|   | 
Details
   web
Records
Author Van Tendeloo, G.; Schryvers, D.; van Dyck, D.; van Landuyt, J.; Amelinckx, S.
Title Up close: Center for Electron Microscopy of Materials Science at the University of Antwerp Type A1 Journal article
Year 1994 Publication MRS bulletin Abbreviated Journal Mrs Bull
Volume Issue Pages 57-59
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up)
Address
Corporate Author Thesis
Publisher Place of Publication Pittsburgh, Pa Editor
Language Wos A1994PH66300015 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-7694 ISBN Additional Links UA library record; WoS full record;
Impact Factor 5.667 Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:9996 Serial 3821
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van den Bos, A.; Van Dyck, D.
Title High resolution electron microscopy from imaging towards measuring Type H2 Book chapter
Year 2001 Publication ... IEEE International Instrumentation and Measurement Technology Conference T2 – Rediscovering measurement in the age of informatics : proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference (IMTC), 2001: vol 3 Abbreviated Journal
Volume Issue Pages 2081-2086
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up)
Address
Corporate Author Thesis
Publisher Ieee Place of Publication Editor
Language Wos Publication Date 2002-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0-7803-6646-8 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:136870 Serial 4501
Permanent link to this record
 

 
Author Van Aert, S.; Bals, S.; Chang, L.Y.; den Dekker, A.J.; Kirkland, A.I.; Van Dyck, D.; Van Tendeloo, G.
Title The benefits of statistical parameter estimation theory for quantitative interpretation of electron microscopy data Type H1 Book chapter
Year 2008 Publication Abbreviated Journal
Volume Issue Pages 97-98
Keywords H1 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up)
Address
Corporate Author Thesis
Publisher Springer Place of Publication Berlin Editor
Language Wos Publication Date 2009-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-540-85154-7 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:136865 Serial 4493
Permanent link to this record
 

 
Author Proost, K.; Schalm, O.; Janssens, K.; Van Dyck, D.
Title Investigation of the chemical state and 3D distribution of Mn in corroded glass fragments Type H3 Book chapter
Year 2005 Publication Abbreviated Journal
Volume Issue Pages
Keywords H3 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Vision lab
Abstract (up)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:50851 Serial 5674
Permanent link to this record
 

 
Author Van Aert, S.; Verbeeck, J.; Bals, S.; Erni, R.; van Dyck, D.; Van Tendeloo, G.
Title Atomic resolution mapping using quantitative high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
Year 2009 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 15 Issue S:2 Pages 464-465
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up)
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000208119100230 Publication Date 2009-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 1 Open Access
Notes Approved Most recent IF: 1.891; 2009 IF: 3.035
Call Number UA @ lucian @ c:irua:96555UA @ admin @ c:irua:96555 Serial 178
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Van Tendeloo, G.; van Dyck, D.; Avila-Brande, D.
Title Statistical estimation of oxygen atomic positions eith sub Ångstrom precision from exit wave reconstruction Type A3 Journal article
Year 2005 Publication Microscopy and microanalysis Abbreviated Journal
Volume 11 Issue S Pages 556-557
Keywords A3 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:54881 Serial 3155
Permanent link to this record
 

 
Author Van Aert, S.; Verbeeck, J.; Erni, R.; Bals, S.; Luysberg, M.; van Dyck, D.; Van Tendeloo, G.
Title Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 109 Issue 10 Pages 1236-1244
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) A model-based method is proposed to relatively quantify the chemical composition of atomic columns using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. The method is based on a quantification of the total intensity of the scattered electrons for the individual atomic columns using statistical parameter estimation theory. In order to apply this theory, a model is required describing the image contrast of the HAADF STEM images. Therefore, a simple, effective incoherent model has been assumed which takes the probe intensity profile into account. The scattered intensities can then be estimated by fitting this model to an experimental HAADF STEM image. These estimates are used as a performance measure to distinguish between different atomic column types and to identify the nature of unknown columns with good accuracy and precision using statistical hypothesis testing. The reliability of the method is supported by means of simulated HAADF STEM images as well as a combination of experimental images and electron energy-loss spectra. It is experimentally shown that statistically meaningful information on the composition of individual columns can be obtained even if the difference in averaged atomic number Z is only 3. Using this method, quantitative mapping at atomic resolution using HAADF STEM images only has become possible without the need of simultaneously recorded electron energy loss spectra.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000270015200004 Publication Date 2009-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 166 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:78585UA @ admin @ c:irua:78585 Serial 2748
Permanent link to this record
 

