toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wang, H.; Cuppens, J.; Biermans, E.; Bals, S.; Fernandez-Ballester, L.; Kvashnina, K.O.; Bras, W.; van Bael, M.J.; Temst, K.; Vantomme, A. pdf  doi
openurl 
  Title Tuning of the size and the lattice parameter of ion-beam synthesized Pb nanoparticles embedded in Si Type A1 Journal article
  Year 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 45 Issue 3 Pages 035301-035301,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The size and lattice constant evolution of Pb nanoparticles (NPs) synthesized by high fluence implantation in crystalline Si have been studied with a variety of experimental techniques. Results obtained from small-angle x-ray scattering showed that the Pb NPs grow with increasing implantation fluence and annealing duration. The theory of NP growth kinetics can be applied to qualitatively explain the size evolution of the Pb NPs during the implantation and annealing processes. Moreover, the lattice constant of the Pb NPs was evaluated by conventional x-ray diffraction. The lattice dilatation was observed to decrease with increasing size of the Pb NPs. Such lattice constant tuning can be attributed to the pseudomorphism caused by the lattice mismatch between the Pb NPs and the Si matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000299308400008 Publication Date 2011-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 5 Open Access  
  Notes Fwo; Iap Approved Most recent IF: 2.588; 2012 IF: 2.528  
  Call Number UA @ lucian @ c:irua:94208 Serial 3754  
Permanent link to this record
 

 
Author Heirman, P.; Verloy, R.; Baroen, J.; Privat-Maldonado, A.; Smits, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Liquid treatment with a plasma jet surrounded by a gas shield: effect of the treated substrate and gas shield geometry on the plasma effluent conditions Type A1 Journal article
  Year 2024 Publication Journal of physics: D: applied physics Abbreviated Journal J. Phys. D: Appl. Phys.  
  Volume 57 Issue 11 Pages 115204  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract (up) The treatment of a well plate by an atmospheric pressure plasma jet is common for<italic>in vitro</italic>plasma medicine research. Here, reactive species are largely produced through the mixing of the jet effluent with the surrounding atmosphere. This mixing can be influenced not only by the ambient conditions, but also by the geometry of the treated well. To limit this influence and control the atmosphere, a shielding gas is sometimes applied. However, the interplay between the gas shield and the well geometry has not been investigated. In this work, we developed a 2D-axisymmetric computational fluid dynamics model of the kINPen plasma jet, to study the mixing of the jet effluent with the surrounding atmosphere, with and without gas shield. Our computational and experimental results show that the choice of well type can have a significant influence on the effluent conditions, as well as on the effectiveness of the gas shield. Furthermore, the geometry of the shielding gas device can substantially influence the mixing as well. Our results provide a deeper understanding of how the choice of setup geometry can influence the plasma treatment, even when all other operating parameters are unchanged.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001127372200001 Publication Date 2024-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access Not_Open_Access  
  Notes Fund for Scientific Research Flanders, 1100421N ; Approved Most recent IF: 3.4; 2024 IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:201999 Serial 8977  
Permanent link to this record
 

 
Author Setareh, M.; Farnia, M.; Maghari, A.; Bogaerts, A. pdf  doi
openurl 
  Title CF4 decomposition in a low-pressure ICP : influence of applied power and O2 content Type A1 Journal article
  Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 47 Issue 35 Pages 355205  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) This paper focuses on the investigation of CF4 decomposition in a low-pressure inductively coupled plasma by means of a global model. The influence of O2 on the CF4 decomposition process is studied for conditions used in semiconductor manufacturing processes. The model is applied for different powers and O2 contents ranging between 2% and 98% in the CF4/O2 gas mixture. The model includes the reaction mechanisms in the gas phase coupled with the surface reactions and sticking probabilities of the species at the walls. The calculation results are first compared with experimental results from the literature (for the electron density, temperature and F atom density) at a specific power, in the entire range of CF4/O2 gas mixture ratios, and the obtained agreements indicate the validity of the model. The main products of the gas mixture, obtained from this model, include CO, CO2 and COF2 together with a low fraction of F2. The most effective reactions for the formation and loss of the various species in this process are also determined in detail. Decomposition of CF4 produces mostly CF3 and F radicals. These radicals also contribute to the backward reactions, forming again CF4. This study reveals that the maximum decomposition efficiency of CF4 is achieved at a CF4/O2 ratio equal to 1, at the applied power of 300 W.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000341353800017 Publication Date 2014-08-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721  
  Call Number UA @ lucian @ c:irua:118327 Serial 3521  
Permanent link to this record
 

