|   | 
Details
   web
Records
Author Barich, H.; Cánovas, R.; De Wael, K.
Title Electrochemical identification of hazardous phenols and their complex mixtures in real samples using unmodified screen-printed electrodes Type A1 Journal article
Year 2022 Publication Journal of electroanalytical chemistry : an international journal devoted to all aspects of electrode kynetics, interfacial structure, properties of electrolytes, colloid and biological electrochemistry. Abbreviated Journal J Electroanal Chem
Volume 904 Issue Pages 115878
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract (up) The electrochemical behavior of some of the most relevant endocrine-disrupting phenols using unmodified carbon screen-printed electrodes (SPEs) is described for the first time. Experiments were made to assess the electrochemical behavior of phenol (PHOH), pentachlorophenol (PCP), 4-tert octylphenol (OP) and bisphenol A (BPA) and their determination in the most favorable conditions, using voltammetric methods such as cyclic voltammetry (CV), linear sweep voltammetry (LSV) and square wave voltammetry (SWV) in Britton Robinson (BR) buffer. Further, the usefulness of the electrochemical approach was validated with real samples from a local river and was compared to commercial phenols test kit, which is commonly used for on-site screening in industrial streams and wastewaters. Finally, the approach was compared with a lab-bench standard method using real samples, i.e., high-performance liquid chromatography with a photodiode array detector (HPLC-DAD).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000741151200005 Publication Date 2021-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1572-6657; 1873-2569 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.5
Call Number UA @ admin @ c:irua:184384 Serial 7150
Permanent link to this record
 

 
Author Lin, A.; Biscop, E.; Gorbanev, Y.; Smits, E.; Bogaerts, A.
Title Toward defining plasma treatment dose : the role of plasma treatment energy of pulsed‐dielectric barrier discharge in dictating in vitro biological responses Type A1 Journal article
Year 2022 Publication Plasma Processes And Polymers Abbreviated Journal Plasma Process Polym
Volume 19 Issue 3 Pages e2100151
Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The energy dependence of a pulsed-dielectric barrier discharge (DBD) plasma treatment on chemical species production and biological responses was investigated. We hypothesized that the total plasma energy delivered during treatment encompasses the influence of major application parameters. A microsecond-pulsed DBD system was used to treat three different cancer cell lines and cell viability was analyzed. The energy per pulse was measured and the total plasma treatment energy was controlled by adjusting the pulse frequency, treatment time, and application distance. Our data suggest that the delivered plasma energy plays a predominant role in stimulating a biological response in vitro. This study aids in developing steps toward defining a plasma treatment unit and treatment dose for biomedical and clinical research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000711907800001 Publication Date 2021-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.5
Call Number UA @ admin @ c:irua:182916 Serial 7219
Permanent link to this record
 

 
Author Cotte, M.; Gonzalez, V.; Vanmeert, F.; Monico, L.; Dejoie, C.; Burghammer, M.; Huder, L.; de Nolf, W.; Fisher, S.; Fazlic, I.; Chauffeton, C.; Wallez, G.; Jimenez, N.; Albert-Tortosa, F.; Salvado, N.; Possenti, E.; Colombo, C.; Ghirardello, M.; Comelli, D.; Avranovich Clerici, E.; Vivani, R.; Romani, A.; Costantino, C.; Janssens, K.; Taniguchi, Y.; McCarthy, J.; Reichert, H.; Susini, J.
Title The “Historical Materials BAG” : a new facilitated access to synchrotron X-ray diffraction analyses for cultural heritage materials at the European Synchrotron Radiation Facility Type A1 Journal article
Year 2022 Publication Molecules: a journal of synthetic chemistry and natural product chemistry Abbreviated Journal Molecules
Volume 27 Issue 6 Pages 1997-21
Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract (up) The European Synchrotron Radiation Facility (ESRF) has recently commissioned the new Extremely Brilliant Source (EBS). The gain in brightness as well as the continuous development of beamline instruments boosts the beamline performances, in particular in terms of accelerated data acquisition. This has motivated the development of new access modes as an alternative to standard proposals for access to beamtime, in particular via the “block allocation group” (BAG) mode. Here, we present the recently implemented “historical materials BAG”: a community proposal giving to 10 European institutes the opportunity for guaranteed beamtime at two X-ray powder diffraction (XRPD) beamlines-ID13, for 2D high lateral resolution XRPD mapping, and ID22 for high angular resolution XRPD bulk analyses-with a particular focus on applications to cultural heritage. The capabilities offered by these instruments, the specific hardware and software developments to facilitate and speed-up data acquisition and data processing are detailed, and the first results from this new access are illustrated with recent applications to pigments, paintings, ceramics and wood.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000776369800001 Publication Date 2022-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1420-3049 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.6
Call Number UA @ admin @ c:irua:188053 Serial 7218
Permanent link to this record
 

 
Author Lang, X.; Ouyang, Y.; Vandewalle, L.A.; Goshayeshi, B.; Chen, S.; Madanikashani, S.; Perreault, P.; Van Geem, K.M.; van Geem, K.M.
Title Gas-solid hydrodynamics in a stator-rotor vortex chamber reactor Type A1 Journal article
Year 2022 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 446 Issue 5 Pages 137323-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (up) The gas-solid vortex reactor (GSVR) has enormous process intensification potential. However the huge gas consumption can be a serious disadvantage for the GSVR in some applications such as fast pyrolysis. In this work, we demonstrate a recent novel design, where a stator-rotor vortex chamber (STARVOC) is driven by the fluid's kinetic energy, to decouple the solids bed rotation and gas. Gas-solid fluidization by using air and monosized aluminum balls was performed to investigate the hydrodynamics. A constructed fluidization flow regime map for a fixed solids loading of 100 g shows that the bed can only be fluidized for a rotation speed between 200 and 400 RPM. Below 200 RPM, particles settle down on the bottom plate and cannot form a stable bed due to inertia and friction. Above 400 RPM, the bed cannot be fluidized with superficial velocities up to 1.8 m/s (air flow rate of 90 Nm(3)/h). The bed thickness shows some non-uniformities, being smaller at the top of the bed than at the bottom counterpart. However by increasing the air flow rate or rotation speed the axial nonuniformity can be resolved. The bed pressure drop first increases with increasing gas flow rate and then levels off, showing similar characteristics as conventional fluidized beds. Theoretical pressure drops calculated from mathematical models such as Kao et al. model agree well with experimental measurements. Particle velocity discrepancies between the top and bottom particles reveal that the impact of gravity cannot be completely neglected. Design guidelines and possible applications for further development of STARVOC concept are proposed based on fundamental data provided in this work.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000833418100006 Publication Date 2022-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 15.1
Call Number UA @ admin @ c:irua:189283 Serial 7167
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Sleegers, N.; Cánovas, R.; Debruyne, G.; De Wael, K.
Title Development of a combi-electrosensor for the detection of phenol by combining photoelectrochemistry and square wave voltammetry Type A1 Journal article
Year 2022 Publication Analytica chimica acta Abbreviated Journal
Volume 1206 Issue Pages 339732
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract (up) The high toxicity, endocrine-disrupting effects and low (bio)degradability commonly attributed to phenolic compounds have promoted their recognition as priority toxic pollutants. For this reason, the monitoring of these compounds in industrial, domestic and agricultural streams is crucial to prevent and decrease their toxicity in our daily life. To confront this relevant environmental issue, we propose the use of a combi-electrosensor which combines singlet oxygen (1O2)-based photoelectrochemistry (PEC) with square wave voltammetry (SWV). The high sensitivity of the PEC sensor (being a faster alternative for traditional COD measurements) ensures the detection of nmol L−1 levels of phenolic compounds while the SWV measurements (being faster than the color test kits) allow the differentiation between phenolic compounds. Herein, we report on the development of such a combi-electrosensor for the sensitive and selective detection of phenol (PHOH) in the presence of related phenolic compounds such as hydroquinone (HQ), bisphenol A (BPA), resorcinol (RC) and catechol (CC). The PEC sensor was able to determine the concentration of PHOH in spiked river samples containing only PHOH with a recovery between 96% and 111%. The SWV measurements elucidated the presence of PHOH, HQ and CC in the spiked samples containing multiple phenol compounds. Finally, the practicality of the combi-electrosensor set-up with a dual SPE containing two working electrodes and shared reference and counter electrodes was demonstrated. As a result, the combination of the two techniques is a powerful and valuable tool in the analysis of phenolic samples, since each technique improves the general performance by overcoming the inherent drawbacks that they display independently.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000793070200016 Publication Date 2022-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2670; 1873-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:187499 Serial 8848
Permanent link to this record
 

 
Author Velazco, A.; Béché, A.; Jannis, D.; Verbeeck, J.
Title Reducing electron beam damage through alternative STEM scanning strategies, Part I: Experimental findings Type A1 Journal article
Year 2022 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 232 Issue Pages 113398
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) The highly energetic electrons in a transmission electron microscope (TEM) can alter or even completely destroy the structure of samples before sufficient information can be obtained. This is especially problematic in the case of zeolites, organic and biological materials. As this effect depends on both the electron beam and the sample and can involve multiple damage pathways, its study remained difficult and is plagued with irreproducibility issues, circumstantial evidence, rumors, and a general lack of solid data. Here we take on the experimental challenge to investigate the role of the STEM scan pattern on the damage behavior of a commercially available zeolite sample with the clear aim to make our observations as reproducible as possible. We make use of a freely programmable scan engine that gives full control over the tempospatial distribution of the electron probe on the sample and we use its flexibility to obtain multiple repeated experiments under identical conditions comparing the difference in beam damage between a conventional raster scan pattern and a newly proposed interleaved scan pattern that provides exactly the same dose and dose rate and visits exactly the same scan points. We observe a significant difference in beam damage for both patterns with up to 11 % reduction in damage (measured from mass loss). These observations demonstrate without doubt that electron dose, dose rate and acceleration voltage are not the only parameters affecting beam damage in (S)TEM experiments and invite the community to rethink beam damage as an unavoidable consequence of applied electron dose.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000714819200002 Publication Date 2021-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited 18 Open Access OpenAccess
Notes A.V., D.J., A.B. and J.V. acknowledge funding from FWO project G093417N (’Compressed sensing enabling low dose imaging in transmission electron microscopy’) and G042920N (’Coincident event detection for advanced spectroscopy in transmission electron microscopy’). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 ESTEEM3. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. J.V. acknowledges funding from GOA project “Solarpaint” of the University of Antwerp.; JRA; reported Approved Most recent IF: 2.2
Call Number EMAT @ emat @c:irua:183282 Serial 6818
Permanent link to this record
 

 
Author Spanoghe, J.
Title Purple bacteria cultivation on light, carbon dioxide and hydrogen gas : exploring and tuning the potential for microbial food production Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages vi, 207 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (up) The human population is projected to grow to 9.7 billion by 2050, resulting in an estimated increase in protein demand of 50%. From an environmental perspective, the current and future demand of protein cannot be sustainably met as the conventional food production chain is severely altering biogeochemical cycles of nitrogen and phosphorus, biodiversity and land-use, with flows towards the biosphere and oceans that are exceeding the planetary boundaries. Microbial protein (protein derived from microorganisms) has been suggested as an excellent sustainable protein source, a fortiori when produced in a land- and fossil free manner. The photoautohydrogenotrophic cultivation (i.e. with light, CO2 and H2) of purple bacteria links up perfectly with the upcoming green electrification of industry (green H2) and the need for carbon capture and utilization. However, this metabolism represented a gap in literature, and thus this thesis aimed to establish a basic knowledge platform on its kinetic, stoichiometric and nutritional performance. At first, three originally photoheterotrophically enriched purple bacteria were studied of which Rhodobacter capsulatus reached the highest protein productivity of 0.16 g protein/L/d, which aligned well with the commonly-known photoautotrophic microalgae. Moreover, a full dietary essential amino acid match was found for human food, while the fatty acid content was dominated by the health-stimulating vaccenic acid (82-86%). Lastly, the achieved protein yield in photoautohydrogenotrophic purple bacteria was 2.3 times higher compared to hydrogen oxidizing bacteria, indicating a resource-efficient use of H2. Next, a photoautohydrogenotrophic enrichment of wastewater treatment microbiomes was performed in search for specialist species. While the isolates of this enrichment showed improvements in their performance during acclimation, the kinetic and nutritional performance of Rhodobacter capsulatus still excelled. Subsequently, the influence of nutrient limitations (C or N) and nitrogen gas fixation was studied on the nutritional tuning potential. Both the limitations as well as the N2 fixation resulted in the shift of the essential amino acid profiles. Additionally, the limitations significantly decreased the pigment content, while an increase in the storage of poly-P was seen in case of carbon limitations. The next major challenge was the production intensification in a photobioreactor of which the design was linked to minimizing both H2 and light limitations. The chosen bubble-column photobioreactor already resulted in a doubled biomass productivity. Finally, the remaining technological and non-technological challenges ahead for the production of a high-value, cost-efficient, environment-friendly microbial protein that complies with legislative requirements and appeals to future consumers were discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-741-1 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:188233 Serial 7198
Permanent link to this record
 

 
Author Vishwakarma, M.; Batra, Y.; Hadermann, J.; Singh, A.; Ghosh, A.; Mehta, B.R.
Title Exploring the role of graphene oxide as a co-catalyst in the CZTS photocathodes for improved photoelectrochemical properties Type A1 Journal article
Year 2022 Publication ACS applied energy materials Abbreviated Journal
Volume 5 Issue 6 Pages 7538-7549
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (up) The hydrogen evolution properties of CZTS heterostructure photocathodes are reported with graphene oxide (GO) as a co-catalyst layer coated by a drop-cast method and an Al2O3 protection layer fabricated using atomic layer deposition. In the CZTS absorber, a minor deviation from stoichiometry across the cross section of the thin film results in nanoscale growth of spurious phases, but the kesterite phase remains the dominant phase. We have investigated the band alignment parameters such as the band gap, work function, and Fermi level position that are crucial for making kesterite-based heterostructure devices. The photocurrent density in the photocathode CZTS/CdS/ZnO is found to be improved to -4.71 mAmiddotcm(-2) at -0.40 V-RHE, which is 3 times that of the pure CZTS. This enhanced photoresponse can be attributed to faster carrier separation at p-n junction regions driven by upward band bending at CZTS grain boundaries and the ZnO layer. GO as a co-catalyst over the heterostructure photocathode significantly improves the photocurrent density to -6.14 mAmiddotcm(-2) at -0.40 V-RHE by effective charge migration in the CZTS/CdS/ZnO/GO configuration, but the onset potential shifts only after application of the Al2O3 protection layer. Significant photocurrents of -29 mAmiddotcm(-2) at -0.40 V-RHE and -8 mAmiddotcm(-2) at 0 V-RHE are observed, with an onset potential of 0.7 V-RHE in CZTS/CdS/ZnO/GO/Al2O3. The heterostructure configuration and the GO co-catalyst reduce the charge-transfer resistance, while the Al2O3 top layer provides a stable photocurrent for a prolonged time (similar to 16 h). The GO co-catalyst increases the flat band potential from 0.26 to 0.46 V-RHE in CZTS/CdS/ZnO/GO, which supports the bias-induced band bending at the electrolyte-electrode interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000820418400001 Publication Date 2022-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.4
Call Number UA @ admin @ c:irua:189666 Serial 7082
Permanent link to this record
 

 
Author Montiel, F.N.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van Nuijs, A.L.N.; De Wael, K.
Title Electrochemical sensing of amphetamine-type stimulants (pre)-precursors to fight against the illicit production of synthetic drugs Type A1 Journal article
Year 2022 Publication Electrochimica acta Abbreviated Journal
Volume 436 Issue Pages 141446-11
Keywords A1 Journal article; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract (up) The illicit drug precursor market for the manufacture of amphetamine-type stimulants (ATS), mainly amphetamine, methamphetamine and methylenedioxymethamphetamine (MDMA), has emerged quickly in the last years. The evidence of a more complex and sophisticated drug market underlines the pressing need for new on-site methods to quickly detect precursors of synthetic drugs, with electrochemical analysis as a promising technique. Herein, the electrochemical fingerprints of ten common ATS precursors-3-oxo-2-phenylbutanenitrile (APAAN), 3-oxo-2-phenylbutanamide (APAA), methyl 3-oxo-2-phenylbutanoate (MAPA), benzyl methyl ketone (BMK), 1-(1,3-benzodioxol-5-yl)propan-2-one (PMK), ephedrine, pseudoephedrine, safrole, sassafras oil and piperonal- are reported for the first time. The electrochemical screening disclosed the redox inactivity of BMK, which is an essential starting material for the production of ATS. Therefore, the local derivatization of BMK at an electrode surface by reductive amination is presented as a feasible solution to enrich its electrochemical fingerprint. To prove that, the resulting mixture was analyzed using a set of chromatographic techniques to understand the reaction mechanism and to identify possible electrochemical active products. Two reaction products (i.e. methamphetamine and 1-phenylpropan-2-ol) were found and characterized using mass spectrometry and electrochemical methods. Subsequently, the optimization of the reaction parameters was carefully addressed to set the portable electrochemical sensing strategy. Ultimately, the analysis concept was validated for the qualitative identification of ATS precursors in seizures from a forensic institute. Overall, the electrochemical approach demonstrates to be a useful and affordable analytical tool for the early identification of ATS precursors to prevent trafficking and drug manufacture in clandestine laboratories.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000914833800003 Publication Date 2022-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:191622 Serial 8858
Permanent link to this record
 

 
Author Ysebaert, T.; Samson, R.; Denys, S.
Title Parameterisation of the drag effect of climbers depending on wind speed and LAD Type A1 Journal article
Year 2022 Publication Sustainable Cities and Society Abbreviated Journal Sustain Cities Soc
Volume 84 Issue Pages 103979-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (up) The implementation of green walls is increasingly seen as a strategy to tackle urban air pollution and to make cities more climate resilient. The correct description of the vegetation-wind interaction is key in describing the effect of vegetation in computational fluid dynamics (CFD) models. The accuracy of the modelled wind flow is highly linked to the uncertainty about the drag coefficient (C-d). In addition, at low wind speeds viscous drag (K) is not negligible and it should be regarded in CFD models. This research aims to address the uncertainty related to C-d and K by including the effect of climbers on both the momentum and turbulence equations in the Wilcox revised k-omega model. The change of K with increasing Reynolds number showed an increase from 5.10(-8 )m(2) up to the dynamic viscosity of air (asymptotic to 10(-5) m(2)) following a logistic function. Beyond the transition region from viscous to form drag, C-d, in the range of 0.1-1.1, declined with increasing Reynolds number following a power law function. Furthermore, the plant morphological parameters determining permeability and drag coefficient were identified. This study showed that the knowledge of viscous and shape resistance is necessary to obtain accurate statistics for air flow through vegetation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000831685500001 Publication Date 2022-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2210-6707 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 11.7
Call Number UA @ admin @ c:irua:189465 Serial 7187
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Slosse, A.; Van Durme, F.; Åberg, J.; Björk, K.; Bijvoets, S.M.; Sap, S.; Heerschop, M.W.J.; De Wael, K.
Title Paraformaldehyde-coated electrochemical sensor for improved on-site detection of amphetamine in street samples Type A1 Journal article
Year 2022 Publication Microchemical journal Abbreviated Journal
Volume 179 Issue Pages 107518-107519
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract (up) The increasing illicit production, distribution and abuse of amphetamine (AMP) poses a challenge for law enforcement worldwide. To effectively combat this issue, fast and portable tools for the on-site screening of suspicious samples are required. Electrochemical profile (EP)-based sensing of illicit drugs has proven to be a viable option for this purpose as it allows rapid voltammetric measurements via the use of disposable and low-cost graphite screen-printed electrodes (SPEs). In this work, a highly practical paraformaldehyde (PFA)-coated sensor, which unlocks the detectability of primary amines through derivatization, is developed for the on-site detection of AMP in seized drug samples. A potential interval was defined at the sole AMP peak (which is used for identification of the target analyte) to account for potential shifts due to fluctuations in concentration and temperature, which are relevant factors for on-site use. Importantly, it was found that AMP detection was not hindered by the presence of common diluents and adulterants such as caffeine, even when present in high amounts. When inter-drug differentiation is desired, a simultaneous second test with the same solution on an unmodified electrode is introduced to provide the required additional electrochemical information. Finally, the concept was validated by analyzing 30 seized AMP samples (reaching a sensitivity of 96.7 %) and comparing its performance to that of commercially available Raman and Fourier Transform Infrared (FTIR) devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000809675500010 Publication Date 2022-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:188454 Serial 8910
Permanent link to this record
 

 
Author Alloul, A.; Spanoghe, J.; Machado, D.; Vlaeminck, S.E.
Title Unlocking the genomic potential of aerobes and phototrophs for the production of nutritious and palatable microbial food without arable land or fossil fuels Type A1 Journal article
Year 2022 Publication Microbial biotechnology Abbreviated Journal
Volume 15 Issue 1 Pages 6-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (up) The increasing world population and living standards urgently necessitate the transition towards a sustainable food system. One solution is microbial protein, i.e. using microbial biomass as alternative protein source for human nutrition, particularly based on renewable electron and carbon sources that do not require arable land. Upcoming green electrification and carbon capture initiatives enable this, yielding new routes to H2, CO2 and CO2-derived compounds like methane, methanol, formic- and acetic acid. Aerobic hydrogenotrophs, methylotrophs, acetotrophs and microalgae are the usual suspects for nutritious and palatable biomass production on these compounds. Interestingly, these compounds are largely un(der)explored for purple non-sulfur bacteria, even though these microbes may be suitable for growing aerobically and phototrophically on these substrates. Currently, selecting the best strains, metabolisms and cultivation conditions for nutritious and palatable microbial food mainly starts from empirical growth experiments, and mostly does not stretch beyond bulk protein. We propose a more target-driven and efficient approach starting from the genome-embedded potential to tuning towards, for instance, essential amino- and fatty acids, vitamins, taste,... Genome-scale metabolic models combined with flux balance analysis will facilitate this, narrowing down experimental variations and enabling to get the most out of the 'best' combinations of strain and electron and carbon sources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000613868600001 Publication Date 2021-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1751-7915 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.7
Call Number UA @ admin @ c:irua:176174 Serial 7225
Permanent link to this record
 

 
Author De Tommasi, E.; Rogato, A.; Caratelli, D.; Mescia, L.; Gielis, J.
Title Following the photons route : mathematical models describing the interaction of diatoms with light Type H1 Book chapter
Year 2022 Publication Abbreviated Journal
Volume Issue Pages 1-53
Keywords H1 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (up) The interaction of diatoms with sunlight is fundamental in order to deeply understand their role in terrestrial ecology and biogeochemistry, essentially due to their massive contribution to global primary production through photosynthesis and its e↵ect on carbon, oxygen and silicon cycles. Following the journey of light through natural waters, its propagation through the intricate frustule micro- and nano-structure and, finally, its fate inside the photosynthetic machinery of the living cell requires several mathematical and computational models in order to accurately describe all the involved phenomena taking place at di↵erent space scales and physical regimes. In this chapter, we review the main analytical models describing the underwater optical field, the essential numerical algorithms for the study of photonic properties of the diatom frustule seen as a natural metamaterial, as well as the principal models describing photon harvesting in diatom plastids and methods for complex EM propagation problems and wave propagation in dispersive materials with multiple relaxation times. These mathematical methods will be integrated in a unifying geometric perspective.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-119-74985-1 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:186731 Serial 7165
Permanent link to this record
 

 
Author Wang, L.; Ratkowsky, D.A.; Gielis, J.; Ricci, P.E.; Shi, P.
Title Effects of the numerical values of the parameters in the Gielis equation on its geometries Type A1 Journal article
Year 2022 Publication Symmetry Abbreviated Journal Symmetry-Basel
Volume 14 Issue 12 Pages 2475-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (up) The Lamé curve is an extension of an ellipse, the latter being a special case. Dr. Johan Gielis further extended the Lamé curve in the polar coordinate system by introducing additional parameters (n1, n2, n3; m): rφ=1Acosm4φn2+1Bsinm4φn3−1/n1, which can be applied to model natural geometries. Here, r is the polar radius corresponding to the polar angle φ; A, B, n1, n2 and n3 are parameters to be estimated; m is the positive real number that determines the number of angles of the Gielis curve. Most prior studies on the Gielis equation focused mainly on its applications. However, the Gielis equation can also generate a large number of shapes that are rotationally symmetric and axisymmetric when A = B and n2 = n3, interrelated with the parameter m, with the parameters n1 and n2 determining the shapes of the curves. In this paper, we prove the relationship between m and the rotational symmetry and axial symmetry of the Gielis curve from a theoretical point of view with the condition A = B, n2 = n3. We also set n1 and n2 to take negative real numbers rather than only taking positive real numbers, then classify the curves based on extremal properties of r(φ) at φ = 0, π/m when n1 and n2 are in different intervals, and analyze how n1, n2 precisely affect the shapes of Gielis curves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000904525700001 Publication Date 2022-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7
Call Number UA @ admin @ c:irua:191860 Serial 7301
Permanent link to this record
 

 
Author Penders, A.G.; Konstantinovic, M.J.; Yang, T.; Bosch, R.-w.; Schryvers, D.; Somville, F.
Title Microstructural investigation of IASCC crack tips extracted from thimble tube O-ring specimens Type A1 Journal article
Year 2022 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater
Volume 565 Issue Pages 153727-16
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (up) The microstructural features of intergranular irradiation-assisted stress corrosion crack tips from a redeemed neutron-irradiated flux thimble tube (60 dpa) have been investigated using focused-ion beam analysis and (scanning) transmission electron microscopy. The current work presents a close examination of the deformation field and oxide assembly associated with intergranular cracking, in addition to the analysis of radiation-induced segregation at leading grain boundaries. Evidence of stress induced martensitic transformation extending from the crack tips is presented. Intergranular crack arrest is demonstrated on the account of the external tensile stress orientation, and as a consequence of MnS inclusion particles segregating close to the fractured grain boundary. Exclusive observations of grain boundary oxidation prior to the cracking are presented, which is in full-agreement with the internal oxidation model.(c) 2022 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000799256300004 Publication Date 2022-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.1
Call Number UA @ admin @ c:irua:188609 Serial 7086
Permanent link to this record
 

 
Author Wang, J.; Van Pottelberge, R.; Zhao, W.-S.; Peeters, F.M.
Title Coulomb impurity on a Dice lattice : atomic collapse and bound states Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 105 Issue 3 Pages 035427
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The modification of the quantum states in a Dice lattice due to a Coulomb impurity are investigated. The energy-band structure of a pristine Dice lattice consists of a Dirac cone and a flat band at the Dirac point. We use the tight-binding formalism and find that the flat band states transform into a set of discrete bound states whose electron density is localized on a ring around the impurity mainly on two of the three sublattices. Its energy is proportional to the strength of the Coulomb impurity. Beyond a critical strength of the Coulomb potential atomic collapse states appear that have some similarity with those found in graphene with the difference that the flat band states contribute with an additional ringlike electron density that is spatially decoupled from the atomic collapse part. At large value of the strength of the Coulomb impurity the flat band bound states anticross with the atomic collapse states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000749375200002 Publication Date 2022-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 1 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:186387 Serial 6977
Permanent link to this record
 

 
Author Jiang, J.
Title Ginzburg-Landau dynamical simulations on the nonreciprocal transport properties of two-dimensional superconductors Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages XII, 79 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract (up) The nonreciprocal charge transport property which depends on the polarity of the applied current, such as the diode effect and the rectification effect, is of great importance for both theoretical research and engineering application. The nonreciprocal transport property in superconductors generally requires to break both the spatial inversion symmetry and the time-reversal symmetry, and therefore becomes one of the fundamental issues in superconductivity. Of particular interest, the superconducting diode effect, which exhibits one-way superconductivity, can potentially be applied to dissipationless diode devices, as a consequence has received extensive attention in recent years. In this Ph. D thesis, we simulate vortex dynamics with heat dissipation by numerically solving time-dependent Ginzburg-Landau equations and heat transfer equation. The nonreciprocal transport properties of the following three superconducting systems are studied. We study a superconducting film patterned with a conformal pinning array and find a giant rectification effect which is consistent with the experimental observation. In presence of the funneling effect due to the geometry of the conformal pinning array, Joule heating of the accumulating vortices creates hot spots and drives the sample to the normal state. Meanwhile, the density gradient of vortex does not match the gradient of pinning. The two mechanisms together lead to the giant rectification effect. We study the nonreciprocal charge transport property in a pinning-free superconducting nano-ring. We systematically calculate the response of the ratchet signal to various parameters in both D.C. and A.C. currents. By analyzing the vortex potential, we find that the nonreciprocal transport property is caused by the asymmetry potential barriers for vortex entry and exit. We study a superconductor/nanoscale-magnetic-dot hybrid structure. It takes advantage of the external current to control the nucleation of vortex-antivortex pairs, and can produce superconducting diode effect without applied magnetic fields. Our vortex dynamics simulation details the progress of the superconducting-normal phase transition due to motion of vortex pairs and heat dissipation. The nonreciprocal transport properties of the above three systems are all based on the broken symmetry of spatial inversion, which is caused by the anisotropic pinning array, the asymmetric geometry, and the nonuniform distribution of the magnetic field, respectively. The mechanisms we discuss in this thesis do not require special property of the materials and thus can be applied to any kinds of conventional superconductors. The present studies would provide solid theoretical basis for the future design and application of the dissipationless superconducting devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:188525 Serial 7168
Permanent link to this record
 

 
Author Wang, Y.; Sztranyovszky, Z.; Zilli, A.; Albrecht, W.; Bals, S.; Borri, P.; Langbein, W.
Title Quantitatively linking morphology and optical response of individual silver nanohedra Type A1 Journal article
Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 14 Issue 30 Pages 11028-11037
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (up) The optical response of metal nanoparticles is governed by plasmonic resonances, which are dictated by the particle morphology. A thorough understanding of the link between morphology and optical response requires quantitatively measuring optical and structural properties of the same particle. Here we present such a study, correlating electron tomography and optical micro-spectroscopy. The optical measurements determine the scattering and absorption cross-section spectra in absolute units, and electron tomography determines the 3D morphology. Numerical simulations of the spectra for the individual particle geometry, and the specific optical set-up used, allow for a quantitative comparison including the cross-section magnitude. Silver nanoparticles produced by photochemically driven colloidal synthesis, including decahedra, tetrahedra and bi-tetrahedra are investigated. A mismatch of measured and simulated spectra is found in some cases when assuming pure silver particles, which is explained by the presence of a few atomic layers of tarnish on the surface, not evident in electron tomography. The presented method tightens the link between particle morphology and optical response, supporting the predictive design of plasmonic nanomaterials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000828704000001 Publication Date 2022-07-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited 1 Open Access OpenAccess
Notes Z.S. acknowledges the UK Engineering and Physical Sciences Research Council (EPSRC) for his Ph.D. studentship award (grant EP/R513003/1). Y.W. acknowledges Iwan Moreels (University of Ghent) for training in nanoparticle synthesis. Y.W. acknowledges the Biotechnology and Biological Sciences Research Council (BBSRC) for his Ph.D. studentship award (grant BB/L015889/1). This work was supported by the UK EPSRC (grants EP/I005072/1 and EP/M028313/1), and by the European Commission (EUSMI E191000350). W.A. acknowledges an Individual Fellowship from the Marie Skodowska-Curie actions (MSCA) under the EU's Horizon 2020 program (Grant 797153, SOPMEN). We thank Lukas Payne and Iestyn Pope for contributions to the development of the hardware and software used for the optical measurements. Approved Most recent IF: 6.7
Call Number UA @ admin @ c:irua:189578 Serial 7092
Permanent link to this record
 

 
Author Sun, C.; Liao, X.; Peng, H.; Zhang, C.; Van Tendeloo, G.; Zhao, Y.; Wu, J.
Title Interfacial gliding-driven lattice oxygen release in layered cathodes Type A1 Journal article
Year 2022 Publication Cell reports physical science Abbreviated Journal
Volume 3 Issue 1 Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (up) The oxygen release of layered cathodes causes many battery failures, but the underlying mechanism in an actual working cathode is still elusive as it involves secondary agglomerates that introduce complicated boundary structures. Here, we report a general structure instability on the mismatch boundaries driven by interfacial gliding-it introduces a shear stress causing a distortion of the metal-oxygen octahedra framework that reduces its kinetic stability. The migration of cations and diffusion of oxygen vacancies continue to degrade the whole particle from the boundary to the interior, followed by the formation of nano-sized cracks on the fast-degrading interfaces. This work reveals a robust chemical and mechanical interplay on the oxygen release inherent to the intergranular boundaries of layered cathodes. It also suggests that radially patterned columnar grains with low-angle planar boundaries would be an efficient approach to mitigate the boundary oxygen release.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000745659500012 Publication Date 2021-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:186420 Serial 6961
Permanent link to this record
 

 
Author Wang, J.
Title Plasma catalysis : study of CO2 reforming of CH4 in a DBD reactor Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages XVI, 232 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The plasma-based dry reforming in a dielectric barrier discharge (DBD) reactor is important to achieve sustainable goals, but many challenges remain. For example, the conversion and energy yield of DBD reactors are relatively low, and the catalysts or packing materials used in existing studies cannot improve them, possibly due to the unsuitable properties and structures of catalysts or packing materials for plasma processes. In order to study the effect of catalyst structure on plasma-based dry reforming, a controllable synthesis of the catalyst supports or templates was explored. In Chapter 2, an initially immiscible synthesis method was proposed to synthesize uniform silica spheres, which can replace the organic solvent-based Stöber method to successfully synthesize silica particles with the same size ranges as the original Stöber process without addition of organic solvents. Using the silica spheres as templates, 3D porous Cu and CuO catalysts with different pore sizes were synthesized in Chapter 3 to study the effect of catalyst pore size on the plasma-catalytic dry reforming. In most cases, the smaller the pore size, the higher the conversion of CH4 and CO2 due to the reaction of radicals and ions formed in the plasma. An exception are the samples synthesized from 1 μm silica, which show better performance due to the electric field enhancement for pore sizes close to the Debye length. Besides the pore size, the particle diameter of the catalyst or packing is also one of the important factors affecting the interaction between plasma and catalyst. In Chapter 4, SiO2 spheres (with or without supported metal) were used to study the effect of different support particle sizes on plasma-based dry reforming. We found that a uniform SiO2 packing improves the conversion of plasma-based dry reforming. The conversion of plasma-based dry reforming first increases and then decreases with increasing particle size, due to the balance between the promoting and hindering effect of the particle filling on the plasma discharge. Chapter 5 is to improve the design of the DBD reactor itself, in order to try to increase its low energy yield. Some stainless steel rings were put over the inner electrode rod of the DBD reactor. The presence of rings increases the local electric field, the displaced charges and the discharge fraction, and also makes the discharge more stable and with more uniform intensity. The placement of the rings improves the performance of the reactor at 30 W supplied power.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:194045 Serial 7273
Permanent link to this record
 

 
Author Thomassen, G.; Van Passel, S.; Alaerts, L.; Dewulf, J.
Title Retrospective and prospective material flow analysis of the post-consumer plastic packaging waste management system in Flanders Type A1 Journal article
Year 2022 Publication Waste Management Abbreviated Journal Waste Manage
Volume 147 Issue Pages 10-21
Keywords A1 Journal article; Engineering Management (ENM)
Abstract (up) The post-consumer plastic packaging waste management in Flanders was analyzed by performing a retrospective material flow analysis, covering an extensive period from 1985 to 2019. In addition, a prospective material flow analysis of 32 improvement scenarios was performed, based on expected changes in the waste management system. Mass recovery rates were calculated based on different interpretations of the calculation rules. Moreover, various cascading levels were identified to differentiate between the quality level of the secondary applications. The mass recovery rate including only recycling evolved from a value of 0% in 1985 to 31% in 2019 and could be increased to 36-62% depending on the improvement scenario selected. However, the different interpretations of the calculation rules led to a variation of up to 20 and 41% on this mass recovery rates for the retrospective and prospective analysis, respectively. The introduction of monostream recycling for additional post-consumer plastic packaging flows, such as low-density polyethylene, did not lead to increasing mass recovery rates, if no differentiation for the cascading levels was made. The Belgian recycling target of 65% for 2023 will be challenging if the strictest calculation method needs to be followed or if the improvements in the Flemish postconsumer plastic packaging waste system do not follow the best-case collection scenarios under the given assumptions. To harmonize the calculation and monitoring of these targets, clear calculation rules need to be accompanied with a harmonized monitoring system over the entire waste management system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000802961100002 Publication Date 2022-05-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.1
Call Number UA @ admin @ c:irua:188651 Serial 7367
Permanent link to this record
 

 
Author de Paula Miranda, L.
Title Electronic transport in two dimensional systems with defects Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages 104 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract (up) The pursuit for the next generation of nanodevices made scientists focus the attention to two dimensional materials. Experimental works of two dimensional materials are hardly free of structural defects, which, in turn, modify drastically the physical properties of its defect-free counterpart. In this work the presence of structural defects is study in two different materials. First, the dependence of the Hall, bend and longitudinal resistances to a perpendicular magnetic field and to vacancy defects in a four-terminal phosphorene single layer Hall bar is investigated. A tight-binding model in combination with the Landauer-Büttiker formalism is used to calculate the energy spectrum, the lead-to-lead transmissions, and the Hall and bend resistances of the system. It is shown that the terminals with zigzag edge orientation are responsible for the absence of quantized plateaus in the Hall resistance and peaks in the longitudinal resistance. A negative bend resistance in the ballistic regime is found due to the presence of high- and low- energy transport modes in the armchair and zigzag terminals, respectively. The system density of states, with single vacancy defects, shows that the presence of in-gap states is proportional to the number of vacancies. Quantized plateaus in the Hall resistance are only formed in a sufficiently clean system. The effects of different kinds of vacancies in the regime where the quantized plateaus are destroyed and a diffusive regime appears in the bend resistance are investigated. Next, we explore effects due to point defect clustering on the electronic and transport properties of bilayer graphene nanoribbons, for AA and AB stacking and zigzag and armchair boundaries, by means of the tight-binding approach and scattering matrix formalism. Evidence of vacancy concentration signatures exhibiting a maximum amplitude and an universality regardless of the system size, stacking and boundary types, in the density of states around the zero-energy level are observed. Our results are explained via the coalescence analysis of the strong sizeable vacancy clustering effect in the system and the breaking of inversion symmetry at high vacancy densities, demonstrating a similar density of states for two equivalent degrees of concentration disorder, below and above the maximum value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:191340 Serial 7151
Permanent link to this record
 

 
Author Tennyson, J.; Mohr, S.; Hanicinec, M.; Dzarasova, A.; Smith, C.; Waddington, S.; Liu, B.; Alves, L.L.; Bartschat, K.; Bogaerts, A.; Engelmann, S.U.; Gans, T.; Gibson, A.R.; Hamaguchi, S.; Hamilton, K.R.; Hill, C.; O’Connell, D.; Rauf, S.; van ’t Veer, K.; Zatsarinny, O.
Title The 2021 release of the Quantemol database (QDB) of plasma chemistries and reactions Type A1 Journal article
Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 31 Issue 9 Pages 095020
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The Quantemol database (QDB) provides cross sections and rates of processes important for plasma models; heavy particle collisions (chemical reactions) and electron collision processes are considered. The current version of QDB has data on 28 917 processes between 2485 distinct species plus data for surface processes. These data are available via a web interface or can be delivered directly to plasma models using an application program interface; data are available in formats suitable for direct input into a variety of popular plasma modeling codes including HPEM, COMSOL, ChemKIN, CFD-ACE+, and VisGlow. QDB provides ready assembled plasma chemistries plus the ability to build bespoke chemistries. The database also provides a Boltzmann solver for electron dynamics and a zero-dimensional model. Thesedevelopments, use cases involving O<sub>2</sub>, Ar/NF<sub>3</sub>, Ar/NF<sub>3</sub>/O<sub>2</sub>, and He/H<sub>2</sub>O/O<sub>2</sub>chemistries, and plans for the future are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000895762200001 Publication Date 2022-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.8 Times cited Open Access OpenAccess
Notes Engineering and Physical Sciences Research Council, EP/N509577/1 ; Fundação para a Ciência e a Tecnologia, UIDB/50010/2020 ; Science and Technology Facilities Council, ST/K004069/1 ; National Science Foundation, OAC-1834740 ; Approved Most recent IF: 3.8
Call Number PLASMANT @ plasmant @c:irua:192845 Serial 7245
Permanent link to this record
 

 
Author Javdani, Z.; Hassani, N.; Faraji, F.; Zhou, R.; Sun, C.; Radha, B.; Neyts, E.; Peeters, F.M.; Neek-Amal, M.
Title Clogging and unclogging of hydrocarbon-contaminated nanochannels Type A1 Journal article
Year 2022 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 13 Issue 49 Pages 11454-11463
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The recent advantages of the fabrication of artificial nanochannels enabled new research on the molecular transport, permeance, and selectivity of various gases and molecules. However, the physisorption/chemisorption of the unwanted molecules (usually hydrocarbons) inside nanochannels results in the alteration of the functionality of the nanochannels. We investigated contamination due to hydrocarbon molecules, nanochannels made of graphene, hexagonal boron nitride, BC2N, and molybdenum disulfide using molecular dynamics simulations. We found that for a certain size of nanochannel (i.e., h = 0.7 nm), as a result of the anomalous hydrophilic nature of nanochannels made of graphene, the hydrocarbons are fully adsorbed in the nanochannel, giving rise to full uptake. An increasing temperature plays an important role in unclogging, while pressure does not have a significant role. The results of our pioneering work contribute to a better understanding and highlight the important factors in alleviating the contamination and unclogging of nanochannels, which are in good agreement with the results of recent experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000893147700001 Publication Date 2022-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.7
Call Number UA @ admin @ c:irua:192815 Serial 7263
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V.
Title Axion insulator states in a topological insulator proximitized to magnetic insulators : a tight-binding characterization Type A1 Journal article
Year 2022 Publication Physical review materials Abbreviated Journal
Volume 6 Issue 7 Pages 074205-74208
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The recent discovery of axion states in materials such as antiferromagnetic topological insulators has boosted investigations of the magnetoelectric response in topological insulators and their promise towards realizing dissipationless topological electronics. In this paper, we develop a tight-binding methodology to explore the emergence of axion states in Bi2Se3 in proximity to magnetic insulators on the top and bottom surfaces. The topological protection of the surface states is lifted by a time-reversal-breaking perturbation due to the proximity of a magnetic insulator, and a gap is opened on the surfaces, giving rise to half-quantized Hall conductance and a zero Hall plateau-evidencing an axion insulator state. We developed a real-space tight-binding Hamiltonian for Bi2Se3 using first-principles data. Transport properties of the system were obtained within the Landauer-Buttiker formalism, and we discuss the creation of axion states through Hall conductance and a zero Hall plateau at the surfaces, as a function of proximitized magnetization and corresponding potentials at the surfaces, as well as the thickness of the topological insulator.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000832387000006 Publication Date 2022-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.4
Call Number UA @ admin @ c:irua:189498 Serial 7130
Permanent link to this record
 

 
Author Fabri, C.; Moretti, M.; Van Passel, S.
Title On the (ir)relevance of heatwaves in climate change impacts on European agriculture Type A1 Journal article
Year 2022 Publication Climatic Change Abbreviated Journal Climatic Change
Volume 174 Issue 1-2 Pages 16-20
Keywords A1 Journal article; Engineering Management (ENM)
Abstract (up) The Ricardian model is a widely used approach based on cross-sectional regression analysis to estimate climate change impacts on agricultural productivity. Up until now, researchers have focused on the impacts of gradual changes in temperature and precipitation, even though climate change is known to encompass also changes in the severity and frequency of extreme weather events. This research investigates the impact of heatwaves on European agriculture, additional to the impact of average climate change. Using a dataset of more than 60,000 European farms, the study examines whether adding a measure for heatwaves to the Ricardian model influences its results. We find that heatwaves have a minor impact on agricultural productivity and that this impact is moderated by average temperature. In colder regions, farm productivity increases with the number of heatwave days. For warmer regions, land values decrease with heatwave frequency. Despite the moderating effect, the marginal effect of heatwave frequency, i.e. the percentage change in agricultural land values caused by one more heatwave day per year, is small in comparison to the effect of average temperature increases. Non-marginal effects are found to be relevant, but only in the case of increased heatwave frequency. According to our results, farms are not expected to suffer more from extreme weather than from mean climate change, as was claimed by several previous studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000861873100002 Publication Date 2022-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-0009; 1573-1480 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.8
Call Number UA @ admin @ c:irua:191483 Serial 7364
Permanent link to this record
 

 
Author Larraín, M.
Title Recycling of plastics : linking technical, economic and policy aspects of post-consumer plastic packaging Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages x, 165 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract (up) The rise in plastic packaging production and disposal has encouraged the progress of recycling technologies and aroused policy discussion on how to increase recycling rates. However, the effect that these policy instruments will have on the development of the different recycling technologies has not been studied holistically yet. This dissertation explores how new and existing technologies will behave under the market and policy conditions observed at present and after the implementation of the policy instruments that are under discussion. The technologies that are analyzed in this thesis are mechanical recycling and thermochemical recycling of post-consumer polyolefin waste. Using a techno-economic assessment that takes into account the physical properties of the different plastic fractions and their contamination level, the study shows that both mechanical and thermochemical recycling can be profitable if oil prices remain steady or increase. Specifically, mechanical recycling will show better results than thermochemical recycling for plastic fractions with low contamination levels. On the contrary, thermochemical recycling is more profitable for fractions with a higher contamination level from which high-quality products cannot be obtained with mechanical recycling, such as PE films. Moreover, it demonstrates that besides the oil prices and sorted waste prices, waste purity and the plant capacity are the variables that influence more the net present value of thermochemical recycling and the labor cost and waste purity the ones of mechanical recycling. The thesis explores the dynamics between the stakeholders of the circular value chain and predicts the recycling rates under the implementation of several policy instruments. This is done with a supply chain equilibrium model, based on the extended producer responsibility scheme implemented in Flanders, that uses as an input the cost structures of mechanical and thermochemical recycling obtained from the techno-economic assessments. Direct interventions like recycled content standards, can decouple the recycling industry from the oil market, but in the long term, they may not present incentives to achieve recycling levels beyond the targeted amounts and thus limit technological innovation. On the contrary, economic interventions such as taxes, create economic incentives for recycling and allow fund collection from the government but leave the recycled levels dependent on external markets. Results also show that higher recycling rates does not necessarily mean better environmental performance. Therefore, when designing circular economy policies, policymakers should carefully analyze whether the intention is to increase circularity or improve the sustainability of the value chains.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:191730 Serial 7366
Permanent link to this record
 

 
Author Li, Y.; Niklas, K.J.; Gielis, J.; Niinemets, Ü.; Schrader, J.; Wang, R.; Shi, P.
Title An elliptical blade is not a true ellipse, but a superellipse : evidence from two Michelia species Type A1 Journal article
Year 2022 Publication Journal of forestry research Abbreviated Journal J Forestry Res
Volume 33 Issue 4 Pages 1341-1348
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (up) The shape of leaf laminae exhibits considerable diversity and complexity that reflects adaptations to environmental factors such as ambient light and precipitation as well as phyletic legacy. Many leaves appear to be elliptical which may represent a ‘default’ developmental condition. However, whether their geometry truly conforms to the ellipse equation (EE), i.e., (x/a)2 + (y/b)2 = 1, remains conjectural. One alternative is described by the superellipse equation (SE), a generalized version of EE, i.e., |x/a|n +|y/b|n = 1. To test the efficacy of EE versus SE to describe leaf geometry, the leaf shapes of two Michelia species (i.e., M. cavaleriei var. platypetala, and M. maudiae), were investigated using 60 leaves from each species. Analysis shows that the majority of leaves (118 out of 120) had adjusted root-mean-square errors of < 0.05 for the nonlinear fitting of SE to leaf geometry, i.e., the mean absolute deviation from the polar point to leaf marginal points was smaller than 5% of the radius of a hypothesized circle with its area equaling leaf area. The estimates of n for the two species were ˂ 2, indicating that all sampled leaves conformed to SE and not to EE. This study confirms the existence of SE in leaves, linking this to its potential functional advantages, particularly the possible influence of leaf shape on hydraulic conductance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000695118600001 Publication Date 2021-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1007-662x; 1993-0607 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3
Call Number UA @ admin @ c:irua:180967 Serial 7152
Permanent link to this record
 

 
Author Parrilla, M.; Slosse, A.; Van Echelpoel, R.; Montiel, F.N.; Langley, A.R.; Van Durme, F.; De Wael, K.
Title Rapid on-site detection of illicit drugs in smuggled samples with a portable electrochemical device Type A1 Journal article
Year 2022 Publication Chemosensors Abbreviated Journal
Volume 10 Issue 3 Pages 108-116
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract (up) The smuggling of illicit drugs urges the development of new tools for rapid on-site identification in cargos. Current methods rely on presumptive color tests and portable spectroscopic techniques. However, these methods sometimes exhibit inaccurate results due to commonly used cutting agents, the colorful nature of the sample or because the drugs are smuggled in common goods. Interestingly, electrochemical sensors can deal with these specific problems. Herein, an electrochemical device is presented that uses affordable screen-printed electrodes for the electrochemical profiling of several illicit drugs by square-wave voltammetry (SWV). The identification of the illicit compound is based on the oxidation potential of the analyte. Hence, a library of electrochemical profiles is built upon the analysis of illicit drugs and common cutting agents. This library allows the design of a tailor-made script that enables the identification of each drug through a user-friendly interface (laptop or mobile phone). Importantly, the electrochemical test is compared by analyzing 48 confiscated samples with other portable devices based on Raman and FTIR spectroscopy as well as a laboratory standard method (i.e., gas chromatography-mass spectrometry). Overall, the electrochemical results, obtained through the analysis of different samples from confiscated cargos at an end-user site, present a promising alternative to current methods, offering low-cost and rapid testing in the field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000775813500001 Publication Date 2022-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2227-9040 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:187766 Serial 8920
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Kavak, S.; Bals, S.; Meynen, V.
Title Modifying the Stöber Process: Is the Organic Solvent Indispensable? Type A1 Journal Article
Year 2022 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract (up) The Stöber method is one of the most important and fundamental processes for the synthesis of inorganic (nano)materials but has the drawback of using a large amount of organic solvent. Herein, ethanol was used as an example to explore if the organic solvent in a typical Stöber method can be omitted. It was found that ethanol increases the particle size of the obtained silica spheres and aids the formation of uniform silica particles rather than forming a gel. Nevertheless, the results indicated that an organic solvent in the initial synthesis mixture is not indispensable. An initially immiscible synthesis method was discovered, which can replace the organic solvent-based Stöber method to successfully synthesize silica particles with the same size ranges as the original Stöber process without addition of organic solvents. Moreover, this process can be of further value for the extension to synthesis processes of other materials based on the Stöber process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000898283500001 Publication Date 2022-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.3 Times cited 3 Open Access OpenAccess
Notes The authors are grateful to Alexander Vansant and Dr. Steven Mullens of VITO for their contributions to the DLS measurements in this paper. J.W acknowledges the State Scholarship funded by the China Scholarship Council (201806060123). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). S.K acknowledges the Flemish Fund for Scientific Research (FWO Flanders) through a PhD research grant (1181122N). Approved Most recent IF: 4.3
Call Number EMAT @ emat @c:irua:191646 Serial 7233
Permanent link to this record