimum discharge frequency depends on the power input level and it cannot be unambiguously stated that higher frequencies give rise to increased conversion levels. A maximum CO2 conversion of 30% is achieved at a flow rate of 0.05 L min−1, a power density of 14.75 W cm−3 and a frequency of 60 kHz. The most energy efficient conversions are achieved at a flow rate of 0.2 L min−1, a power density of 11 W cm−3 and a discharge frequency of 30 kHz.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000277982800016 Publication Date 2010-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 116 Open Access
Notes Approved Most recent IF: 3.302; 2010 IF: 2.218
Call Number UA @ lucian @ c:irua:82408 Serial 512
Permanent link to this record
 

 
Author Cagnetta, C.; Coma, M.; Vlaeminck, S.E.; Rabaey, K.
Title Production of carboxylates from high rate activated sludge through fermentation Type A1 Journal article
Year 2016 Publication Bioresource technology Abbreviated Journal
Volume 217 Issue Pages 165-172
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (up) The aim of this work was to study the key parameters affecting fermentation of high rate activated A-sludge to carboxylates, including pH, temperature, inoculum, sludge composition and iron content. The maximum volatile fatty acids production was 141 mg C g−1 VSSfed, at pH 7. Subsequently the potential for carboxylate and methane production for A-sludge from four different plants at pH 7 and 35 °C were compared. Initial BOD of the sludge appeared to be key determining carboxylate yield from A-sludge. Whereas methanogenesis could be correlated linearly to the quantity of ferric used for coagulation, fermentation did not show a dependency on iron presence. This difference may enable a strategy whereby A-stage sludge is separated to achieve fermentation, and iron dosing for phosphate removal is only implemented at the B-stage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380226300023 Publication Date 2016-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:139912 Serial 8421
Permanent link to this record
 

 
Author Yan, L.; Tan, Z.; Ji, G.; Li, Z.; Fan, G.; Schryvers, D.; Shan, A.; Zhang, D.
Title A quantitative method to characterize the Al4C3-formed interfacial reaction: the case study of MWCNT/Al composites Type A1 Journal article
Year 2015 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 112 Issue 112 Pages 213-218
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (up) The Al4C3-formed interfacial reaction plays an important role in tuning the mechanical and thermal properties of carbon/aluminum (C/Al) composites reinforced with carbonaceous materials such as multi-wall carbon nanotube (MWCNT) and graphene nanosheet. In terms of the hydrolysis nature of Al4C3, an electrochemical dissolution method was developed to quantitatively characterize the extent of C/Al interfacial reaction, which involves dissolving the composite samples in alkaline solution first, then collecting and measuring the CH4 gas released by Al4C3 hydrolysis with a gas chromatograph. Through a case study with powder metallurgy fabricated 2.0 wt.% MWCNT/Al composites, the detectability limit of the proposed method is 0.4 wt.% Al4C3, corresponding to 5 % extent of interfacial reaction with a measurement error of ±3 %. And then, with the already known MWCNT/Al reaction extent vs different sintering temperature and time, the reaction kinetics with an activation energy of 281 kJ mol-1 was successfully derived. Therefore, this rapid, sensitive, accurate method supplies an useful tool to optimize the processing and properties of all kinds of C/Al composites via interface design/control.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370109200026 Publication Date 2015-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 24 Open Access
Notes The authors would like to acknowledge the financial support of the National Basic Research Program of China (973 Program, No. 2012CB619600), the National High-Tech R&D Program (863 Program, No. 2012AA030611), the National Natural Science Foundation (Nos. 51071100, 51131004, 51401123, 51511130038) and the research grant (Nos. 14DZ2261200, 15JC1402100, 14520710100) from Shanghai government. Dr. Z.Q. Tan would also like to thank the project funded by the China Postdoctoral Science Foundation (No. 2014M561469). The research leading to these results has partially received funding from the European Union Seventh Framework Program under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative – I3).; esteem2_jra2 Approved Most recent IF: 2.714; 2015 IF: 1.845
Call Number c:irua:130066 c:irua:130066 Serial 3997
Permanent link to this record
 

 
Author Vandelannoote, R.; Van 't dack, L.; Van Grieken, R.
Title Effects of alkaline aluminate waste dumping on seawater chemistry Type A1 Journal article
Year 1987 Publication Marine environmental research Abbreviated Journal
Volume 21 Issue 4 Pages 275-288
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (up) The alkaline aluminate waste, of which 10002000 tonnes are dumped a few times a year off the Belgian coast in the Southern Bight of the North Sea, contains 5·4% NaCl, 1·8% dissolved Al and 7·4% NaOH, in addition to traces of heavy metals and some aniline- and phenol-derivatives. The pH rises locally to 8-5 and the total Al-concentration reaches 120niglitre−1(corresponding to an initial waste dilution factor of only 150) in the 10-m wide track just beyond the discharging barge, but these decay quickly to pH 8·1 and 1 mg litre-1 in the 30-m wide track, 500m behind the barge. The relation between the waste concentration and seawater pH was studied. The white precipitate that forms immediately in the sea was identified as Mg6Al2CO3(OH)164H20 (hydrotalcite-manasseite like). No trace of it was found in the local sediments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1987H082300003 Publication Date 2003-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-1136 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:111505 Serial 7845
Permanent link to this record
 