 
Author Georgieva, V.; Saraiva, M.; Jehanathan, N.; Lebelev, O.I.; Depla, D.; Bogaerts, A. pdf  doi
openurl 
  Title Sputter-deposited Mg-Al-O thin films: linking molecular dynamics simulations to experiments Type A1 Journal article
  Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 42 Issue 6 Pages 065107,1-065107,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Using a molecular dynamics model the crystallinity of MgxAlyOz thin films with a variation in the stoichiometry of the thin film is studied at operating conditions similar to the experimental operating conditions of a dual magnetron sputter deposition system. The films are deposited on a crystalline or amorphous substrate. The Mg metal content in the film ranged from 100% (i.e. MgO film) to 0% (i.e. Al2O3 film). The radial distribution function and density of the films are calculated. The results are compared with x-ray diffraction and transmission electron microscopy analyses of experimentally deposited thin films by the dual magnetron reactive sputtering process. Both simulation and experimental results show that the structure of the MgAlO film varies from crystalline to amorphous when the Mg concentration decreases. It seems that the crystalline MgAlO films have a MgO structure with Al atoms in between.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000263824200024 Publication Date 2009-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 37 Open Access  
  Notes Iwt Approved Most recent IF: 2.588; 2009 IF: 2.083  
  Call Number UA @ lucian @ c:irua:73246 Serial 3110  
Permanent link to this record
 

 
Author de de Meux, A.J.; Pourtois, G.; Genoe, J.; Heremans, P. pdf  doi
openurl 
  Title Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor : structure, tail states and strain effects Type A1 Journal article
  Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 48 Issue 48 Pages 435104  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) We study the evolution of the structural and electronic properties of crystalline indium gallium zinc oxide (IGZO) upon amorphization by first-principles calculation. The bottom of the conduction band (BCB) is found to be constituted of a pseudo-band of molecular orbitals that resonate at the same energy on different atomic sites. They display a bonding character between the s orbitals of the metal sites and an anti-bonding character arising from the interaction between the oxygen and metal s orbitals. The energy level of the BCB shifts upon breaking of the crystal symmetry during the amorphization process, which may be attributed to the reduction of the coordination of the cationic centers. The top of the valence band (TVB) is constructed from anti-bonding oxygen p orbitals. In the amorphous state, they have random orientation, in contrast to the crystalline state. This results in the appearance of localized tail states in the forbidden gap above the TVB. Zinc is found to play a predominant role in the generation of these tail states, while gallium hinders their formation. Last, we study the dependence of the fundamental gap and effective mass of IGZO on mechanical strain. The variation of the gap under strain arises from the enhancement of the anti-bonding interaction in the BCB due to the modification of the length of the oxygen-metal bonds and/or to a variation of the cation coordination. This effect is less pronounced for the amorphous material compared to the crystalline material, making amorphous IGZO a semiconductor of choice for flexible electronics. Finally, the effective mass is found to increase upon strain, in contrast to regular materials. This counterintuitive variation is due to the reduction of the electrostatic shielding of the cationic centers by oxygen, leading to an increase of the overlaps between the metal orbitals at the origin of the delocalization of the BCB. For the range of strain typically met in flexible electronics, the induced variation in the effective mass is found to be negligible (less than 1%).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000365876300012 Publication Date 2015-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 23 Open Access  
  Notes Approved Most recent IF: 2.588; 2015 IF: 2.721  
  Call Number UA @ lucian @ c:irua:130277 Serial 4153  
Permanent link to this record
 

 
Author Van der Paal, J.; Verlackt, C.C.; Yusupov, M.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Structural modification of the skin barrier by OH radicals : a reactive molecular dynamics study for plasma medicine Type A1 Journal article
  Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 48 Issue 48 Pages 155202  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) While plasma treatment of skin diseases and wound healing has been proven highly effective, the underlying mechanisms, and more generally the effect of plasma radicals on skin tissue, are not yet completely understood. In this paper, we perform ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of plasma generated OH radicals with a model system composed of free fatty acids, ceramides, and cholesterol molecules. This model system is an approximation of the upper layer of the skin (stratum corneum). All interaction mechanisms observed in our simulations are initiated by H-abstraction from one of the ceramides. This reaction, in turn, often starts a cascade of other reactions, which eventually lead to the formation of aldehydes, the dissociation of ceramides or the elimination of formaldehyde, and thus eventually to the degradation of the skin barrier function.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000351856600007 Publication Date 2015-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 20 Open Access  
  Notes Approved Most recent IF: 2.588; 2015 IF: 2.721  
  Call Number c:irua:124230 Serial 3242  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: