toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Retuerto, M.; Calle-Vallejo, F.; Pascual, L.; Lumbeeck, G.; Fernandez-Diaz, M.T.; Croft, M.; Gopalakrishnan, J.; Pena, M.A.; Hadermann, J.; Greenblatt, M.; Rojas, S. pdf  doi
openurl 
  Title La1.5Sr0.5NiMn0.5Ru0.5O6 double perovskite with enhanced ORR/OER bifunctional catalytic activity Type A1 Journal article
  Year 2019 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 11 Issue 24 Pages 21454-21464  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Perovskites (ABO(3)) with transition metals in active B sites are considered alternative catalysts for the water oxidation to oxygen through the oxygen evolution reaction (OER) and for the oxygen reduction through the oxygen reduction reaction (ORR) back to water. We have synthesized a double perovskite (A(2)BB'O-6) with different cations in A, B, and B' sites, namely, ((La15Sr0.5)-Sr-.)(A)(Ni0.5Mn0.5)(B)(Ni0.5Ru0.5)(B)O-6 (LSNMR), which displays an outstanding OER/ORR bifunctional performance. The composition and structure of the oxide has been determined by powder X-ray diffraction, powder neutron diffraction, and transmission electron microscopy to be monoclinic with the space group P2(1)/n and with cationic ordering between the ions in the B and B' sites. X-ray absorption near-edge spectroscopy suggests that LSNMR presents a configuration of similar to Ni2+, similar to Mn4+, and similar to Ru5+. This bifunctional catalyst is endowed with high ORR and OER activities in alkaline media, with a remarkable bifunctional index value of similar to 0.83 V (the difference between the potentials measured at -1 mA cm(-2) for the ORR and +10 mA cm(-2) for the OER). The ORR onset potential (E-onset) of 0.94 V is among the best reported to date in alkaline media for ORR-active perovskites. The ORR mass activity of LSNMR is 1.1 A g(-1) at 0.9 V and 7.3 A g(-1) at 0.8 V. Furthermore, LSNMR is stable in a wide potential window down to 0.05 V. The OER potential to achieve a current density of 10 mA cm(-2) is 1.66 V. Density functional theory calculations demonstrate that the high ORR/OER activity of LSNMR is related to the presence of active Mn sites for the ORR- and Ru-active sites for the OER by virtue of the high symmetry of the respective reaction steps on those sites. In addition, the material is stable to ORR cycling and also considerably stable to OER cycling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472683300019 Publication Date 2019-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 12 Open Access  
  Notes ; This work was supported by the ENE2016-77055-C3-3-R project from the Spanish Ministry of Economy and Competitiveness (MINECO) and PIE 201480E122 from CSIC. M.R. thanks MINECO's Juan de la Cierva program for a grant (FPDI-2013-17582). F.C.-V. thanks the Spanish MEC for a Ramon y Cajal research contract (RYC-2015-18996). M.G. acknowledges the support from NSF-DMR-1507252 grant, NJ, USA. ; Approved Most recent IF: 7.504  
  Call Number UA @ admin @ c:irua:161320 Serial 5400  
Permanent link to this record
 

 
Author Mefford, J.T.; Kurilovich, A.A.; Saunders, J.; Hardin, W.G.; Abakumov, A.M.; Forslund, R.P.; Bonnefont, A.; Dai, S.; Johnston, K.P.; Stevenson, K.J. url  doi
openurl 
  Title Decoupling the roles of carbon and metal oxides on the electrocatalytic reduction of oxygen on La1-xSrxCoO3-\delta perovskite composite electrodes Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 6 Pages 3327-3338  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Perovskite oxides are active room-temperature bifunctional oxygen electrocatalysts in alkaline media, capable of performing the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with lower combined overpotentials relative to their precious metal counterparts. However, their semiconducting nature necessitates the use of activated carbons as conductive supports to generate applicably relevant current densities. In efforts to advance the performance and theory of oxide electrocatalysts, the chemical and physical properties of the oxide material often take precedence over contributions from the conductive additive. In this work, we find that carbon plays an important synergistic role in improving the performance of La1-xSrxCoO3- (0 x 1) electrocatalysts through the activation of O-2 and spillover of radical oxygen intermediates, HO2- and O-2(-), which is further reduced through chemical decomposition of HO2- on the perovskite surface. Through a combination of thin-film rotating disk electrochemical characterization of the hydrogen peroxide intermediate reactions (hydrogen peroxide reduction reaction (HPRR), hydrogen peroxide oxidation reaction (HPOR)) and oxygen reduction reaction (ORR), surface chemical analysis, HR-TEM, and microkinetic modeling on La1-xSrxCoO3- (0 x 1)/carbon (with nitrogen and non-nitrogen doped carbons) composite electrocatalysts, we deconvolute the mechanistic aspects and contributions to reactivity of the oxide and carbon support.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459584900049 Publication Date 2019-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 5 Open Access OpenAccess  
  Notes ; Financial support for this work was provided by the R. A. Welch Foundation (grants F-1529 and F-1319). S. D. was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences. ; Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:158625 Serial 5244  
Permanent link to this record
 

 
Author Buysse, C.; Kovalevsky, A.; Snijkers, F.; Buekenhoudt, A.; Mullens, S.; Luyten, J.; Kretzschmar, J.; Lenaerts, S. pdf  doi
openurl 
  Title Fabrication and oxygen permeability of gastight, macrovoid-free Ba0.5Sr0.5Co0.8Fe0.2O3-\delta capillaries for high temperature gas separation Type A1 Journal article
  Year 2010 Publication Journal of membrane science Abbreviated Journal J Membrane Sci  
  Volume 359 Issue 1-2 Pages 86-92  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Oxygen-permeable perovskites with mixed ionic-electronic conducting properties can play an important role in the separation of oxygen from air which is needed in the oxy-fuel and pre-combustion technologies for the removal and capture of CO2. In this work, gastight, macrovoid-free Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) capillaries were successfully shaped by a phase-inversion spinning technique, followed by calcination and sintering. It was found that both the rheology of the ceramic suspension and the composition of bore liquid and coagulation bath are key factors for making macrovoid-free green capillaries. Gastight BSCF capillaries were obtained by sintering for 5 h at 1100 °C. The sintered BSCF capillaries contained a significant amount of BaSO4 due to a reaction with the polysulfone binder during calcination. The oxygen permeation flux through the BSCF capillaries was measured and compared to literature data on BSCF disk and hollow fiber membranes measured in similar conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000279953300010 Publication Date 2009-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-7388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.035 Times cited 38 Open Access  
  Notes ; The authors want to express their thanks to the VITO personnel for their continuous support, especially B. Molenberghs, W. Doyen, H. Beckers (Separation and Conversion Technology, VITO), R. Kemps, M. Mertens, I. Thijs, M. Schoeters, W. Bouwen and J. Cooymans (Materials Department, VITO). C. Buysse thankfully acknowledges a PhD scholarship provided by VITO and the University of Antwerp. This work is performed in the framework of the German Helmholtz Alliance Project “MEM-BRAIN”, aiming at the development of gas separation membranes for zero-emission fossil fuel power plants. ; Approved Most recent IF: 6.035; 2010 IF: 3.673  
  Call Number UA @ admin @ c:irua:82008 Serial 5950  
Permanent link to this record
 

 
Author Van Noyen, J.; Middelkoop, V.; Buysse, C.; Kovalevsky, A.; Snijkers, F.; Buekenhoudt, A.; Mullens, S.; Luyten, J.; Kretzschmar, J.; Lenaerts, S. pdf  doi
openurl 
  Title Fabrication of perovskite capillary membranes for high temperature gas separation Type A1 Journal article
  Year 2012 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 193 Issue 1 Pages 172-178  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Oxygen-permeable perovskites with mixed ionic-electronic conducting properties can play an important role in carbon capture and storage techniques. Their ability to separate oxygen from air is needed, more specifically, in oxy-fuel and pre-combustion technologies. In this work, the first detailed comparative analysis and new results are reported on four types of Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) capillary membranes: non-coated sulphur-containing; catalyst-coated sulphur-containing; non-coated sulphur-free and catalyst-coated sulphur-free. The fabrication of BSCF capillaries by a spinning technique based on phase inversion is further discussed and their oxygen separation performances are interpreted. The comparison of the performance of these different generations of BSCF capillaries of similar dimensions demonstrates a significant impact of the sulphur contamination on both the oxygen flux through the membrane and the activation energy of the overall oxygen transport mechanism. Careful attention is paid to the effect of activation layers on both sulphur-free and sulphur-containing types of capillaries. Additional long-term testing of the sulphur-free BSCF capillaries is presented, where partial decomposition of the membrane surface was observed due to kinetic demixing. (c) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000308675900025 Publication Date 2012-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 9 Open Access  
  Notes ; The authors want to express their thanks to the VITO personnel for their continuous support, especially B. Molenberghs, W. Doyen (Separation and Conversion Technology, VITO), R. Kemps, M. Mertens, I. Thijs, M. Schoeters, W. Bouwen and J. Cooymans (Materials Department, VITO). C. Buysse thankfully acknowledges a Ph.D. scholarship provided by VITO and the University of Antwerp. This work is performed in the framework of the German Helmholtz Alliance Project “MEM-BRAIN”, aiming at the development of gas separation membranes for zero-emission fossil fuel power plants. ; Approved Most recent IF: 4.636; 2012 IF: 2.980  
  Call Number UA @ admin @ c:irua:101797 Serial 5951  
Permanent link to this record
 

 
Author Ren, Z.; Wu, M.; Chen, X.; Li, W.; Li, M.; Wang, F.; Tian, H.; Chen, J.; Xie, Y.; Mai, J.; Li, X.; Lu, X.; Lu, Y.; Zhang, H.; Van Tendeloo, G.; Zhang, Z.; Han, G. pdf  doi
openurl 
  Title Electrostatic force-driven oxide heteroepitaxy for interface control Type A1 Journal article
  Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 30 Issue 38 Pages 1707017  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Oxide heterostructure interfaces create a platform to induce intriguing electric and magnetic functionalities for possible future devices. A general approach to control growth and interface structure of oxide heterostructures will offer a great opportunity for understanding and manipulating the functionalities. Here, it is reported that an electrostatic force, originating from a polar ferroelectric surface, can be used to drive oxide heteroepitaxy, giving rise to an atomically sharp and coherent interface by using a low-temperature solution method. These heterostructures adopt a fascinating selective growth, and show a saturation thickness and the reconstructed interface with concentrated charges accumulation. The ferroelectric polarization screening, developing from a solid-liquid interface to the heterostructure interface, is decisive for the specific growth. At the interface, a charge transfer and accumulation take place for electrical compensation. The facile approach presented here can be extremely useful for controlling oxide heteroepitaxy and producing intriguing interface functionality via electrostatic engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000444671900002 Publication Date 2018-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 4 Open Access Not_Open_Access  
  Notes ; Z.H.R., M.J.W., and X.C. contributed equally to this work. This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51232006, 51472218, 11474249, 61574123, 11374009, and 11234011), the National 973 Program of China (Grant No. 2015CB654901), National Young 1000 Talents Program of China, the Fundamental Research Funds for the Central Universities (Grant No. 2017FZA4008), and the 111 Project under Grant No. B16042. J.M. and X.L. gratefully thank the beam time and technical supports provided by 23A SWAXS beamline at NSRRC, Hsinchu. ; Approved Most recent IF: 19.791  
  Call Number UA @ lucian @ c:irua:153628 Serial 5098  
Permanent link to this record
 

 
Author Yuan, H.; Debroye, E.; Bladt, E.; Lu, G.; Keshavarz, M.; Janssen, K.P.F.; Roeffaers, M.B.J.; Bals, S.; Sargent, E.H.; Hofkens, J. pdf  url
doi  openurl
  Title Imaging heterogeneously distributed photo-active traps in perovskite single crystals Type A1 Journal article
  Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 30 Issue 30 Pages 1705494  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Organic-inorganic halide perovskites (OIHPs) have demonstrated outstanding energy conversion efficiency in solar cells and light-emitting devices. In spite of intensive developments in both materials and devices, electronic traps and defects that significantly affect their device properties remain under-investigated. Particularly, it remains challenging to identify and to resolve traps individually at the nanoscopic scale. Here, photo-active traps (PATs) are mapped over OIHP nanocrystal morphology of different crystallinity by means of correlative optical differential super-resolution localization microscopy (Delta-SRLM) and electron microscopy. Stochastic and monolithic photoluminescence intermittency due to individual PATs is observed on monocrystalline and polycrystalline OIHP nanocrystals. Delta-SRLM reveals a heterogeneous PAT distribution across nanocrystals and determines the PAT density to be 1.3 x 10(14) and 8 x 10(13) cm(-3) for polycrystalline and for monocrystalline nanocrystals, respectively. The higher PAT density in polycrystalline nanocrystals is likely related to an increased defect density. Moreover, monocrystalline nanocrystals that are prepared in an oxygen and moisture-free environment show a similar PAT density as that prepared at ambient conditions, excluding oxygen or moisture as chief causes of PATs. Hence, it is conduded that the PATs come from inherent structural defects in the material, which suggests that the PAT density can be reduced by improving crystalline quality of the material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000428793600009 Publication Date 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 29 Open Access OpenAccess  
  Notes ; The authors acknowledge financial support from the Research Foundation-Flanders (FWO, grant G.0197.11, G.0962.13, G0B39.15, ZW1509 GOH6316N, postdoctoral fellowships to H.Y., E.D., and K.P.F.J., doctoral fellowship to E.B.), KU Leuven Research Fund (C14/15/053), the Flemish government through long term structural funding Methusalem (CASAS2, Meth/15/04), the Hercules foundation (HER/11/14), the Belgian Federal Science Policy Office (IAP-PH05), the EC through the Marie Curie ITN project iSwitch (GA-642196), and the ERC project LIGHT (GA-307523). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). G.L. acknowledges Key University Science Research Project of Jiangsu Province (No. 17KJA150005). E.H.S. acknowledges support from the Ontario Research Fund – Research Excellence Program. ; ecassara Approved Most recent IF: 19.791  
  Call Number UA @ lucian @ c:irua:150826UA @ admin @ c:irua:150826 Serial 4970  
Permanent link to this record
 