 
Author Lobato, I.; van Dyck, D.
Title Improved multislice calculations for including higher-order Laue zones effects Type A1 Journal article
Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 119 Issue Pages 63-71
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) A new method for including higher-order Laue zones (HOLZs) effects in an efficient way in electron scattering simulations has been developed and tested by detail calculations. The calculated results by the conventional multislice (CMS) method and the improved conventional multislice (ICMS) method using a large dynamical aperture to avoid numerical errors are compared with accurate results. We have found that the zero-order Laue zones (ZOLZs) reflection cannot be properly described only using the projected potential in the whole unit cell; in general, we need to subslice the electrostatic potential inside the unit cell. It is shown that the ICMS method has higher accuracy than the CMS method for the calculation of the ZOLZ, HOLZ and Pseudo-HOLZ reflections. Hence, ICMS method allows to use a larger slice thickness than the CMS method and reduces the calculation time. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000308079200011 Publication Date 2012-01-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 6 Open Access
Notes Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:101902 Serial 1567
Permanent link to this record
 

 
Author Croitoru, M.D.; van Dyck, D.; Liu, Y.Z.; Zhang, Z.
Title Measurement of specimen thickness by phase change determination in TEM Type A1 Journal article
Year 2008 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 108 Issue 12 Pages 1616-1622
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) A non-destructive method for measuring the thickness of thin amorphous films composed of light elements has been developed. The method employs the statistics of the phase of the electron exit wave function. The accuracy of this method has been checked numerically by the multislice method and compared with that based on the mean inner potential.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000260808300016 Publication Date 2008-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 2 Open Access
Notes Approved Most recent IF: 2.843; 2008 IF: 2.629
Call Number UA @ lucian @ c:irua:75643 Serial 1961
Permanent link to this record
 

 
Author Verbeeck, J.; van Dyck, D.; Lichte, H.; Potapov, P.; Schattschneider, P.
Title Plasmon holographic experiments: theoretical framework Type A1 Journal article
Year 2005 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 102 Issue 3 Pages 239-255
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) A theoretical framework is described to understand the results of plasmon holography experiments leading to insight in the meaning of the experimental results and pointing out directions for future experiments. The framework is based on the formalism of mutual intensity to describe how coherence is transferred through an optical system. For the inelastic interaction with the object, an expression for the volume. plasmon excitations in a free electron gas is used as a model for the behaviour of aluminium. The formalism leads to a clear graphical intuitive tool for under-standing the experiments. It becomes evident that the measured coherence is solely related to the angular distribution of the plasmon scattering in the case of bulk plasmons. After describing the framework, the special case of coherence outside a spherical particle is treated and the seemingly controversial idea of a plasmon with a limited coherence length obtained front experiments is clarified. (C) 2004 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000226436600010 Publication Date 2004-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 43 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2005 IF: 2.490
Call Number UA @ lucian @ c:irua:57133UA @ admin @ c:irua:57133 Serial 2643
Permanent link to this record
 

 
Author Van Aert, S.; Chen, J.H.; van Dyck, D.
Title Linear versus non-linear structural information limit in high-resolution transmission electron microscopy Type A1 Journal article
Year 2010 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 110 Issue 11 Pages 1404-1410
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) A widely used performance criterion in high-resolution transmission electron microscopy (HRTEM) is the information limit. It corresponds to the inverse of the maximum spatial object frequency that is linearly transmitted with sufficient intensity from the exit plane of the object to the image plane and is limited due to partial temporal coherence. In practice, the information limit is often measured from a diffractogram or from Young's fringes assuming a weak phase object scattering beyond the inverse of the information limit. However, for an aberration corrected electron microscope, with an information limit in the sub-angstrom range, weak phase objects are no longer applicable since they do not scatter sufficiently in this range. Therefore, one relies on more strongly scattering objects such as crystals of heavy atoms observed along a low index zone axis. In that case, dynamical scattering becomes important such that the non-linear and linear interaction may be equally important. The non-linear interaction may then set the experimental cut-off frequency observed in a diffractogram. The goal of this paper is to quantify both the linear and the non-linear information transfer in terms of closed form analytical expressions. Whereas the cut-off frequency set by the linear transfer can be directly related with the attainable resolution, information from the non-linear transfer can only be extracted using quantitative, model-based methods. In contrast to the historic definition of the information limit depending on microscope parameters only, the expressions derived in this paper explicitly incorporate their dependence on the structure parameters as well. In order to emphasize this dependence and to distinguish from the usual information limit, the expressions derived for the inverse cut-off frequencies will be referred to as the linear and non-linear structural information limit. The present findings confirm the well-known result that partial temporal coherence has different effects on the transfer of the linear and non-linear terms, such that the non-linear imaging contributions are damped less than the linear imaging contributions at high spatial frequencies. This will be important when coherent aberrations such as spherical aberration and defocus are reduced.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000282562100008 Publication Date 2010-07-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 6 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2010 IF: 2.063
Call Number UA @ lucian @ c:irua:83689 Serial 1821
Permanent link to this record
 

 
Author Lobato Hoyos, I.P.; van Dyck, D.
Title An accurate parameterization for scattering factors, electron densities and electrostatic potentials for neutral atoms that obey all physical constraints Type A1 Journal article
Year 2014 Publication Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A
Volume 70 Issue 6 Pages 636-649
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) An efficient procedure and computer program are outlined for fitting numerical X-ray and electron scattering factors with the correct inclusion of all physical constraints. The numerical electron scattering factors have been parameterized using five analytic non-relativistic hydrogen electron scattering factors as basis functions for 103 neutral atoms of the periodic table. The inclusion of the correct physical constraints in the electron scattering factor and its derived quantities allows the use of the new parameterization in different fields. In terms of quality of the fit, the proposed parameterization of the electron scattering factor is one order of magnitude better than the previous analytic fittings.
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos 000344599300012 Publication Date 2014-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-2733; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.725 Times cited 19 Open Access
Notes Approved Most recent IF: 5.725; 2014 IF: NA
Call Number UA @ lucian @ c:irua:122103 Serial 93
Permanent link to this record
 

 
Author van den Broek, W.; Van Aert, S.; van Dyck, D.
Title A model based reconstruction technique for depth sectioning with scanning transmission electron microscopy Type A1 Journal article
Year 2010 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 110 Issue 5 Pages 548-554
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) Depth sectioning in high angular annular dark field scanning transmission electron microscopy is considered a candidate for three-dimensional characterization on the atomic scale. However at present the depth resolution is still far from the atomic level, due to strong limitations in the opening angle of the beam. In this paper we introduce a new, parameter based tomographic reconstruction algorithm that allows to make maximal use of the prior knowledge about the constituent atom types and the microscope settings, so as to retrieve the atomic positions and push the resolution to the atomic level in all three dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000279065700022 Publication Date 2009-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 16 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2010 IF: 2.063
Call Number UA @ lucian @ c:irua:83690 Serial 2104
Permanent link to this record
 

 
Author Sentosun, K.; Lobato, I.; Bladt, E.; Zhang, Y.; Palenstijn, W.J.; Batenburg, K.J.; Van Dyck, D.; Bals, S.
Title Artifact Reduction Based on Sinogram Interpolation for the 3D Reconstruction of Nanoparticles Using Electron Tomography Type A1 Journal article
Year 2017 Publication Particle and particle systems characterization Abbreviated Journal Part. Part. Syst. Charact.
Volume 34 Issue 34 Pages 1700287
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) Electron tomography is a well-known technique providing a 3D characterization of the morphology and chemical composition of nanoparticles. However, several reasons hamper the acquisition of tilt series with a large number of projection images, which deteriorate the quality of the 3D reconstruction. Here, an inpainting method that is based on sinogram interpolation is proposed, which enables one to reduce artifacts in the reconstruction related to a limited tilt series of projection images. The advantages of the approach will be demonstrated for the 3D characterization of nanoparticles using phantoms and several case studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000418416100005 Publication Date 2017-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1521-4117 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access OpenAccess
Notes K.S. and S.B. acknowledge support from the Fund for Scientific ResearchFlanders (FWO) (G019014N and G021814N). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). Y.Z. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665501 through a FWO [PEGASUS]2 Marie Skłodowska-Curie fellowship (12U4917N). The authors would like to thank Prof. Luis Liz-Marzán for provision of the samples. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:147857UA @ admin @ c:irua:147857 Serial 4798
Permanent link to this record
 

