|   | 
Details
   web
Records
Author Nuyts, G.; Cagno, S.; Hellemans, K.; Veronesi, G.; Cotte, M.; Janssens, K.
Title Study of the early stages of Mn intrusion in corroded glass by means of combined SR FTIR/\muXRF imaging and XANES spectroscopy Type P1 Proceeding
Year 2013 Publication Procedia Chemistry T2 – Youth in Conservation of Cultural Heritage Conference (YOCOCU), June 18-20, 2012, University of Antwerp, Antwerp, Belgium Abbreviated Journal
Volume Issue Pages 239-247
Keywords P1 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Historical glass, especially medieval glass, can undergo weathering under the influence of time and environmental conditions. The aim of this investigation was to better understand the processes involved in this natural degradation process by studying artificially altered glass samples prepared for the use of evaluation of conservation methods. Non-durable glass sensors produced by the Fraunhofer Institute (type M1.0) were used as a starting material for artificial alteration. These were immersed in acidic (pH = 0, 2, 4) and neutral solutions (1 h – 8 h). In a second stage the glass samples were immersed in a 0.5 M MnCl2 solution (24 h, 48 h and 72 h), allowing intrusion of Mn from the solution into the gel layer. The samples were characterized at different stages with reflectance FTIR spectroscopy, mu XRF mapping and mu XANES. All measurements were carried out at ESRF, beamline ID21. Reflectance FTIR spectroscopy measurements were performed in the 800 4000 cm(-1) range. Cluster analysis of the resulting maps evidenced the rapid growth of the gel layer in strong acidic conditions. The average spectra for each cluster feature show for the original glass a strong Si-O- stretching band between 900 and 1000 cm(-1), whereas the gel layer could be identified by the increasing Si-O-Si bands around 1100 and 1250 cm(-1). mu XRF maps were recorded at different stages of the experiment at energies around the Mn-K edge (6.539 keV) and with a step size of 2 by 2 m. These confirm the leaching of K+ and Ca+2 from the glass and the intrusion of Mn from the solution. Mn was found throughout the entire gel layer, but with a concentration gradient peaking at the surface. XANES point measurements were recorded at various points where Mn was present. No spatial variation was found, but linear combination fitting of the spectra with various Mn reference compounds indicated that Mn2+Mn23+O4 is the main Mn compound in the gel layer, as was hypothesised by Watkinson et al. The standard corroded glass samples studied here can be used for the evaluation of conservation treatments in follow-up experiments. (C) 2013 The Authors. Published by Elsevier B.V. Selection and peer-review under responsibility of the IA-CS (Italian Association of Conservation Scientists) and University of Antwerp
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000321673900030 Publication Date 2013-04-17
Series Editor Series Title Abbreviated Series Title
Series Volume 8 Series Issue Edition
ISSN 1876-6196 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access
Notes ; This research was supported by the Interuniversity Attraction Poles Programme – Belgian Science Policy (IUAP VI/16). The text also presents results of GOA XANES “meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) projects no. G.0704.08 and G.01769.09. We gratefully acknowledge ESRF for granting beamtime (experiment EC873). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:109871 Serial 5851
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Cotte, M.; Sorace, L.; Vanmeert, F.; Brunetti, B.G.; Miliani, C.
Title Chromium speciation methods and infrared spectroscopy for studying the chemical reactivity of lead chromate-based pigments in oil medium Type A1 Journal article
Year 2016 Publication Microchemical journal T2 – TECHNART Conference, APR 27-30, 2015, Catania, ITALY Abbreviated Journal Microchem J
Volume 124 Issue Pages 272-282
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Environmental factors, such as light, humidity and temperature are triggering agents for the alteration of organic and/or inorganic constituents of oil paintings. The oxidation of the organic material is favored by increasing of relative humidity and temperature, whereas processes involving changes of the oxidation states of a number of inorganic pigments (e.g., vermilion, cadmium yellows, zinc yellows, chrome yellows) are mainly activated by light-exposure. In view of the optimization of the long-term conservation and restoration strategies of paintings it is of relevant interest to establish the consequences of thermal parameters (temperature and relative humidity) on the chemical/photochemical-reactivity and the nature of the alteration products of light sensitive-pigments in oil medium. To this aim here we propose a multi-method analytical approach based on the combination of diffuse reflectance UV-Vis, FTIR, synchrotron radiation (SR)-based micro X-ray fluorescence (mu-XRF)/micro-X-ray absorption neat edge structure ()CANES) and electron paramagnetic resonance (EPR) spectroscopies for studying the effects of different relative humidity conditions before and after light exposure on the reactivity of a series of lead chromate-based pigments [such as PbCrO4 center dot PbO (monoclinic), PbCrO4 (monoclinic) and PbCr0.2S0.8O4 (orthorhombic)] in an oil medium. The investigation of paint models was also compared to that of a late 19th century historical orthorhombic PbCr0.4S0.6O4 oil paint. Diffuse reflectance UV-Vis and FTIR spectroscopies were used to obtain information associated with chromatic changes and the formation of organo-metal degradation products at the paint surface. SR-based Cr K-edge mu-XANES/mu-XRF mapping analysis and EPR spectroscopy were employed in a complementary fashion to determine the amount, nature and distribution of Cr(III) and Cr(V)-based alteration compounds within the paints with micrometric spatial resolution. Under the employed thermal aging conditions, lead(II)-carboxylates and reduced Cr-compounds (in abundance of up to about 35% at the surface) have been identified in the lead chromate-based paints. The tendency of chromates to become reduced increased with increasing moisture levels and was favored for the orthorhombic PbCr0.2S0.8O4 compounds. The redox process gave rise to the formation of Cr(V)-species in relative amount much higher than that was formed in the equivalent paint which was exposed only to light. After light-exposure of the thermally aged paints, compounds ascribable to the oxidation of the organic binder were detected for all the types of pigments. Nevertheless, the previous thermal treatment increased the tendency toward photo-reduction of only the PbCr0.2S0.8O4 pigment. For this light-sensitive compound, the thickness variation of the reduced Cr-rich (ca. 70%) photo-alteration layer with moisture levels could be ascribed to a surface passivation phenomenon that had already occurred before photochemical aging. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000367755600042 Publication Date 2015-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 23 Open Access
Notes ; ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:131099 Serial 5519
Permanent link to this record
 

 
Author Monico, L.; Chieli, A.; De Meyer, S.; Cotte, M.; de Nolf, W.; Falkenberg, G.; Janssens, K.; Romani, A.; Miliani, C.
Title Role of the relative humidity and the Cd/Zn stoichiometry in the photooxidation process of cadmium yellows (CdS/Cd1-xZnxS) in oil paintings Type A1 Journal article
Year 2018 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 24 Issue 45 Pages 11584-11593
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Cadmium yellows (CdYs) refer to a family of cadmium sulfide pigments, which have been widely used by artists since the late 19th century. Despite being considered stable, they are suffering from discoloration in iconic paintings, such as Joy of Life by Matisse, Flowers in a blue vase by Van Gogh, and The Scream by Munch, most likely due to the formation of CdSO4 center dot nH(2)O. The driving factors of the CdYs degradation and how these affect the overall process are still unknown. Here, we study a series of oil mock-up paints made of CdYs of different stoichiometry (CdS/Cd0.76Zn0.24S) and crystalline structure (hexagonal/ cubic) before and after aging at variable relative humidity under exposure to light and in darkness. Synchrotron radiation-based X-ray methods combined with UV-Vis and FTIR spectroscopy show that: 1) Cd0.76Zn0.24S is more susceptible to photooxidation than CdS; both compounds can act as photocatalysts for the oil oxidation. 2) The photooxidation of CdS/Cd0.76Zn0.24S to CdSO4 center dot nH(2)O is triggered by moisture. 3) The nature of alteration products depends on the aging conditions and the Cd/Zn stoichiometry. Based on our findings, we propose a scheme for the mechanism of the photocorrosion process and the photocatalytic activity of CdY pigments in the oil binder. Overall, our results form a reliable basis for understanding the degradation of CdS-based paints in artworks and contribute towards developing better ways of preserving them for future generations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441126900012 Publication Date 2018-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited 5 Open Access
Notes ; The research was financially supported by the European research project IPERION-CH, funded by the European Commission, H2020-INFRAIA-2014-2015 (Grant agreement n. 654028) and by the BOF-GOA Project SOLARPaint (University of Antwerp Research Council). For the beamtime grants received, we thank the ESRF (experiments n. HG64, HG95 and in-house beamtimes) and PETRA III-DESY (experiments: I-20130221 EC, I-20160126 EC). We are also grateful to Dr. Jan Garrevoet for his contribution to set up the P06-beamline at PETRA III-DESY. ; Approved Most recent IF: 5.317
Call Number UA @ admin @ c:irua:153733 Serial 5821
Permanent link to this record
 

 
Author Mayda, S.; Monico, L.; Krishnan, D.; De Meyer, S.; Cotte, M.; Garrevoet, J.; Falkenberg, G.; Sandu, I.C.A.; Partoens, B.; Lamoen, D.; Romani, A.; Miliani, C.; Verbeeck, J.; Janssens, K.
Title A combined experimental and computational approach to understanding CdS pigment oxidation in a renowned early 20th century painting Type A1 Journal article
Year 2023 Publication Chemistry of materials Abbreviated Journal
Volume 35 Issue 24 Pages 10403-10415
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract (down) Cadmium sulfide (CdS)-based yellow pigments have been used in a number of early 20th century artworks, including The Scream series painted by Edvard Munch. Some of these unique paintings are threatened by the discoloration of these CdS-based yellow oil paints because of the oxidation of the original sulfides to sulfates. The experimental data obtained here prove that moisture and cadmium chloride compounds play a key role in promoting such oxidation. To clarify how these two factors effectively prompt the process, we studied the band alignment between CdS, CdCl2, and Cd-(OH)Cl as well as the radicals center dot OH and H3O center dot by density functional theory (DFT) methods. Our results show that a stack of several layers of Cd-(OH)Cl creates a pocket of positive holes at the Cl-terminated surface and a pocket of electrons at the OH-terminated surface by leading in a difference in ionization energy at both surfaces. The resulting band alignment indicates that Cd-(OH)Cl can indeed play the role of an oxidative catalyst for CdS in a moist environment, thus providing an explanation for the experimental evidence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001133000900001 Publication Date 2023-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.6 Times cited Open Access
Notes The experimental research on the cadmium yellow powders/paint mock-ups and The Scream (ca. 1910) was financially supported by the European Union, research projects IPERION-CH (H2020-INFRAIA-2014-2015, GA no. 654028) and IPERION-HS (H2020-INFRAIA-2019-1, GA no. 871034) and the project AMIS within the program Dipartimenti di Eccellenza 2018-2022 (funded by MUR and the University of Perugia). For the beamtime grants received, the authors thank the ESRF-ID21 beamline (experiments HG64 and HG95), the DESY-P06 beamline, a member of the Helmholtz Association HGF (experiments I-20130221 EC and I-20160126 EC), and the project CALIPSOplus under the GA no. 730872 from the E.U. Framework Programme for Research and Innovation Horizon 2020. All of the staff of the MUNCH Museum (Conservation Department) is acknowledged for their collaboration. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO – Vlaanderen and the Flemish Government, Department EWI. Approved Most recent IF: 8.6; 2023 IF: 9.466
Call Number UA @ admin @ c:irua:202836 Serial 8999
Permanent link to this record
 

 
Author Monico, L.; Rosi, F.; Vivani, R.; Cartechini, L.; Janssens, K.; Gauquelin, N.; Chezganov, D.; Verbeeck, J.; Cotte, M.; D'Acapito, F.; Barni, L.; Grazia, C.; Buemi, L.P.; Andral, J.-L.; Miliani, C.; Romani, A.
Title Deeper insights into the photoluminescence properties and (photo)chemical reactivity of cadmium red (CdS1-xSex) paints in renowned twentieth century paintings by state-of-the-art investigations at multiple length scales Type A1 Journal article
Year 2022 Publication The European Physical Journal Plus Abbreviated Journal Eur Phys J Plus
Volume 137 Issue 3 Pages 311
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract (down) Cadmium red is the name used for denoting a class of twentieth century artists' pigments described by the general formula CdS1-xSex. For their vibrant hues and excellent covering power, a number of renowned modern and contemporary painters, including Jackson Pollock, often used cadmium reds. As direct band gap semiconductors, CdS1-xSex compounds undergo direct radiative recombination (with emissions from the green to orange region) and radiative deactivation from intragap trapping states due to crystal defects, which give rise to two peculiar red-NIR emissions, known as deep level emissions (DLEs). The positions of the DLEs mainly depend on the Se content of CdS1-xSex; thus, photoluminescence and diffuse reflectance vis-NIR spectroscopy have been profitably used for the non-invasive identification of different cadmium red varieties in artworks over the last decade. Systematic knowledge is however currently lacking on what are the parameters related to intrinsic crystal defects of CdS1-xSex and environmental factors influencing the spectral properties of DLEs as well as on the overall (photo)chemical reactivity of cadmium reds in paint matrixes. Here, we present the application of a novel multi-length scale and multi-method approach to deepen insights into the photoluminescence properties and (photo)chemical reactivity of cadmium reds in oil paintings by combining both well established and new non-invasive/non-destructive analytical techniques, including macro-scale vis-NIR and vibrational spectroscopies and micro-/nano-scale advanced electron microscopy mapping and X-ray methods employing synchrotron radiation and conventional sources. Macro-scale vis-NIR spectroscopy data obtained from the in situ non-invasive analysis of nine masterpieces by Gerardo Dottori, Jackson Pollock and Nicolas de Stael allowed classifying the CdS1-xSex-paints in three groups, according to the relative intensity of the two DLE bands. These outcomes, combined with results from micro-/nano-scale electron microscopy mapping and X-ray analysis of a set of CdS1-xSex powders and artificially aged paint mock-ups, indicated that the relative intensity of DLEs is not affected by the morphology, microstructure and local atomic environment of the pigment particles but it is influenced by the presence of moisture. Furthermore, the extensive study of artificially aged oil paint mock-ups permitted us to provide first evidence of the tendency of cadmium reds toward photo-degradation and to establish that the conversion of CdS1-xSex to CdSO4 and/or oxalates is triggered by the oil binding medium and moisture level and depends on the Se content. Based on these findings, we could interpret the localized presence of CdSO4 and cadmium oxalate as alteration products of the original cadmium red paints in two paintings by Pollock.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000765807600002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited 3 Open Access OpenAccess
Notes g The research was financially supported by the EU FP7 and Horizon 2020 Projects CHARISMA (FP7-INFRASTRUCTURES, GA No. 228330), IPERION-CH (H2020-INFRAIA-2014-2015, GA No. 654028), IPERION-HS (H2020-INFRAIA-2019-1, GA No. 871034) and ESTEEM3 (Research and innovation programme, GA No. 823717) and the Italian project AMIS (Dipartimenti di Eccellenza 2018–2022, funded by MIUR and Perugia University). For the beamtime grants received, we thank ESRF-ID21 (Experiment No. HG156 and in-house beamtimes) and the CERIC-ERIC Research Infrastructure for the investigations at ESRF-BM08 (LISA) beamline (Proposal Id: 20207042). D.C. acknowledges TOP/BOF funding of the University of Antwerp.; esteem3reported; esteem3TA Approved Most recent IF: 3.4
Call Number UA @ admin @ c:irua:187375 Serial 7060
Permanent link to this record
 

 
Author Cotte, M.; Susini, J.; Dik, J.; Janssens, K.
Title Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward Type A1 Journal article
Year 2010 Publication Accounts of chemical research Abbreviated Journal Accounts Chem Res
Volume 43 Issue 6 Pages 705-714
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) A variety of analytical techniques augmented by the use of synchrotron radiation (SR), such as X-ray fluorescence (SR-XRF) and X-ray diffraction (SR-XRD), are now readily available, and they differ little, conceptually, from their common laboratory counterparts. Because of numerous advantages afforded by SR-based techniques over benchtop versions, however, SR methods have become popular with archaeologists, art historians, curators, and other researchers in the field of cultural heritage (CH). Although the CH community now commonly uses both SR-XRF and SR-XRD, the use of synchrotron-based X-ray absorption spectroscopy (SR-XAS) techniques remains marginal, mostly because CH specialists rarely interact with SR physicists. In this Account, we examine the basic principles and capabilities of XAS techniques in art preservation. XAS techniques offer a combination of features particularly well-suited for the chemical analysis of works of art. The methods are noninvasive, have low detection limits, afford high lateral resolution, and provide exceptional chemical sensitivity. These characteristics are highly desirable for the chemical characterization of precious, heterogeneous, and complex materials. In particular, the chemical mapping capability, with high spatial resolution that provides information about local composition and chemical states, even for trace elements, is a unique asset. The chemistry involved in both the objects history (that is, during fabrication) and future (that is, during preservation and restoration treatments) can be addressed by XAS. On the one hand, many studies seek to explain optical effects occurring in historical glasses or ceramics by probing the molecular environment of relevant chromophores. Hence, XAS can provide insight into craft skills that were mastered years, decades, or centuries ago but were lost over the course of time. On the other hand, XAS can also be used to characterize unwanted reactions, which are then considered alteration phenomena and can dramatically alter the objects original visual properties. In such cases, the bulk elemental composition is usually unchanged. Hence, monitoring oxidation state (or, more generally, other chemical modifications) can be of great importance. Recent applications of XAS in art conservation are reviewed and new trends are discussed, highlighting the value (and future possibilities) of XAS, which remains, given its potential, underutilized in the CH community.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278842500003 Publication Date 2010-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 20.268 Times cited 74 Open Access
Notes ; ; Approved Most recent IF: 20.268; 2010 IF: 21.852
Call Number UA @ admin @ c:irua:83982 Serial 5861
Permanent link to this record
 

 
Author Christiansen, T.; Cotte, M.; de Nolf, W.; Mouro, E.; Reyes-Herrera, J.; De Meyer, S.; Vanmeert, F.; Salvado, N.; Gonzalez, V.; Lindelof, P.E.; Mortensen, K.; Ryholt, K.; Janssens, K.; Larsen, S.
Title Insights into the composition of ancient Egyptian red and black inks on papyri achieved by synchrotron-based microanalyses Type A1 Journal article
Year 2020 Publication Proceedings Of The National Academy Of Sciences Of The United States Of America Abbreviated Journal P Natl Acad Sci Usa
Volume 117 Issue 45 Pages 27825-27835
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) A hitherto unknown composition is highlighted in the red and black inks preserved on ancient Egyptian papyri from the Roman period (circa 100 to 200 CE). Synchrotron-based macro-X-ray fluo-rescence (XRF) mapping brings to light the presence of iron (Fe) and lead (Pb) compounds in the majority of the red inks inscribed on 12 papyrus fragments from the Tebtunis temple library. The iron-based compounds in the inks can be assigned to ocher, notably due to the colocalization of Fe with aluminum, and the detection of hematite (Fe2O3) by micro-X-ray diffraction. Using the same techniques together with micro-Fourier transform infrared spectroscopy, Pb is shown to be associated with fatty acid phosphate, sulfate, chloride, and carboxylate ions. Moreover, microXRF maps reveal a peculiar distribution and colocalization of Pb, phosphorus (P), and sulfur (S), which are present at the micrometric scale resembling diffused “coffee rings” surrounding the ocher particles imbedded in the red letters, and at the submicrometric scale concentrated in the papyrus cell walls. A similar Pb, P, and S composition was found in three black inks, suggesting that the same lead components were employed in the manufacture of carbon-based inks. Bearing in mind that pigments such as red lead (Pb3O4) and lead white (hydrocerussite [Pb-3(CO3)(2)(OH)(2)] and/or cerussite [PbCO3]) were not detected, the results presented here suggest that the lead compound in the ink was used as a drier rather than as a pigment. Accordingly, the study calls for a reassessment of the composition of lead-based components in ancient Mediterranean pigments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000590753400016 Publication Date 2020-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.1 Times cited Open Access
Notes Approved Most recent IF: 11.1; 2020 IF: 9.661
Call Number UA @ admin @ c:irua:174323 Serial 8107
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Alfeld, M.; Cotte, M.; Vanmeert, F.; Ryan, C.G.; Falkenberg, G.; Howard, D.L.; Brunetti, B.G.; Miliani, C.
