|   | 
Details
   web
Records
Author Juchtmans, R.; Béché, A.; Abakumov, A.; Batuk, M.; Verbeeck, J.
Title Using electron vortex beams to determine chirality of crystals in transmission electron microscopy Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 094112
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) We investigate electron vortex beams elastically scattered on chiral crystals. After deriving a general expression for the scattering amplitude of a vortex electron, we study its diffraction on point scatterers arranged on a helix. We derive a relation between the handedness of the helix and the topological charge of the electron vortex on one hand and the symmetry of the higher-order Laue zones in the diffraction pattern on the other for kinematically and dynamically scattered electrons. We then extend this to atoms arranged on a helix as found in crystals which belong to chiral space groups and propose a method to determine the handedness of such crystals by looking at the symmetry of the diffraction pattern. In contrast to alternative methods, our technique does not require multiple scattering, which makes it possible to also investigate extremely thin samples in which multiple scattering is suppressed. In order to verify the model, elastic scattering simulations are performed, and an experimental demonstration on Mn2Sb2O7 is given in which we find the sample to belong to the right-handed variant of its enantiomorphic pair. This demonstrates the usefulness of electron vortex beams to reveal the chirality of crystals in a transmission electron microscope and provides the required theoretical basis for further developments in this field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352017000002 Publication Date 2015-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 54 Open Access
Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra1; esteem2jra2 ECASJO_; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:125512 c:irua:125512 Serial 3825
Permanent link to this record
 

 
Author Tsirlin, A.A.; Abakumov, A.M.; Ritter, C.; Henry, P.F.; Janson, O.; Rosner, H.
Title Short-range order of Br and three-dimensional magnetism in (CuBr)LaNb2O7 Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 21 Pages 214427
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) We present a comprehensive study of the crystal structure, magnetic structure, and microscopic magnetic model of (CuBr)LaNb2O7, the Br analog of the spin-gap quantum magnet (CuCl) LaNb2O7. Despite similar crystal structures and spin lattices, the magnetic behavior and even peculiarities of the atomic arrangement in the Cl and Br compounds are very different. The high- resolution x-ray and neutron data reveal a split position of Br atoms in (CuBr) LaNb2O7. This splitting originates from two possible configurations developed by [CuBr] zigzag ribbons. While the Br atoms are locally ordered in the ab plane, their arrangement along the c direction remains partially disordered. The predominant and energetically more favorable configuration features an additional doubling of the c lattice parameter that was not observed in (CuCl) LaNb2O7. (CuBr) LaNb2O7 undergoes long-range antiferromagnetic ordering at T-N = 32 K, which is nearly 70% of the leading exchange coupling J4 similar or equal to 48 K. The Br compound does not show any experimental signatures of low-dimensional magnetism because the underlying spin lattice is three-dimensional. The coupling along the c direction is comparable to the couplings in the ab plane, even though the shortest Cu-Cu distance along c (11.69 angstrom) is three times larger than nearest-neighbor distances in the ab plane (3.55 angstrom). The stripe antiferromagnetic long-range order featuring columns of parallel spins in the ab plane and antiparallel spins along c is verified experimentally and confirmed by the microscopic analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000305557600002 Publication Date 2012-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:100289 Serial 2998
Permanent link to this record
 

 
Author Mikita, R.; Aharen, T.; Yamamoto, T.; Takeiri, F.; Ya, T.; Yoshimune, W.; Fujita, K.; Yoshida, S.; Tanaka, K.; Batuk, D.; Abakumov, A.M.; Brown, C.M.; Kobayashi, Y.; Kageyama, H.;
Title Topochemical nitridation with anion vacancy -assisted N3-/O2- exchange Type A1 Journal article
Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 138 Issue 138 Pages 3211-3217
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) We present how the introduction of anion vacancies in oxyhydrides enables a route to access new oxynitrides, by conducting ammonolysis of perovskite oxyhydride EuTiO3-xHx (x similar to 0.18). At 400 degrees C, similar to our studies on BaTiO3-xHx, hydride lability enables a low temperature direct ammonolysis of EUTi3.82+O-2.82/H-0.18, leading to the N3-/H--exchanged product EuTi4+O2.82No0.12 square 0.06 center dot When the ammonolysis temperature was increased up to 800 degrees C, we observed a further nitridation involving N3-/O2- exchange, yielding a fully oxidized Eu3+Ti4+O2N with the GdFeO3-type distortion (Pnma) as a metastable phase, instead of pyrochlore structure. Interestingly, the same reactions using the oxide EuTiO3 proceeded through a 1:1 exchange of N3- with O-2 only above 600 degrees C and resulted in incomplete nitridation to EuTi02.25N0.75, indicating that anion vacancies created during the initial nitridation process of EuTiO2.82H0.18 play a crucial role in promoting anion (N3-/O2-) exchange at high temperatures. Hence, by using (hydride-induced) anion-deficient precursors, we should be able to expand the accessible anion composition of perovskite oxynitrides.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000371945800055 Publication Date 2016-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 28 Open Access
Notes Approved Most recent IF: 13.858
Call Number UA @ lucian @ c:irua:133156 Serial 4266
Permanent link to this record
 

 
Author Gou, H.; Tsirlin, A.A.; Bykova, E.; Abakumov, A.M.; Van Tendeloo, G.; Richter, A.; Ovsyannikov, S.V.; Kurnosov, A.V.; Trots, D.M.; Konôpková, Z.; Liermann, H.P.; Dubrovinsky, L.; Dubrovinskaia, N.;
Title Peierls distortion, magnetism, and high hardness of manganese tetraboride Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 6 Pages 064108-64109
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) We report crystal structure, electronic structure, and magnetism of manganese tetraboride, MnB4, synthesized under high-pressure, high-temperature conditions. In contrast to superconducting FeB4 and metallic CrB4, which are both orthorhombic, MnB4 features a monoclinic crystal structure. Its lower symmetry originates from a Peierls distortion of the Mn chains. This distortion nearly opens the gap at the Fermi level, but despite the strong dimerization and the proximity of MnB4 to the insulating state, we find indications for a sizable paramagnetic effective moment of about 1.7 mu(B)/f.u., ferromagnetic spin correlations, and, even more surprisingly, a prominent electronic contribution to the specific heat. However, no magnetic order has been observed in standard thermodynamic measurements down to 2 K. Altogether, this renders MnB4 a structurally simple but microscopically enigmatic material; we argue that its properties may be influenced by electronic correlations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332405000002 Publication Date 2014-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 39 Open Access
Notes Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:115819 Serial 2571
Permanent link to this record
 

 
Author Abakumov, A.M.; Batuk, D.; Tsirlin, A.A.; Prescher, C.; Dubrovinsky, L.; Sheptyakov, D.V.; Schnelle, W.; Hadermann, J.; Van Tendeloo, G.
Title Frustrated pentagonal Cairo lattice in the non-collinear antiferromagnet Bi4Fe5O13F Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 2 Pages 024423-24429
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) We report on the crystal structure and magnetism of the iron-based oxyfluoride Bi4Fe5O13F, a material prototype of the Cairo pentagonal spin lattice. The crystal structure of Bi4Fe5O13F is determined by a combination of neutron diffraction, synchrotron x-ray diffraction, and transmission electron microscopy. It comprises layers of FeO6 octahedra and FeO4 tetrahedra forming deformed pentagonal units. The topology of these layers resembles a pentagonal least-perimeter tiling, which is known as the Cairo lattice. This topology gives rise to frustrated exchange couplings and underlies a sequence of magnetic transitions at T-1 = 62 K, T-2 = 71 K, and T-N = 178 K, as determined by thermodynamic measurements and neutron diffraction. Below T-1, Bi4Fe5O13F forms a fully ordered non-collinear antiferromagnetic structure, whereas the magnetic state between T-1 and T-N may be partially disordered according to the sizable increase in the magnetic entropy at T-1 and T-2. Bi4Fe5O13F reveals unanticipated magnetic transitions on the pentagonal Cairo spin lattice and calls for a further work on finite-temperature properties of this strongly frustrated spin model. DOI: 10.1103/PhysRevB.87.024423
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000314224800002 Publication Date 2013-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 17 Open Access
Notes Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107688 Serial 1293
Permanent link to this record
 

 
Author Tsirlin, A.A.; Abakumov, A.M.; Van Tendeloo, G.; Rosner, H.
Title Interplay of atomic displacement in the quantum magnet (CuCI)LaNb2O7 Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 5 Pages 054107,1-054107,12
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) We report on the crystal structure of the quantum magnet CuClLaNb2O7 that was controversially described with respect to its structural organization and magnetic behavior. Using high-resolution synchrotron powder x-ray diffraction, electron diffraction, transmission electron microscopy, and band-structure calculations, we solve the room-temperature structure of this compound -CuClLaNb2O7 and find two high-temperature polymorphs. The -CuClLaNb2O7 phase, stable above 640 K, is tetragonal with asub=3.889 Å, csub =11.738 Å, and the space group P4/mmm. In the -CuClLaNb2O7 structure, the Cu and Cl atoms are randomly displaced from the special positions along the 100 directions. The phase asub2asubcsub, space group Pbmm and the phase 2asub2asubcsub, space group Pbam are stable between 640 K and 500 K and below 500 K, respectively. The structural changes at 500 and 640 K are identified as order-disorder phase transitions. The displacement of the Cl atoms is frozen upon the → transformation while a cooperative tilting of the NbO6 octahedra in the phase further eliminates the disorder of the Cu atoms. The low-temperature -CuClLaNb2O7 structure thus combines the two types of the atomic displacements that interfere due to the bonding between the Cu atoms and the apical oxygens of the NbO6 octahedra. The precise structural information resolves the controversy between the previous computation-based models and provides the long-sought input for understanding CuClLaNb2O7 and related compounds with unusual magnetic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000280849400001 Publication Date 2010-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:83991 Serial 1706
Permanent link to this record
 

 
Author Batuk, D.; de Dobbelaere, C.; Tsirlin, A.A.; Abakumov, A.M.; Hardy, A.; van Bael, M.K.; Greenblatt, M.; Hadermann, J.
Title Crystal structure and magnetic properties of the Cr-doped spiral antiferromagnet BiMnFe2O6 Type A1 Journal article
Year 2013 Publication Materials research bulletin Abbreviated Journal Mater Res Bull
Volume 48 Issue 9 Pages 2993-2997
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) We report the Cr3+ for Mn3+ substitution in the BiMnFe2O6 structure. The BiCrxMn1-xFe2O6 solid solution is obtained by the solution-gel synthesis technique for the x values up to 0.3. The crystal structure investigation using a combination of X-ray powder diffraction and transmission electron microscopy demonstrates that the compounds retain the parent BiMnFe2O6 structure (for x = 0.3, a = 5.02010(6)angstrom, b = 7.06594(7)angstrom, c = 12.6174(1)angstrom, S.G. Pbcm, R-1 = 0.036, R-p = 0.011) with only a slight decrease in the cell parameters associated with the Cr3+ for Mn3+ substitution. Magnetic susceptibility measurements suggest strong similarities in the magnetic behavior of BiCrxMn1-xFe2O6 (x = 0.2; 0.3) and parent BiMnFe2O6. Only T-N slightly decreases upon Cr doping that indicates a very subtle influence of Cr3+ cations on the magnetic properties at the available substitution rates. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000322354000002 Publication Date 2013-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.446 Times cited 3 Open Access
Notes Fwo Approved Most recent IF: 2.446; 2013 IF: 1.968
Call Number UA @ lucian @ c:irua:109755 Serial 561
Permanent link to this record
 

 
Author Tsirlin, A.A.; Rousochatzakis, I.; Filimonov, D.; Batuk, D.; Frontzek, M.; Abakumov, A.M.
Title Spin-reorientation transitions in the Cairo pentagonal magnet Bi4Fe5O13F Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 9 Pages 094420
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) We show that interlayer spins play a dual role in the Cairo pentagonal magnet Bi4Fe5O13F, on one hand mediating the three-dimensional magnetic order, and on the other driving spin-reorientation transitions both within and between the planes. The corresponding sequence of magnetic orders unraveled by neutron diffraction and Mossbauer spectroscopy features two orthogonal magnetic structures described by opposite local vector chiralities, and an intermediate, partly disordered phase with nearly collinear spins. A similar collinear phase has been predicted theoretically to be stabilized by quantum fluctuations, but Bi4Fe5O13F is very far from the relevant parameter regime. While the observed in-plane reorientation cannot be explained by any standard frustration mechanism, our ab initio band-structure calculations reveal strong single-ion anisotropy of the interlayer Fe3+ spins that turns out to be instrumental in controlling the local vector chirality and the associated interlayer order.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411161700002 Publication Date 2017-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access OpenAccess
Notes We are grateful to J.-M. Perez-Mato and Dmitry Khalyavin for valuable discussions on the magnetic structures and symmetries. D.F. and A.A. are grateful to the Russian Science Foundation (Grant No. 14-13-00680) for support. A.T. was supported by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of the Alexander von Humboldt Foundation. This work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institut, Villigen, Switzerland. Approved Most recent IF: 3.836
Call Number EMAT @ emat @c:irua:146748 Serial 4774
Permanent link to this record
 

 
Author Tytgat, T.; Hauchecorne, B.; Abakumov, A.M.; Smits, M.; Verbruggen, S.W.; Lenaerts, S.
Title Photocatalytic process optimisation for ethylene oxidation Type A1 Journal article
Year 2012 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 209 Issue Pages 494-500
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract (up) When studying photocatalysis it is important to consider, beside the chemical approach, the engineering part related to process optimisation. To achieve this a fixed bed photocatalytic set-up consisting of different catalyst placings, in order to vary catalyst distribution, is studied. The use of a fixed quantity of catalyst placed packed or randomly distributed in the reactor, results in an almost double degradation for the distributed catalyst. Applying this knowledge leads to an improved performance with limited use of catalyst. A reactor only half filled with catalyst leads to higher degradation performance compared to a completely filled reactor. Taking into account this simple process optimisation by better distributing the catalyst a more sustainable photocatalytic air purification process is achieved. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000311190500058 Publication Date 2012-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 12 Open Access
Notes ; We are grateful for the delivered photocatalyst by Evonik as well as for the PhD grant (T. Tytgat) given by the Institute of Innovation by Science and Technology in Flanders (IWT). ; Approved Most recent IF: 6.216; 2012 IF: 3.473
Call Number UA @ lucian @ c:irua:105185 Serial 2609
Permanent link to this record
 

 
Author Bezjak, J.; Abakumov, A.M.; Recnik, A.; Krzmanc, M.M.; Jancar, B.; Suvorov, D.
Title The local structure and composition of Ba4Nb2O9-based oxycarbonates Type A1 Journal article
Year 2010 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 183 Issue 8 Pages 1823-1828
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) X-ray powder-diffraction(XRD),high-resolutiontransmissionelectronmicroscopy(HRTEM),electron diffraction(ED),infraredspectroscopy(IR),thermogravimetry(TG)andmassspectroscopy(MS)were performedtoinvestigatethecompositionandthecrystalstructureoftetra-bariumdi-niobate(V) Ba4Nb2O9. TheTG,MSandIRstudiesrevealedthatthecompoundisahydratedoxycarbonate.Assuming that thecarbonatestoichiometricallyreplacesoxygen,thecompositionofthelow-temperature a-modification,obtainedbyslowcoolingfrom1100 1C, correspondstoBa4Nb2O8.8(CO3)0.2 0.1H2O, while thequenchedhigh-temperature g-modificationhastheBa4Nb2O8.42(CO3)0.58 0.38H2O composi- tion. The a-phase hasacompositeincommensuratelymodulatedstructureconsistingoftwomutually interacting[Ba]N and the[(Nb,)O3]N subsystems.Thecompositemodulatedcrystalstructureofthe a-phase canbedescribedwiththelatticeparameters a¼10.2688(1) A˚ , c¼2.82426(8) A˚ , q¼0.66774(2)c* and asuperspacegroup R3m(00g)0s. TheHRTEManalysisdemonstratesthenanoscale twinningofthetrigonaldomainsparalleltothe{100}crystallographicplanes.Thetwinningintroduces a one-dimensionaldisorderintothe[(Nb,)O3]N subsystem,whichresultsinanaverage P62c crystal structureofthe a-phase. Possibleplacesforthecarbonategroupinthestructurearediscussedusinga comparisonwithotherhexagonalperovskite-basedoxycarbonates.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000280620300013 Publication Date 2010-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 10 Open Access
Notes Approved Most recent IF: 2.299; 2010 IF: 2.261
Call Number UA @ lucian @ c:irua:84046 Serial 1830
Permanent link to this record