 
Author Lenaerts, J.; van Vaeck, L.; Gijbels, R.; Van Luppen, J. doi  openurl
  Title Comparison of mono- and polyatomic primary ions for the characterization of organic dye overlayers with static secondary ion mass spectrometry Type A1 Journal article
  Year 2004 Publication Rapid communications in mass spectrometry Abbreviated Journal Rapid Commun Mass Sp  
  Volume 18 Issue 3 Pages 257-264  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Organic carbocyanine dye coatings have been analyzed by time-of-flight static secondary ion mass spectrometry (TOF-S-SIMS) using three types of primary ions: Ga+ operating at 25 keV, and Xe+ and SF5+ both operating at 9 keV. Secondary ion yields obtained with these three primary ions have been compared for coatings with different layer thickness, varying from (sub)-monolayer to multilayers, on different substrates (Si, Ag and AgBr cubic microcrystals). For (sub)-monolayers deposited on Ag, Xe+ and SF5+ primary ions generate similar precursor ion intensities, but with Ga+ slightly lower precursor ion intensities were obtained. Thick coatings on Ag as well as mono- and multilayers on Si produce the highest precursor and fragment ion intensities with the polyatomic primary ion. The yield difference between SF5+ and Xe+ can reach a factor of 6. In comparison with Ga+, yield enhancements by up to a factor of 180 are observed with SF5+. For the mass spectrometric analysis of dye layers on AgBr microcrystals, SF5+ again proves to be the primary ion of choice. Copyright (C) 2004 John Wiley Sons, Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000188695200004 Publication Date 2004-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0951-4198;1097-0231; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.998 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.998; 2004 IF: 2.750  
  Call Number UA @ lucian @ c:irua:103759 Serial 432  
Permanent link to this record
 

 
Author Lu, J.; Bartholomeeusen, E.; Sels, B.F.; Schryvers, D. pdf  url
doi  openurl
  Title Internal architecture of coffin-shaped ZSM-5 zeolite crystals with hourglass contrast unravelled by focused ion beam-assisted transmission electron microscopy: INTERNAL ARCHITECTURE OF COFFIN-SHAPED Type A1 Journal article
  Year 2017 Publication Journal of microscopy Abbreviated Journal J Microsc-Oxford  
  Volume 265 Issue 265 Pages 27-33  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Optical microscopy, focused ion beam and transmission electron microscopy are combined to study the internal architecture in a coffin-shaped ZSM-5 crystal showing an hourglass contrast in optical microscopy. Based on parallel lamellas from different positions in the crystal, the orientation relationships between the intergrowth components of the crystal are studied and the internal architecture and growth mechanism are illustrated. The crystal is found to contain two pyramid-like components aside from a central component. Both pyramid-like components are rotated by 90 degrees along the common c-axis and with respect to the central component while the interfaces between the components show local zig-zag feature, the latter indicating variations in relative growth velocity of the two components. The pyramid-like intergrowth components are larger and come closer to one another in the middle of the crystal than at the edges, but they do not connect. A model of multisite nucleation and growth of 90 degrees intergrowth components is proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000392487400004 Publication Date 2016-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2720 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.692 Times cited 4 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G.0603.10N ; Approved Most recent IF: 1.692  
  Call Number EMAT @ emat @ c:irua:141015 Serial 4437  
Permanent link to this record
 

 
Author Vodolazov, D.; Baelus, B.J.; Peeters, F.M. pdf  doi
openurl 
  Title Dynamics of the superconducting condensate in the presence of a magnetic field : channelling of vortices in superconducting strips at high currents Type A1 Journal article
  Year 2004 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 404 Issue 1-4 Pages 400-404  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) On the basis of the time-dependent Ginzburg-Landau equation we studied the dynamics of the superconducting condensate in a wide two-dimensional sample in the presence of a perpendicular magnetic field and applied current. We could identify two critical currents: the current at which the pure superconducting state becomes unstable (J(c2)(1)) and the current at which the system transits from the resistive state to the superconducting state (J(c1) < J(c2)). The current J(c2) decreases monotonically with external magnetic field, while J(c1) exhibits a maximum at H*. For sufficient large magnetic fields the hysteresis disappears and J(c1) = J(c2) = Jc. In this high magnetic field region and for currents close to Jc the voltage appears as a result of the motion of separate vortices. With increasing current the moving vortices form,channels' with suppressed order parameter along which the vortices can move very fast. This leads to a sharp increase of the voltage. These 'channels' resemble in some respect the phase slip lines which occur at zero magnetic field. (C) 2004 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000221211500074 Publication Date 2004-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 16 Open Access  
  Notes Approved Most recent IF: 1.404; 2004 IF: 1.072  
  Call Number UA @ lucian @ c:irua:95108 Serial 784  
Permanent link to this record
 

 
Author Xu, W.; Peeters, F.M.; Lu, T.C. url  doi
openurl 
  Title Dependence of resistivity on electron density and temperature in graphene Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 7 Pages 073403,1-073403,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) On the basis of the momentum-balance equation derived from the Boltzmann equation in which electron interactions with impurities and acoustic and optic phonons are included, we examine the dependence of the resistivity in graphene on temperature and electron density. Simple analytical expressions for the different contributions to the resistivity are obtained. Our results reproduce recent experimental findings and we are able to understand the different temperature dependence of the resistivity for low and high density samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000263815800013 Publication Date 2009-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:76222 Serial 642  
Permanent link to this record
 

 
Author De Luca, F.; Abate, S.; Bogaerts, A.; Centi, G. url  openurl
  Title Electrified CO2 conversion : integrating experimental, computational, and process simulation methods for sustainable chemical synthesis Type Doctoral thesis
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages xv, 152 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Nowadays, the burning of fossil fuels, particularly petroleum, natural gas, and coal, meets the rising need for power and fuels for automobiles and industries. This has given rise to ecological and climate challenges. This thesis explores these issues from three distinct perspectives: (i) experimental, (ii) computational, and (iii) process simulation, with a focus on studying CO2 as an alternative and economically viable raw material. Firstly, the experimental study is focused on the synthesis, characterization, and testing of novel catalysts for electroreduction of CO2 and oxalic acid, an intermediate product of CO2. Electrocatalysts based on Cu supported by citrus (orange and lemon) peel biomass are prepared. These catalysts exhibit activity in the electrochemical reduction of CO2, emphasizing the effectiveness of biomasses, particularly orange peels, as environmentally friendly precursors for sustainable and efficient electrocatalysts. In addition, graphitic carbon nitrides/TiO2 nanotubes (g-C3N4/TiNT) composites are prepared for the electrocatalytic reduction of oxalic acid to glycolic acid, revealing superior electrocatalytic properties compared to pristine TiNT. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electronic microscopy were performed for all the prepared electrocatalysts. Delving into the reduction of CO2 on Cu catalysts, a computational study about the synthesis of methanol on Cu(111) surface is performed by using the Vienna Ab initio Simulation Package. A systematic study is carried out to define the activation energies of the elementary reactions by using mGGA DF. Consequently, it is shown that the rate-controlling step is CH3O* hydrogenation and the formate pathway on Cu(111) proceeds through the HCOOH* intermediate. Finally, the process simulation, performed by using the software Aspen Plus 11 from AspenTech Inc., is based on the comparison of a catalytic (oxidation of ethylene glycol) and an electrocatalytic process (CO2 electroreduction chain) to synthesize glycolic acid. An economic analysis of the operational and investment costs reveals that the catalytic process is more cost-effective due to the current instability of electrocatalysts and proton exchange membranes, resulting in increased maintenance costs and, consequently, higher prices for the product.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205262 Serial 9147  
Permanent link to this record
 

 
Author Lumbeeck, G.; Delvaux, A.; Idrissi, H.; Proost, J.; Schryvers, D. url  doi
openurl 
  Title Analysis of internal stress build-up during deposition of nanocrystalline Ni thin films using transmission electron microscopy Type A1 Journal article
  Year 2020 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 707 Issue Pages 138076  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Ni thin films sputter-deposited at room temperature with varying Ar pressures were investigated with automated crystal orientation mapping in a transmission electron microscope to uncover the mechanisms controlling the internal stress build-up recorded in-situ during deposition. Large grains were found to induce behaviour similar to a stress-free nucleation layer. The measurements of grain size in most of the Ni thin films are in agreement with the island coalescence model. Low internal stress was observed at low Ar pressure and was explained by the presence of large grains. Relaxation of high internal stress was also noticed at the highest Ar pressure, which was attributed to a decrease of Σ3 twin boundary density due to a low deposition rate. The results provide insightful information to better understand the relationship between structural boundaries and the evolution of internal stress upon deposition of thin films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000539312200011 Publication Date 2020-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes This work was supported by the Hercules Foundation [Grant No. AUHA13009], the Flemish Research Fund (FWO) [Grant No. G.0365.15N], and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. Thin film deposition has been realised as part of the WallonHY project, funded by the Public Service of Wallonia – Department of Energy and Sustainable Building. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:169708 Serial 6370  
Permanent link to this record
 

 
Author Li, J.; Pereira, P.J.; Yuan, J.; Lv, Y.-Y.; Jiang, M.-P.; Lu, D.; Lin, Z.-Q.; Liu, Y.-J.; Wang, J.-F.; Li, L.; Ke, X.; Van Tendeloo, G.; Li, M.-Y.; Feng, H.-L.; Hatano, T.; Wang, H.-B.; Wu, P.-H.; Yamaura, K.; Takayama-Muromachi, E.; Vanacken, J.; Chibotaru, L.F.; Moshchalkov, V.V. url  doi
openurl 
  Title Nematic superconducting state in iron pnictide superconductors Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 8 Issue 1 Pages 1880  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Nematic order often breaks the tetragonal symmetry of iron-based superconductors. It arises from regular structural transition or electronic instability in the normal phase. Here, we report the observation of a nematic superconducting state, by measuring the angular dependence of the in-plane and out-of-plane magnetoresistivity of Ba 0.5 K 0.5 Fe 2 As 2 single crystals. We find large twofold oscillations in the vicinity of the superconducting transition, when the direction of applied magnetic field is rotated within the basal plane. To avoid the influences from sample geometry or current flow direction, the sample was designed as Corbino-shape for in-plane and mesa-shape for out-of-plane measurements. Theoretical analysis shows that the nematic superconductivity arises from the weak mixture of the quasi-degenerate s-wave and d-wave components of the superconducting condensate, most probably induced by a weak anisotropy of stresses inherent to single crystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000416933400002 Publication Date 2017-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 8 Open Access OpenAccess  
  Notes The authors J.L., P.J.P., and J.Y. contributed equally to this work. J.L. and J.Y. designed the experiments. J.L., H.-L.F., K.Y., and E.T.-M. grew the single crystals. J.L., J.Y., Y.-Y.L., M.-P.J., D.L., M.-Y.L., T.H., H.-B.W., P.-H.W., K.Y., E.T.-M., J.V., and V.V.M. fabricated the devices and measured transport properties. J.L., Y.-Y.L., Z.-Q.L., Y.-J.L., J.-F.W., and L.L. studied on the pulsed high field measurements. X.K. and G.V.T. measured the low temperature TEM. All authors discussed the data. J.L., P.J.P., and L.F.C. proposed the model and simulated the results. J.L., P.J.P., K.Y., E.T.-M., and L.F.C. analyzed the data and prepared the manuscript. Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @c:irua:147348 Serial 4772  
Permanent link to this record
 

 
Author Li, H.; Zhang, L.; Li, L.; Wu, C.; Huo, Y.; Chen, Y.; Liu, X.; Ke, X.; Luo, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Two-in-one solution using insect wings to produce graphene-graphite films for efficient electrocatalysis Type A1 Journal article
  Year 2019 Publication Nano Research Abbreviated Journal Nano Res  
  Volume 12 Issue 1 Pages 33-39  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Natural organisms contain rich elements and naturally optimized smart structures, both of which have inspired various innovative concepts and designs in human society. In particular, several natural organisms have been used as element sources to synthesize low-cost and environmentally friendly electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries, which are clean energy devices. However, to date, no naturally optimized smart structures have been employed in the synthesis of ORR catalysts, including graphene-based materials. Here, we demonstrate a novel strategy to synthesize graphene-graphite films (GGFs) by heating butterfly wings coated with FeCl3 in N-2, in which the full power of natural organisms is utilized. The wings work not only as an element source for GGF generation but also as a porous supporting structure for effective nitrogen doping, two-dimensional spreading, and double-face exposure of the GGFs. These GGFs exhibit a half-wave potential of 0.942 V and a H2O2 yield of < 0.07% for ORR electrocatalysis; these values are comparable to those for the best commercial Pt/C and all previously reported ORR catalysts in alkaline media. This two-in-one strategy is also successful with cicada and dragonfly wings, indicating that it is a universal, green, and cost-effective method for developing high-performance graphene-based materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453629900004 Publication Date 2018-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1998-0124 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.354 Times cited 7 Open Access Not_Open_Access  
  Notes ; The authors would like to thank Drs Qiang Wang and Wenjuan Yuan for useful discussions. This work was financially supported by the National Key R&D Program of China (No. 2017YFA0700104), the National Natural Science Foundation of China (Nos. 21601136 and 11404016), the National Program for Thousand Young Talents of China, Tianjin Municipal Education Commission, Tianjin Municipal Science and Technology Commission (No. 15JCYBJC52600), and the Fundamental Research Fund of Tianjin University of Technology. This work also made use of the resources of the National Center for Electron Microscopy in Beijing. ; Approved Most recent IF: 7.354  
  Call Number UA @ admin @ c:irua:156210 Serial 5265  
Permanent link to this record
 

 
Author Zhou, Z.; Tan, Y.; Yang, Q.; Bera, A.; Xiong, Z.; Yagmurcukardes, M.; Kim, M.; Zou, Y.; Wang, G.; Mishchenko, A.; Timokhin, I.; Wang, C.; Wang, H.; Yang, C.; Lu, Y.; Boya, R.; Liao, H.; Haigh, S.; Liu, H.; Peeters, F.M.; Li, Y.; Geim, A.K.; Hu, S. url  doi
openurl 
  Title Gas permeation through graphdiyne-based nanoporous membranes Type A1 Journal article
  Year 2022 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 13 Issue 1 Pages 4031-4036  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (down) Nanoporous membranes based on two dimensional materials are predicted to provide highly selective gas transport in combination with extreme permeance. Here we investigate membranes made from multilayer graphdiyne, a graphene-like crystal with a larger unit cell. Despite being nearly a hundred of nanometers thick, the membranes allow fast, Knudsen-type permeation of light gases such as helium and hydrogen whereas heavy noble gases like xenon exhibit strongly suppressed flows. Using isotope and cryogenic temperature measurements, the seemingly conflicting characteristics are explained by a high density of straight-through holes (direct porosity of similar to 0.1%), in which heavy atoms are adsorbed on the walls, partially blocking Knudsen flows. Our work offers important insights into intricate transport mechanisms playing a role at nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000918423100001 Publication Date 2022-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 21 Open Access OpenAccess  
  Notes Approved Most recent IF: 16.6  
  Call Number UA @ admin @ c:irua:194402 Serial 7308  
Permanent link to this record
 

 
Author Lumbeeck, G.; Idrissi, H.; Amin-Ahmadi, B.; Favache, A.; Delmelle, R.; Samaee, V.; Proost, J.; Pardoen, T.; Schryvers, D. pdf  url
doi  openurl
  Title Effect of hydriding induced defects on the small-scale plasticity mechanisms in nanocrystalline palladium thin films Type A1 Journal Article
  Year 2018 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 124 Issue 22 Pages 225105  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract (down) Nanoindentation tests performed on nanocrystalline palladium films subjected to hydriding/dehydriding cycles demonstrate a significant softening when compared to the as-received material. The origin of this softening is unraveled by combining in situ TEM nanomechanical testing with automated crystal orientation mapping in TEM and high resolution TEM. The softening is attributed to the presence of a high density of stacking faults and of Shockley partial dislocations after hydrogen loading. The hydrogen induced defects affect the elementary plasticity mechanisms and the mechanical response by acting as preferential sites for twinning/detwinning during deformation. These results are analyzed and compared to previous experimental and simulation works in the literature. This study provides new insights into the effect of hydrogen on the atomistic deformation and cracking mechanisms as well as on the mechanical properties of nanocrystalline thin films and membranes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453254000025 Publication Date 2018-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 2 Open Access Not_Open_Access  
  Notes This work was supported by the Hercules Foundation under Grant No. AUHA13009, the Flemish Research Fund (FWO) under Grant No. G.0365.15N, and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. Dr. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). We would like to thank Dr. Hadi Pirgazi from UGent for his technical support to process the ACOM data in the OIM Analysis software. Approved Most recent IF: 2.068  
  Call Number EMAT @ emat @c:irua:155742 Serial 5135  
Permanent link to this record
 

 
Author Kuznetsov, A.S.; Lu, Y.-G.; Turner, S.; Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Verbeeck, J.; Baranov, A.N.; Moshchalkov, V.V. url  doi
openurl 
  Title Preparation, structural and optical characterization of nanocrystalline ZnO doped with luminescent Ag-nanoclusters Type A1 Journal article
  Year 2012 Publication Optical materials express Abbreviated Journal Opt Mater Express  
  Volume 2 Issue 6 Pages 723-734  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Nanocrystalline ZnO doped with Ag-nanoclusters has been synthesized by a salt solid state reaction. Three overlapping broad emission bands due to the Ag nanoclusters have been detected at about 570, 750 and 900 nm. These emission bands are excited by an energy transfer from the exciton state of the ZnO host when pumped in the wavelength range from 250 to 400 nm. The 900 nm emission band shows characteristic orbital splitting into three components pointing out that the anisotropic crystalline wurtzite host of ZnO is responsible for this feature. Heat-treatment and temperature dependence studies confirm the origin of these emission bands. An energy level diagram for the emission process and a model for Ag nanoclusters sites are suggested. The emission of nanocrystalline ZnO doped with Ag nanoclusters may be applied for white light generation, displays driven by UV light, down-convertors for solar cells and luminescent lamps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304953700004 Publication Date 2012-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2159-3930; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.591 Times cited Open Access  
  Notes We are grateful to the Methusalem Funding of Flemish Government for the support of this work. Y.-G. L. and S. T. acknowledge funding from the Fund for Scientific Research Flanders (FWO) for a postdoctoral grant and under grant number G056810N. The microscope used in this study was partially financed by the Hercules Foundation. J.V. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No246791 – COUNTATOMS and ERC Starting Grant 278510 VORTEX. The authors acknowledge the guidance of Prof. G. Van Tendeloo, EMAT Antwerpen University, in transmission electron microscopy study in this work. ECASJO_; Approved Most recent IF: 2.591; 2012 IF: 2.616  
  Call Number UA @ lucian @ c:irua:97709UA @ admin @ c:irua:97709 Serial 2707  
Permanent link to this record
 

 
Author Janssen, W.; Turner, S.; Sakr, G.; Jomard, F.; Barjon, J.; Degutis, G.; Lu, Y.G.; D'Haen, J.; Hardy, A.; Bael, M.V.; Verbeeck, J.; Van Tendeloo, G.; Haenen, K. pdf  doi
openurl 
  Title Substitutional phosphorus incorporation in nanocrystalline CVD diamond thin films Type A1 Journal article
  Year 2014 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R  
  Volume 8 Issue 8 Pages 705-709  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Nanocrystalline diamond (NCD) thin films were produced by chemical vapor deposition (CVD) and doped by the addition of phosphine to the gas mixture. The characterization of the films focused on probing the incorporation and distribution of the phosphorus (P) dopants. Electron microscopy evaluated the overall film morphology and revealed the interior structure of the nanosized grains. The homogeneous films with distinct diamond grains featured a notably low sp(2):sp(3)-ratio as confirmed by Raman spectroscopy. High resolution spectroscopy methods demonstrated a homogeneous P-incorporation, both in-depth and in-plane. The P concentration in the films was determined to be in the order of 10(19) cm(-3) with a significant fraction integrated at substitutional donor sites. (C) 2014 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000340484100007 Publication Date 2014-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.032 Times cited 20 Open Access  
  Notes Fwo G055510n; G056810n; G.045612; 246791 Countatoms; 312483 Esteem2; esteem2_jra3 Approved Most recent IF: 3.032; 2014 IF: 2.142  
  Call Number UA @ lucian @ c:irua:119220 Serial 3346  
Permanent link to this record
 

 
Author Baelus, B.J.; Peeters, F.M. doi  openurl
  Title Multiply connected mesoscopic superconductors Type A1 Journal article
  Year 2003 Publication Modern physics letters B T2 – 3rd International Conference on Modern Problems in Superconductivity, SEP 09-14, 2002, YALTA, UKRAINE Abbreviated Journal Mod Phys Lett B  
  Volume 17 Issue 10-12 Pages 527-536  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Multiply connected mesoscopic: superconductors are considered within the framework of the nonlinear Ginzburg-Landau theory. The two coupled nonlinear equations are solved numerically and we investigated the properties of a superconducting ring, two concentric rings, and an asymmetric ring. We find that (i) for a mesoscopic superconducting ring the flux through the hole is not quantized, (ii) two concentric mesoscopic superconducting rings are magnetically coupled and the interaction energy increases with increasing sample thickness, and (iii) in asymmetric rings, a stationary phase slip state is predicted.  
  Address  
  Corporate Author Thesis  
  Publisher World scientific publ co pte ltd Place of Publication Singapore Editor  
  Language Wos 000184303900016 Publication Date 2003-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-9849;1793-6640; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.617 Times cited Open Access  
  Notes Approved Most recent IF: 0.617; 2003 IF: 0.461  
  Call Number UA @ lucian @ c:irua:103810 Serial 2236  
Permanent link to this record
 

 
Author Chen, B.; Sahin, H.; Suslu, A.; Ding, L.; Bertoni, M.I.; Peeters, F.M.; Tongay, S. doi  openurl
  Title Environmental changes in MoTe2 excitonic dynamics by defects-activated molecular interaction Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue 9 Pages 5326-5332  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (down) Monolayers of group VI transition metal dichalcogenides possess direct gaps in the visible spectrum with the exception of MoTe2, where its gap is suitably located in the infrared region but its stability is of particular interest, as tellurium compounds are acutely sensitive to oxygen exposure. Here, our environmental (time-dependent) measurements reveal two distinct effects on MoTe2 monolayers: For weakly luminescent monolayers, photoluminescence signal and optical contrast disappear, as if they are decomposed, but yet remain intact as evidenced by AFM and Raman measurements. In contrast, strongly luminescent monolayers retain their optical contrast for a prolonged amount of time, while their PL peak blue-shifts and PL intensity saturates to slightly lower values. Our X-ray photoelectron spectroscopy measurements and DFT calculations suggest that the presence of defects and functionalization of these defect sites with O-2 molecules strongly dictate their material properties and aging response by changing the excitonic dynamics due to deep or shallow states that are created within the optical band gap. Presented results not only shed light on environmental effects on fundamental material properties and excitonic dynamics of MoTe2 monolayers but also highlight striking material transformation for metastable 20 systems such as WTe2, silicone, and phosphorene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355383000068 Publication Date 2015-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 150 Open Access  
  Notes ; This work was supported by the Arizona State University seeding program. The authors thank Hui Cai and Kedi Wu for useful discussions. We gratefully acknowledge the use of facilities at the LeRoy Eyring Center for Solid State Science at Arizona State University. This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem Foundation of the Flemish government. H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:126441 Serial 1068  
Permanent link to this record
 

 
Author Schapotschnikow, P.; van Huis, M.A.; Zandbergen, H.W.; Vanmaekelbergh, D.; Vlugt, T.J.H. doi  openurl
  Title Morphological transformations and fusion of PbSe nanocrystals studied using atomistic simulations Type A1 Journal article
  Year 2010 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 10 Issue 10 Pages 3966-3971  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Molecular dynamics simulations are performed on capped and uncapped PbSe nanocrystals, employing newly developed classical interaction potentials. Here, we show that two uncapped nanocrystals fuse efficiently via direct surface attachment, even if they are initially misaligned. In sharp contrast to the general belief, interparticle dipole interactions do not play a significant role in this oriented attachment process. Furthermore, it is shown that presumably polar, capped PbSe{111} facets are never fully Pb- or Se-terminated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000282727600028 Publication Date 2010-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 59 Open Access  
  Notes Approved Most recent IF: 12.712; 2010 IF: 12.219  
  Call Number UA @ lucian @ c:irua:84902 Serial 2205  
Permanent link to this record
 

 
Author De Henau, S.; Tilleman, L.; Vangheel, M.; Luyckx, E.; Trashin, S.; Pauwels, M.; Germani, F.; Vlaeminck, C.; Vanfleteren, J.R.; Bert, W.; Pesce, A.; Nardini, M.; Bolognesi, M.; De Wael, K.; Moens, L.; Dewilde, S.; Braeckman, B.P. url  doi
openurl 
  Title A redox signalling globin is essential for reproduction in Caenorhabditis elegans Type A1 Journal article
  Year 2015 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 6 Issue Pages 8782  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Moderate levels of reactive oxygen species (ROS) are now recognized as redox signalling molecules. However, thus far, only mitochondria and NADPH oxidases have been identified as cellular sources of ROS in signalling. Here we identify a globin (GLB-12) that produces superoxide, a type of ROS, which serves as an essential signal for reproduction in C. elegans. We find that GLB-12 has an important role in the regulation of multiple aspects in germline development, including germ cell apoptosis. We further describe how GLB-12 displays specific molecular, biochemical and structural properties that allow this globin to act as a superoxide generator. In addition, both an intra- and extracellular superoxide dismutase act as key partners of GLB-12 to create a transmembrane redox signal. Our results show that a globin can function as a driving factor in redox signalling, and how this signal is regulated at the subcellular level by multiple control layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367577100002 Publication Date 2015-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 20 Open Access  
  Notes ; We thank Dr K. Matsumoto and Dr T. Mizuno for kindly providing the mek-1(ks54) sek-1(km4) double mutant, the antibody anti-PMK-1 and technical advice on antibody use; Dr D. Kim for kindly providing the pDK177 RNAi strain; Dr M. Ubbink and Dr Q. Bashir for providing CCP; Dr K. Oegema and the OD lab for sharing technical expertise; M. Couvreur for assistance in generating transgenic lines; and Dr T. Dansen for the final support. Some strains were provided by the CGC, which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440). S.D.H. and F.G. are PhD fellows of the Fund for Scientific Research (FWO). Financial support to S.D. and L.M. was provided by the University of Antwerp (BOF UA TOP 2006), to K.D.W., S.D. and S.T. by the University of Antwerp (BOF-GOA) and to S.D., L.M., B.P.B., by FWO project G.0247.09. ; Approved Most recent IF: 12.124; 2015 IF: 11.470  
  Call Number UA @ admin @ c:irua:129310 Serial 5809  
Permanent link to this record
 

 
Author Belov, I.; Vermeiren, V.; Paulussen, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Carbon dioxide dissociation in a microwave plasma reactor operating in a wide pressure range and different gas inlet configurations Type A1 Journal article
  Year 2018 Publication Journal of CO2 utilization Abbreviated Journal J Co2 Util  
  Volume 24 Issue Pages 386-397  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Microwave (MW) plasmas represent a promising solution for efficient CO2 dissociation. MW discharges are also very versatile and can be sustained at various pressure and gas flow regimes. To identify the most favorable conditions for the further scale-up of the CO2 decomposition reaction, a MW plasma reactor operating in pure CO2 in a wide pressure range (200 mbar–1 bar) is studied. Three different gas flow configurations are explored: a direct, reverse and a vortex regime. The CO2 conversion and energy efficiency drop almost linearly with increasing pressure, regardless of the gas flow regime. The results obtained in the direct flow configuration underline the importance of post-discharge cooling, as the exhaust of the MW plasma reactor in this regime expanded into the vacuum chamber without additional quenching. As a result, this system yields exhaust temperatures of up to 1000 K, which explains the lowest conversion (∼3.5% at 200 mbar and 2% at 1 bar). A post-discharge cooling step is introduced for the reverse gas inlet regime and allows the highest conversion to be achieved (∼38% at 200 mbar and 6.2% at 1 bar, with energy efficiencies of 23% and 3.7%). Finally, a tangential gas inlet is utilized in the vortex configuration to generate a swirl flow pattern. This results in the generation of a stable discharge in a broader range of CO2 flows (15–30 SLM) and the highest energy efficiencies obtained in this study (∼25% at 300 mbar and ∼13% at 1 bar, at conversions of 21% and 12%). The experimental results are complemented with computational fluid dynamics simulations and with the analysis of the latest literature to identify the further research directions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428234500045 Publication Date 2018-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited 8 Open Access Not_Open_Access: Available from 16.03.2020  
  Notes The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7-PEOPLE-2013- ITN) under Grant Agreement№606889 (R Approved Most recent IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:150874 Serial 4955  
Permanent link to this record
 

 
Author Lubyshev, D.; Fastenau, J.M.; Fang, X.-M.; Wu, Y.; Doss, C.; Snyder, A.; Liu, W.K.; Lamb, M.S.M.; Bals, S.; Song, C. pdf  doi
openurl 
  Title Comparison of As- and P-based metamorphic buffers for high performance InP heterojunction bipolar transistor and high electron mobility transistor applications Type A1 Journal article
  Year 2004 Publication Journal of vacuum science & technology. B. Microelectronics and nanometer structures. Processing, measurement and phenomena Abbreviated Journal  
  Volume 22 Issue 3 Pages 1565-1569  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Metamorphic buffers (M-buffers) consisting of graded InAlAs or bulk InP were employed for the production of InP-based epiwafers on GaAs substrates by molecular-beam epitaxy. The graded InAlAs is the standard for production metamorphic high electron mobility transistors (M-HEMTs), while the bulk InP offers superior thermal properties for higher current density circuits. The surface morphology and crystal structure of the two M-buffers showed different relaxation mechanisms. The graded InAlAs gave a cross-hatched pattern with nearly full relaxation and very effective dislocation filtering, while the bulk InP had a uniform isotropic surface with dislocations propagating further up towards the active layers. Both types of M-buffers had atomic force microscopy root-mean-square roughness values around 2030 Å. The Hall transport properties of high electron mobility transistors (HEMTs) grown on the InAlAs M-buffer, and a baseline HEMT grown lattice matched on InP, both had room-temperature mobilities >10 000 cm2/V s, while the M-HEMT on the InP M-buffer showed a decrease to 9000 cm2/V  s. Similarly, the dc parameters of a double heterojunction bipolar transistor (DHBT) grown on the InAlAs M-buffer were much closer to the baseline heterojunction bipolar transistor than a DHBT grown on the InP M-buffer. A high breakdown voltage of 11.3 V was achieved on an M-DHBT with the InAlAs M-buffer. We speculate that the degradation in device characteristics on the InP M-buffer was related to the incomplete dislocation filtering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000222481400141 Publication Date 2004-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-211X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 25 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:87596 Serial 427  
Permanent link to this record
 

 
Author Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S.K.; Bladt, E.; Kshirsagar, A.S.; Wang, Z.; Yin, J.; Wang, Y.; Quan, L.N.; Yan, F.; Gao, M.; Li, X.; Shamsi, J.; Debnath, T.; Cao, M.; Scheel, M.A.; Kumar, S.; Steele, J.A.; Gerhard, M.; Chouhan, L.; Xu, K.; Wu, X.-gang; Li, Y.; Zhang, Y.; Dutta, A.; Han, C.; Vincon, I.; Rogach, A.L.; Nag, A.; Samanta, A.; Korgel, B.A.; Shih, C.-J.; Gamelin, D.R.; Son, D.H.; Zeng, H.; Zhong, H.; Sun, H.; Demir, H.V.; Scheblykin, I.G.; Mora-Sero, I.; Stolarczyk, J.K.; Zhang, J.Z.; Feldmann, J.; Hofkens, J.; Luther, J.M.; Perez-Prieto, J.; Li, L.; Manna, L.; Bodnarchuk, M., I; Kovalenko, M., V; Roeffaers, M.B.J.; Pradhan, N.; Mohammed, O.F.; Bakr, O.M.; Yang, P.; Muller-Buschbaum, P.; Kamat, P., V; Bao, Q.; Zhang, Q.; Krahne, R.; Galian, R.E.; Stranks, S.D.; Bals, S.; Biju, V.; Tisdale, W.A.; Yan, Y.; Hoye, R.L.Z.; Polavarapu, L. pdf  url
doi  openurl
  Title State of the art and prospects for Halide Perovskite Nanocrystals Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 15 Issue 7 Pages 10775-10981  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000679406500006 Publication Date 2021-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 538 Open Access OpenAccess  
  Notes E.D. and J.H. acknowledge financial support from the Research FoundationFlanders (FWO Grant Nos. S002019N, G.0B39.15, G.0B49.15, G.0962.13, G098319N, and ZW15_09-GOH6316), the Research Foundation Flanders postdoctoral fellowships to J.A.S. and E.D. (FWO Grant Nos. 12Y7218N and 12O3719N, respectively), Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:180553 Serial 6846  
Permanent link to this record
 