Title Full spectral XANES imaging using the Maia detector array as a new tool for the study of the alteration process of chrome yellow pigments in paintings by Vincent van Gogh Type A1 Journal article
Year 2015 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 30 Issue 3 Pages 613-626
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) A combination of synchrotron radiation (SR) micro X-ray fluorescence (m-XRF) and XRF mode X-ray absorption near edge structure (XANES) measurements at the Cr K-edge already allowed us to establish that the photo-reduction of chromates to Cr(III) compounds is the cause of darkening of chrome yellow pigments (PbCr1-xSxO4, 0 <= x <= 0.8) in a number of paintings by Vincent van Gogh and in corresponding artificially aged paint models. A silicon drift detector (SDD) was employed to record the Cr-K XRF radiation in these X-ray micro beam-based measurements. However, in view of the limited count rate capabilities and collection solid angle of a single device, m-XRF and m-XANES employing single element SDDs (or similar) are primarily suited for collection of spectral data from individual points. Additionally, collection of XRF maps via point-by-point scanning with relatively long dwell times per point is possible but is usually confined to small areas. The development of the 384 silicon-diode array Maia XRF detector has provided valuable solutions in terms of data acquisition rate, allowing for full spectral (FS) XANES imaging in XRF mode, i.e., where spectroscopic information is available at each pixel in the scanned map. In this paper, the possibilities of SR Cr K-edge FS-XANES imaging in XRF mode using the Maia detector are examined as a new data collection strategy to study the speciation and distribution of alteration products of lead chromate-based pigments in painting materials. The results collected from two micro-samples taken from two Van Gogh paintings and an aged paint model show the possibility to perform FS-XANES imaging in practical time frames (from several minutes to a few hours) by scanning regions of sample sizes of the same order (more than 500 mm). The sensitivity and capabilities of FS-XANES imaging in providing representative chemical speciation information at the microscale (spatial resolution from similar to 2 to 0.6 mm) over the entire scanned area are demonstrated by the identification of Cr(OH) 3, Cr(III) sulfates and/or Cr(III) organometallic compounds in the corresponding phase maps, as alteration products. Comparable Cr-speciation results were obtained by performing equivalent higher spatial resolution SR m-XRF/single-point m-XANES analysis using a more conventional SDD from smaller regions of interest of each sample. Thus, large-area XRF mode FS-XANES imaging (Maia detector) is here proposed as a valuable and complementary data collection strategy in relation to “ zoomed-in” high-resolution m-XRF mapping and single-point m-XANES analysis (SDD).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000350650800006 Publication Date 2014-12-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 28 Open Access
Notes ; This research was supported by the Interuniversity Attraction Poles Programme – Belgian Science Policy (S2-ART project S4DA), GOA “SOLARPAINT” (Research Fund University of Antwerp, Belgium) and FWO (Brussels, Belgium) project no. G.0C12.13, G.0704.08 and G.01769.09. Support from the Italian projects PRIN (SICH Sustainability in Cultural Heritage: from diagnosis to the development of innovative system for consolidation, cleaning and protection) and PON (ITACHA Italian advanced technologies for cultural heritage applications) is also acknowledged. For the grants received thanks are expressed to ESRF (experiments EC-799, EC-1051) and DESY (experiment H-20000043). Part of this research was undertaken at the XFM beamline at the Australian Synchrotron, Victoria, Australia (experiment M4604). LM acknowledges the CNR for the financial support received in the framework of the Short Term Mobility Programme 2013. Thanks are expressed to Ella Hendriks (Van Gogh Museum, Amsterdam), Muriel Geldof (Cultural Heritage Agency of The Netherlands) and Margje Leeuwestein (Kroller-Muller Museum, Otterlo) for selecting and sharing the information on the cross-section taken from the paintings The Bedroom and Falling Leaves (Les Alyscamps). All the staff of the Van Gogh Museum and the Kroller-Muller Museum are acknowledged for their agreeable cooperation. ; Approved Most recent IF: 3.379; 2015 IF: 3.466
Call Number UA @ admin @ c:irua:125475 Serial 5628
Permanent link to this record