 
Author Peirs, J.; Verleysen, P.; Tirry, W.; Rabet, L.; Schryvers, D.; Degrieck, J.
Title Dynamic shear localization in Ti6Al4V Type P1 Proceeding
Year 2011 Publication Procedia Engineering T2 – 11th International Conference on the Mechanical Behavior of Materials, (ICM), 2011, Como, ITALY (ICM11) Abbreviated Journal
Volume Issue Pages 1-6
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract (up) The alloy Ti6Al4V is known to be prone to the formation of adiabatic shear bands when dynamically loaded in shear. This causes a catastrophic decrease of the load carrying capacity and is usually followed by fracture. Although, the main mechanism is recognized to be the competition between strain hardening and thermal softening, a detailed understanding of the role of microstructural plasticity mechanisms and macroscopic loading conditions does not exist yet. To study strain localization and shear fracture, different high strain rate shear tests have been carried out: compression of hat-shaped specimens, torsion of thin walled tubular specimens and in-plane shear tests. The value of the three techniques in studying shear localization is evaluated. Post-mortem analysis of the fracture surface and the materials' microstructure is performed with optical and electron microscopy. In all cases a ductile fracture is observed. SEM and TEM techniques are used to study the local microstructure and composition in the shear band and as such the driving mechanism for the ASB formation. (C) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ICM11
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000300451302060 Publication Date 2011-06-20
Series Editor Series Title Abbreviated Series Title
Series Volume 10 Series Issue Edition
ISSN 1877-7058; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:113069 Serial 767
Permanent link to this record
 

 
Author Cunha, S.M.; da Costa, D.R.; Pereira, J.M., Jr.; Costa Filho, R.N.; Van Duppen, B.; Peeters, F.M.
Title Tunneling properties in α-T₃ lattices : effects of symmetry-breaking terms Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 105 Issue 16 Pages 165402-165414
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The alpha-T3 lattice model interpolates a honeycomb (graphene-like) lattice and a T3 (also known as dice) lattice via the parameter alpha. These lattices are made up of three atoms per unit cell. This gives rise to an additional dispersionless flat band touching the conduction and valence bands. Electrons in this model are analogous to Dirac fermions with an enlarged pseudospin, which provides unusual tunneling features like omnidirectional Klein tunneling, also called super-Klein tunneling (SKT). However, it is unknown how small deviations in the equivalence between the atomic sites, i.e., variations in the alpha parameter, and the number of tunnel barriers changes the transmission properties. Moreover, it is interesting to learn how tunneling occurs through regions where the energy spectrum changes from linear with a middle flat band to a hyperbolic dispersion. In this paper we investigate these properties, its dependence on the number of square barriers and the alpha parameter for either gapped and gapless cases. Furthermore, we compare these results to the case where electrons tunnel from a region with linear dispersion to a region with a bandgap. In the latter case, contrary to tunneling through a potential barrier, the SKT is no longer observed. Finally, we find specific cases where transmission is allowed due to a symmetry breaking of sublattice equivalence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000805195200001 Publication Date 2022-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:188614 Serial 7222
Permanent link to this record
 

 
Author de de Meux, A.J.; Bhoolokam, A.; Pourtois, G.; Genoe, J.; Heremans, P.
Title Oxygen vacancies effects in a-IGZO : formation mechanisms, hysteresis, and negative bias stress effects Type A1 Journal article
Year 2017 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume 214 Issue 6 Pages 1600889
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The amorphous oxide semiconductor Indium-Gallium-Zinc-Oxide (a-IGZO) has gained a large technological relevance as a semiconductor for thin-film transistors in active-matrix displays. Yet, major questions remain unanswered regarding the atomic origin of threshold voltage control, doping level, hysteresis, negative bias stress (NBS), and negative bias illumination stress (NBIS). We undertake a systematic study of the effects of oxygen vacancies on the properties of a-IGZO by relating experimental observations to microscopic insights gained from first-principle simulations. It is found that the amorphous nature of the semiconductor allows unusually large atomic relaxations. In some cases, oxygen vacancies are found to behave as perfect shallow donors without the formation of structural defects. Once structural defects are formed, their transition states can vary upon charge and discharge cycles. We associate this phenomenon to a possible presence of hysteresis in the transfer curve of the devices. Under NBS, the creation of oxygen vacancies becomes energetically very stable, hence thermodynamically very likely. This generation process is correlated with the occurrence of the negative bias stress instabilities observed in a-IGZO transistors. While oxygen vacancies can therefore be related to NBS and hysteresis, it appears unlikely from our results that they are direct causes of NBIS, contrary to common belief.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403339900012 Publication Date 2017-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 8 Open Access Not_Open_Access
Notes Approved Most recent IF: 1.775
Call Number UA @ lucian @ c:irua:144219 Serial 4678
Permanent link to this record
 