 
Author De Meulenaere, P.; van Dyck, D.; Van Tendeloo, G.; van Landuyt, J.
Title Dynamical electron diffraction in substitutionally disordered column structures Type A1 Journal article
Year 1995 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 60 Issue 1 Pages 171-185
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) For column structures, such as fee-based alloys viewed along the cube direction, the concept of electron channelling through the atom columns is more and more used to interpret the corresponding HREM images. In the case of(partially) disordered columns, the projected potential approach which is used in the channelling description must be questioned since the arrangement of the atoms along the beam direction might affect the exit wave of the electrons. In this paper, we critically inspect this top-bottom effect using multi-slice calculations. A modified channelling theory is introduced which turns out to be very appropriate for the interpretation of these results. For substitutionally disordered column structures, it is also discussed how to link the chemical composition of the material to statistical data of the HREM image. This results in a convenient tool to discern images taken at different thicknesses and focus values.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1995TG59500017 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.436 Times cited 14 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:13013 Serial 770
Permanent link to this record
 

 
Author van den Broek, W.; Rosenauer, A.; Goris, B.; Martinez, G.T.; Bals, S.; Van Aert, S.; van Dyck, D.
Title Correction of non-linear thickness effects in HAADF STEM electron tomography Type A1 Journal article
Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 116 Issue Pages 8-12
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) In materials science, high angle annular dark field scanning transmission electron microscopy is often used for tomography at the nanometer scale. In this work, it is shown that a thickness dependent, non-linear damping of the recorded intensities occurs. This results in an underestimated intensity in the interior of reconstructions of homogeneous particles, which is known as the cupping artifact. In this paper, this non-linear effect is demonstrated in experimental images taken under common conditions and is reproduced with a numerical simulation. Furthermore, an analytical derivation shows that these non-linearities can be inverted if the imaging is done quantitatively, thus preventing cupping in the reconstruction.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000304473700002 Publication Date 2012-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 67 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:96558 Serial 518
Permanent link to this record
 

 
Author Wang, A.; Chen, F.R.; Van Aert, S.; van Dyck, D.
Title Direct structure inversion from exit waves: part 1: theory and simulations Type A1 Journal article
Year 2010 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 110 Issue 5 Pages 527-534
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) In order to interpret the amplitude and phase of the exit wave in terms of mass and position of the atoms, one has to invert the dynamic scattering of the electrons in the object so as to obtain a starting structure which can then be used as a seed for further quantitative structure refinement. This is especially challenging in case of a zone axis condition when the interaction of the electrons with the atom column is very strong. Based on the channelling theory we will show that the channelling map not only yields a circle on the Argand plot but also a circular defocus curve for every column. The former gives the number of atoms in each column, while the latter provides the defocus value for each column, which reveals the surface roughness at the exit plane with single atom sensitivity.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000279065700019 Publication Date 2009-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 25 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2010 IF: 2.063
Call Number UA @ lucian @ c:irua:83691 Serial 723
Permanent link to this record
 

 
Author de Backer, A.; Van Aert, S.; van Dyck, D.
Title High precision measurements of atom column positions using model-based exit wave reconstruction Type A1 Journal article
Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 111 Issue 9/10 Pages 1475-1482
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) In this paper, it has been investigated how to measure atom column positions as accurately and precisely as possible using a focal series of images. In theory, it is expected that the precision would considerably improve using a maximum likelihood estimator based on the full series of focal images. As such, the theoretical lower bound on the variances of the unknown atom column positions can be attained. However, this approach is numerically demanding. Therefore, maximum likelihood estimation has been compared with the results obtained by fitting a model to a reconstructed exit wave rather than to the full series of focal images. Hence, a real space model-based exit wave reconstruction technique based on the channelling theory is introduced. Simulations show that the reconstructed complex exit wave contains the same amount of information concerning the atom column positions as the full series of focal images. Only for thin samples, which act as weak phase objects, this information can be retrieved from the phase of the reconstructed complex exit wave.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300461200004 Publication Date 2011-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 8 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:91879 Serial 1438
Permanent link to this record
 

 
Author Alania, M.; De Backer, A.; Lobato, I.; Krause, F.F.; Van Dyck, D.; Rosenauer, A.; Van Aert, S.
Title How precise can atoms of a nanocluster be located in 3D using a tilt series of scanning transmission electron microscopy images? Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 181 Issue 181 Pages 134-143
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) In this paper, we investigate how precise atoms of a small nanocluster can ultimately be located in three dimensions (3D) from a tilt series of images acquired using annular dark field (ADF) scanning transmission electron microscopy (STEM). Therefore, we derive an expression for the statistical precision with which the 3D atomic position coordinates can be estimated in a quantitative analysis. Evaluating this statistical precision as a function of the microscope settings also allows us to derive the optimal experimental design. In this manner, the optimal angular tilt range, required electron dose, optimal detector angles, and number of projection images can be determined.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411170800016 Publication Date 2016-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 3 Open Access OpenAccess
Notes The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483-ESTEEM2. The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N, G.0368.15N, and WO.010.16N) and a post-doctoral grant to A. De Backer, and from the DFG under contract No. RO-2057/4-2. Approved Most recent IF: 2.843
Call Number EMAT @ emat @ c:irua:144432 Serial 4618
Permanent link to this record
 

 
Author Wang, A.; Van Aert, S.; Goos, P.; van Dyck, D.
Title Precision of three-dimensional atomic scale measurements from HRTEM images : what are the limits? Type A1 Journal article
Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 114 Issue Pages 20-30
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) In this paper, we investigate to what extent high resolution transmission electron microscopy images can be used to measure the mass, in terms of thickness, and surface profile, corresponding to the defocus offset, of an object at the atomic scale. Therefore, we derive an expression for the statistical precision with which these object parameters can be estimated in a quantitative analysis. Evaluating this expression as a function of the microscope settings allows us to derive the optimal microscope design. Acquiring three-dimensional structure information in terms of thickness turns out to be much more difficult than obtaining two-dimensional information on the projected atom column positions. The attainable precision is found to be more strongly affected by processes influencing the image contrast, such as phonon scattering, than by the specific choice of microscope settings. For a realistic incident electron dose, it is expected that atom columns can be distinguished with single atom sensitivity up to a thickness of the order of the extinction distance. A comparable thickness limit is determined to measure surface steps of one atom. An increase of the electron dose shifts the limiting thickness upward due to an increase in the signal-to-noise ratio.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000301954300003 Publication Date 2012-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 5 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:94116 Serial 2692
Permanent link to this record
 

 
Author van den Broek, W.; Van Aert, S.; Goos, P.; van Dyck, D.
Title Throughput maximization of particle radius measurements by balancing size and current of the electron probe Type A1 Journal article
Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 111 Issue 7 Pages 940-947
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) In thispaperweinvestigatewhichprobesizemaximizesthethroughputwhenmeasuringtheradiusof nanoparticlesinhighangleannulardarkfieldscanningtransmissionelectronmicroscopy(HAADFSTEM). The sizeandthecorrespondingcurrentoftheelectronprobedeterminetheprecisionoftheestimateofa particlesradius.Maximizingthroughputmeansthatamaximumnumberofparticlesshouldbeimaged withinagiventimeframe,sothataprespecifiedprecisionisattained.WeshowthatBayesianstatistical experimentaldesignisaveryusefulapproachtodeterminetheoptimalprobesizeusingacertainamount of priorknowledgeaboutthesample.Thedependenceoftheoptimalprobesizeonthedetectorgeometry and thediameter,variabilityandatomicnumberoftheparticlesisinvestigated.Anexpressionforthe optimalprobesizeintheabsenceofanykindofpriorknowledgeaboutthespecimenisderivedaswell.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300461000026 Publication Date 2010-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 7 Open Access
Notes Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:89657 Serial 3659
Permanent link to this record
 

 
Author Ferroni, M.; Carotta, M.C.; Guidi, V.; Martinelli, G.; Ronconi, F.; Richard, O.; van Dyck, D.; van Landuyt, J.
Title Structural characterization of Nb-TiO2 nanosized thick-films for gas sensing application Type P1 Proceeding
Year 2000 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 68 Issue 1-3 Pages 140-145
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) Pure and Nb-doped TiO2 thick-films were prepared by screen-printing, starting from nanosized powders. Grain growth and crystalline phase modification occurred as consequence of firing at high temperature. It has been shown that niobium addition inhibits grain coarsening and hinders anatase-to-rutile phase transition. These semiconducting films exhibited n-type behavior, while Nb acted as donor-dopant. Gas measurements demonstrated that the films are suitable for CO or NO2 sensing. Microstructural characterization by electron microscopy and differential thermal analysis (DTA) highlights the dependence of gas-sensing behavior on film's properties. (C) 2000 Elsevier Science S.A. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000089218000022 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 51 Open Access
Notes Approved Most recent IF: 5.401; 2000 IF: 1.470
Call Number UA @ lucian @ c:irua:95167 Serial 3223
Permanent link to this record
 

 
Author van Dyck, D.; Lobato, I.; Chen, F.-R.; Kisielowski, C.
Title Do you believe that atoms stay in place when you observe them in HREM? Type A1 Journal article
Year 2015 Publication Micron Abbreviated Journal Micron
Volume 68 Issue 68 Pages 158-163
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) Recent advancements in aberration-corrected electron microscopy allow for an evaluation of unexpectedly large atom displacements beyond a resolution limit of similar to 0.5 angstrom, which are found to be dose-rate dependent in high resolution images. In this paper we outline a consistent description of the electron scattering process, which explains these unexpected phenomena. Our approach links thermal diffuse scattering to electron beam-induced object excitation and relaxation processes, which strongly contribute to the image formation process. The effect can provide an explanation for the well-known contrast mismatch (“Stobbs factor”) between image calculations and experiments. (C) 2014 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000348016500023 Publication Date 2014-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 11 Open Access
Notes Approved Most recent IF: 1.98; 2015 IF: 1.988
Call Number c:irua:123802 Serial 745
Permanent link to this record
 

 
Author Wang, A.; Chen, F.R.; Van Aert, S.; van Dyck, D.
Title A method to determine the local surface profile from reconstructed exit waves Type A1 Journal article
Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 111 Issue 8 Pages 1352-1359
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) Reconstructed exit waves are useful to quantify unknown structure parameters such as the position and composition of the atom columns at atomic scale. Existing techniques provide a complex wave in a flat plane which is close to the plane where the electrons leave the atom columns. However, due to local deviation in the flatness of the exit surface, there will be an offset between the plane of reconstruction and the actual exit of a specific atom column. Using the channelling theory, it has been shown that this defocus offset can in principle be determined atom column-by-atom column. As such, the surface roughness could be quantified at atomic scale. However, the outcome strongly depends on the initial plane of reconstruction especially in a crystalline structure. If this plane is further away from the true exit, the waves of the atom columns become delocalized and interfere mutually which strongly complicates the interpretation of the exit wave in terms of the local structure. In this paper, we will study the delocalization with defocus using the channelling theory in a more systematic way.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300461100049 Publication Date 2011-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 3 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:88941 Serial 2017
Permanent link to this record
 

 
Author Rosenauer, A.; Gerthsen, D.; Van Aert, S.; van Dyck, D.; den Dekker, A.J.
Title Present state of the composition evaluation of ternary semiconductor nanostructures by lattice fringe analysis Type A1 Journal article
Year 2003 Publication Institute of physics conference series Abbreviated Journal
Volume Issue 180 Pages 19-22
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) Semiconductor heterostructures are used for the fabrication of optoelectronic devices. Performance of such devices is governed by their chemical morphology. The composition distribution of quantum wells and dots is influenced by kinetic growth processes which are not understood completely at present. To obtain more information about these effects, methods for composition determination with a spatial resolution at a near atomic scale are necessary. In this paper we focus on the present state of the composition evaluation by the lattice fringe analysis (CELFA) technique and explain the basic ideas, optimum imaging conditions, precision and accuracy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-7503-0979-2 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:95118 Serial 2710
Permanent link to this record
 

 
Author Schalm, O.; van der Linden, V.; Frederickx, P.; Luyten, S.; van der Snickt, G.; Caen, J.; Schryvers, D.; Janssens, K.; Cornelis, E.; van Dyck, D.; Schreiner, M.
Title Enamels in stained glass windows: preparation, chemical composition, microstructure and causes of deterioration Type A1 Journal article
Year 2009 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 64 Issue 8 Pages 812-820
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Vision lab
Abstract (up) Stained glass windows incorporating dark blue and purple enamel paint layers are in some cases subject to severe degradation while others from the same period survived the ravages of time. A series of dark blue, greenblue and purple enamel glass paints from the same region (Northwestern Europe) and from the same period (16early 20th centuries) has been studied by means of a combination of microscopic X-ray fluorescence analysis, electron probe micro analysis and transmission electron microscopy with the aim of better understanding the causes of the degradation. The chemical composition of the enamels diverges from the average chemical composition of window glass. Some of the compositions appear to be unstable, for example those with a high concentration of K2O and a low content of CaO and PbO. In other cases, the deterioration of the paint layers was caused by the less than optimal vitrification of the enamel during the firing process. Recipes and chemical compositions indicate that glassmakers of the 1617th century had full control over the color of the enamel glass paints they made. They mainly used three types of coloring agents, based on Co (dark blue), Mn (purple) and Cu (light-blue or greenblue) as coloring elements. Bluepurple enamel paints were obtained by mixing two different coloring agents. The coloring agent for redpurple enamel, introduced during the 19th century, was colloidal gold embedded in grains of lead glass.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000269995300018 Publication Date 2009-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 28 Open Access
Notes Iuap Vi/6; Fwo; Goa Approved Most recent IF: 3.241; 2009 IF: 2.719
Call Number UA @ lucian @ c:irua:79647 Serial 1035
Permanent link to this record
 

 
Author Van Aert, S.; van den Broek, W.; Goos, P.; van Dyck, D.
Title Model-based electron microscopy : from images toward precise numbers for unknown structure parameters Type A1 Journal article
Year 2012 Publication Micron Abbreviated Journal Micron
Volume 43 Issue 4 Pages 509-515
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) Statistical parameter estimation theory is proposed as a method to quantify electron microscopy images. It aims at obtaining precise and accurate values for the unknown structure parameters including, for example, atomic column positions and types. In this theory, observations are purely considered as data planes, from which structure parameters have to be determined using a parametric model describing the images. The method enables us to measure positions of atomic columns with a precision of the order of a few picometers even though the resolution of the electron microscope is one or two orders of magnitude larger. Moreover, small differences in averaged atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark field scanning transmission electron microscopy images. Finally, it is shown how to optimize the experimental design so as to attain the highest precision. As an example, the optimization of the probe size for nanoparticle radius measurements is considered. It is also shown how to quantitatively balance signal-to-noise ratio and resolution by adjusting the probe size.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000301702400003 Publication Date 2011-11-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 7 Open Access
Notes Fwo Approved Most recent IF: 1.98; 2012 IF: 1.876
Call Number UA @ lucian @ c:irua:94114 Serial 2099
Permanent link to this record
 

 
Author van Dyck, D.; Croitoru, M.D.
Title Statistical method for thickness measurement of amorphous objects Type A1 Journal article
Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 90 Issue 24 Pages 241911-241913
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) The authors propose a nondestructive method for the determination of the thickness of an amorphous sample. This method is based on the statistics of the phase of the electron exit wave function, which depend on the number of atoms traversed by the incident electron which itself is a function of the thickness of the object. The accuracy of this method has been checked numerically by the multislice method and compared with that based on the mean inner potential. (c) 2007 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000247305400033 Publication Date 2007-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 4 Open Access
Notes Fwo Approved Most recent IF: 3.411; 2007 IF: 3.596
Call Number UA @ lucian @ c:irua:102671 Serial 3158
Permanent link to this record
 

 
Author Van Tendeloo, G.; op de Beeck, M.; De Meulenaere, P.; van Dyck, D.
Title Towards quantitative high resolution electron microscopy? Type A1 Journal article
Year 1995 Publication Institute of physics conference series Abbreviated Journal
Volume 147 Issue Pages 67-72
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) The basics of the interpretation of high resolution images showing detail of the order of 0.1 nm are shortly explained here. The use of a field emission source, a CCD camera and an adapted reconstruction method for restoring the projected crystal potential (focus variation method) allows a quantitative interpretation of HREM images. Examples of partially disordered alloys and carbonate ordering in high Tc superconductors are presented.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1995BE67F00014 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-7503-0357-3; 0951-3248; 0305-2346 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:13015 Serial 3688
Permanent link to this record
 

 
Author van den Broek, W.; Van Aert, S.; van Dyck, D.
Title Fully automated measurement of the modulation transfer function of charge-coupled devices above the Nyquist frequency Type A1 Journal article
Year 2012 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 18 Issue 2 Pages 336-342
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) The charge-coupled devices used in electron microscopy are coated with a scintillating crystal that gives rise to a severe modulation transfer function (MTF). Exact knowledge of the MTF is imperative for a good correspondence between image simulation and experiment. We present a practical method to measure the MTF above the Nyquist frequency from the beam blocker's shadow image. The image processing has been fully automated and the program is made public. The method is successfully tested on three cameras with various beam blocker shapes.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000302084700011 Publication Date 2012-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 15 Open Access
Notes Fwo Approved Most recent IF: 1.891; 2012 IF: 2.495
Call Number UA @ lucian @ c:irua:96557 Serial 1297
Permanent link to this record