 
Author Kuppens, T.; Van Dael, M.; Maggen, J.; Vanreppelen, K.; Yperman, J.; Carleer, R.; Elen, H.; Van Passel, S.
Title Techno-economic assessment of different conversion pathways for pyrolysis char from pig manure Type P1 Proceeding
Year 2014 Publication Abbreviated Journal
Volume Issue Pages 901-911
Keywords P1 Proceeding; Engineering sciences. Technology
Abstract (up) The amount of animal manure that can be brought back to agricultural land is limited by legislation. Because pig manure is available in too large quantities in some areas, we investigate the techno-economic feasibility of converting it into valuable products. First, slurry is separated in water, a thick fraction and a fertilizer concentrate poor in phosphate. Then, the thick fraction is dried and pyrolyzed. Our goal is to identify the optimal pyrolysis and activation conditions for the production of biochar or activated carbon. The latter has interesting adsorption characteristics due to the presence of nitrogen. It can also be used as a soil amendment as it improves biomass quantity and quality. On top, it immobilizes toxic elements and stores carbon in the soil. Char thus has many interesting characteristics and can be valued in different ways. The economic feasibility has been explored by a first techno-economic modelling iteration. The critical factors influencing the feasibility are identified by Monte Carlo simulations for further improvement of the process design.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title 22nd European Biomass Conference and Exhibition : Setting the Course for a Biobased Economy, 23-26 June 2014, Hamburg, Germany : conference proceedings
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:127546 Serial 6263
Permanent link to this record
 

 
Author Kalitzova, M.; Vlakhov, E.; Marinov, Y.; Gesheva, K.; Ignatova, V.A.; Lebedev, O.; Muntele, C.; Gijbels, R.
Title Effect of high-frequency electromagnetic field on Te+-implanted (001) Si</tex> Type A1 Journal article
Year 2004 Publication Vacuum: the international journal and abstracting service for vacuum science and technology Abbreviated Journal Vacuum
Volume 76 Issue 2-3 Pages 325-328
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The analysis of high-frequency electromagnetic field (HFEMF) effects on the microstructure and electrical properties of Te+ implanted (0 0 1) Si is reported. Cross-sectional high-resolution transmission electron microscopy (XHRTEM) demonstrates the formation of Te nanoclusters (NCs) embedded in the Si layer amorphized by implantation (a-Si) at fluences greater than or equal to 1 x 10(16) cm(-2). Post-implantation treatment with 0.45 MHz HFEMF leads to enlargement of Te NCs, their diffusion and accumulation at the a-Si surface and formation of laterally connected extended tellurium structures above the percolation threshold, appearing at an ion fluence of 1 x 10(17) cm(-2). AC electrical conductivity measurements show nearly four orders of magnitude decrease of impedance resistivity in this case, which is in good agreement with the results of our structural studies. The results obtained are discussed in terms of the two-phase isotropic spinodal structure. (C) 2004 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000224890100048 Publication Date 2004-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-207X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.53 Times cited 2 Open Access
Notes Approved Most recent IF: 1.53; 2004 IF: 0.902
Call Number UA @ lucian @ c:irua:95105 Serial 814
Permanent link to this record
 

 
Author Daems, D.; van Nuijs, A.L.N.; Covaci, A.; Hamidi-Asl, E.; Van Camp, G.; Nagels, L.J.
Title Potentiometric detection in UPLC as an easy alternative to determine cocaine in biological samples Type A1 Journal article
Year 2015 Publication Biomedical chromatography Abbreviated Journal
Volume 29 Issue 7 Pages 1124-1129
Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre
Abstract (up) The analytical methods which are often used for the determination of cocaine in complex biological matrices are a prescreening immunoassay and confirmation by chromatography combined with mass spectrometry. We suggest an ultra-high-pressure liquid chromatography combined with a potentiometric detector, as a fast and practical method to detect and quantify cocaine in biological samples. An adsorption/desorption model was used to investigate the usefulness of the potentiometric detector to determine cocaine in complex matrices. Detection limits of 6.3ngmL(-1) were obtained in plasma and urine, which is below the maximum residue limit (MRL) of 25ngmL(-1). A set of seven plasma samples and 10 urine samples were classified identically by both methods as exceeding the MRL or being inferior to it. The results obtained with the UPLC/potentiometric detection method were compared with the results obtained with the UPLC/MS method for samples spiked with varying cocaine concentrations. The intraclass correlation coefficient was 0.997 for serum (n =7) and 0.977 for urine (n =8). As liquid chromatography is an established technique, and as potentiometry is very simple and cost-effective in terms of equipment, we believe that this method is potentially easy, inexpensive, fast and reliable. Copyright (c) 2014 John Wiley & Sons, Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000356694000020 Publication Date 2014-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-3879 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:127069 Serial 8396
Permanent link to this record