 
Author Alexander, C.T.; Abakumov, A.M.; Forslund, R.P.; Johnston, K.P.; Stevenson, K.J. url  doi
openurl 
  Title Role of the carbon support on the oxygen reduction and evolution activities in LaNiO3 composite electrodes in alkaline solution Type A1 Journal article
  Year 2018 Publication ACS applied energy materials Abbreviated Journal  
  Volume 1 Issue 4 Pages 1549-1558  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Metal-air batteries and fuel cells show a great deal of promise in advancing low-cost, high-energy-density charge storage solutions for sustainable energy applications. To improve the activities and stabilities of electrocatalysts for the critical oxygen reduction and evolution reactions (ORR and OER, respectively), a greater understanding is needed of the catalyst/carbon interactions and carbon stability. Herein, we report how LaNiO3 (LNO) supported on nitrogen-doped carbon nanotubes (N-CNT) made from a high-yield synthesis lowers the overpotential for both the OER and ORR markedly to enable a low bifunctional window of 0.81 V at only a 51 mu g cm(-2) mass loading. Furthermore, the addition of LNO to the N-CNTs improves the galvanostatic stability for the OER by almost 2 orders of magnitude. The nanoscale geometries of the perovskites and the CNTs enhance the number of metal-support and charge transfer interactions and thus the activity. We use rotating ring disk electrodes (RRDEs) combined with Tafel slope analysis and ICP-OES to quantitatively separate current contributions from the OER, carbon oxidation, and even anodic iron leaching from carbon nanotubes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458705400020 Publication Date 2018-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:157642 Serial 8487  
Permanent link to this record
 

 
Author Escoffier, W.; Grigorieva, I.V.; Misko, V.R.; Baelus, B.J.; Peeters, F.M.; Vinnikov, L.Y.; Dubnos, S. url  doi
openurl 
  Title Formation of vortex clusters and giant vortices in mesoscopic superconducting disks with strong disorder Type A1 Journal article
  Year 2008 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 97 Issue Pages 012172,1-012172,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Merged, or giant, multi-quanta vortices (GVs) appear in very small superconductors near the superconducting transition due to strong confinement of magnetic flux. Here we present evidence for a new, pinning-related, mechanism for vortex merger. Using Bitter decoration to visualise vortices in small Nb disks, we show that confinement in combination with strong disorder causes individual vortices to merge into clusters/GVs well below Tc and Hc2, in contrast to well-defined shells of individual vortices found in the absence of pinning.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000276054100171 Publication Date 2008-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:82320 Serial 1266  
Permanent link to this record
 

 
Author Blundo, E.; Faria, P.E., Jr.; Surrente, A.; Pettinari, G.; Prosnikov, M.A.; Olkowska-Pucko, K.; Zollner, K.; Wozniak, T.; Chaves, A.; Kazimierczuk, T.; Felici, M.; Babinski, A.; Molas, M.R.; Christianen, P.C.M.; Fabian, J.; Polimeni, A. url  doi
openurl 
  Title Strain-Induced Exciton Hybridization in WS2 Monolayers Unveiled by Zeeman-Splitting Measurements Type A1 Journal article
  Year 2022 Publication Physical review letters Abbreviated Journal  
  Volume 129 Issue 6 Pages 067402  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Mechanical deformations and ensuing strain are routinely exploited to tune the band gap energy and to enhance the functionalities of two-dimensional crystals. In this Letter, we show that strain leads also to a strong modification of the exciton magnetic moment in WS2 monolayers. Zeeman-splitting measurements under magnetic fields up to 28.5 T were performed on single, one-layer-thick WS2 microbubbles. The strain of the bubbles causes a hybridization of k-space direct and indirect excitons resulting in a sizable decrease in the modulus of they factor of the ground-state exciton. These findings indicate that strain may have major effects on the way the valley number of excitons can be used to process binary information in two-dimensional crystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000842367600007 Publication Date 2022-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007; 1079-7114 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:198538 Serial 8936  
Permanent link to this record
 

 
Author Marimuthu, P.; Razzokov, J.; Singaravelu, K.; Bogaerts, A. pdf  url
doi  openurl
  Title Predicted Hotspot Residues Involved in Allosteric Signal Transmission in Pro-Apoptotic Peptide—Mcl1 Complexes Type A1 Journal article
  Year 2020 Publication Biomolecules Abbreviated Journal Biomolecules  
  Volume 10 Issue 8 Pages 1114  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Mcl1 is a primary member of the Bcl–2 family—anti–apoptotic proteins (AAP)—that is overexpressed in several cancer pathologies. The apoptotic regulation is mediated through the binding of pro-apoptotic peptides (PAPs) (e.g., Bak and Bid) at the canonical hydrophobic binding groove (CBG) of Mcl1. Although all PAPs form amphipathic α-helices, their amino acid sequences vary to different degree. This sequence variation exhibits a central role in the binding partner selectivity towards different AAPs. Thus, constructing a novel peptide or small organic molecule with the ability to mimic the natural regulatory process of PAP is essential to inhibit various AAPs. Previously reported experimental binding free energies (BFEs) were utilized in the current investigation aimed to understand the mechanistic basis of different PAPs targeted to mMcl1. Molecular dynamics (MD) simulations used to estimate BFEs between mMcl1—PAP complexes using Molecular Mechanics-Generalized Born Solvent Accessible (MMGBSA) approach with multiple parameters. Predicted BFE values showed an excellent agreement with the experiment (R2 = 0.92). The van–der Waals (ΔGvdw) and electrostatic (ΔGele) energy terms found to be the main energy components that drive heterodimerization of mMcl1—PAP complexes. Finally, the dynamic network analysis predicted the allosteric signal transmission pathway involves more favorable energy contributing residues. In total, the results obtained from the current investigation may provide valuable insights for the synthesis of a novel peptide or small organic inhibitor targeting Mcl1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000578895600001 Publication Date 2020-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2218-273X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes P.M. gratefully acknowledges the use of the bioinformatics infrastructure facility supported by Biocenter Finland and the CSC-IT Center for Science (Project: 2000461) for the computational facility; Jukka Lehtonen for the IT support; Mark Johnson (SBL) Åbo Akademi University for providing the lab support and Outi Salo-Ahen (Pharmacy) Åbo Akademi University and Olli T. Pentikäinen (Institute of Biomedicine) University of Turku, for their valuable support and discussion. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:170486 Serial 6396  
Permanent link to this record
 

 
Author Nicholas, R.J.; Sasaki, S.; Miura, N.; Peeters, F.M.; Shi, J.M.; Hai, G.Q.; Devreese, J.T.; Lawless, M.J.; Ashenford, D.E.; Lunn, B. pdf  doi
openurl 
  Title Interband magnetooptical studies of resonant polaron coupling in CdTe/Cd1-xMnxTe quantum-wells Type A1 Journal article
  Year 1994 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 50 Issue 11 Pages 7596-7601  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract (down) Magnetoreflectivity measurements of the 1s and 2s exciton energies in a CdTe/Cd1-xMnxTe superlattice have been made in magnetic fields up to 45 T, showing the resonant polaron coupling of electrons to LO phonons. Strong reflectivity features are seen for both the 1s and 2s excitons, which show a strong field-dependent spin splitting due to the dilute magnetic barriers. At B-z=0, the 2s exciton feature is observed lying 18 meV above the Is state, and is shifted upward in energy by the magnetic fields. No resonant behavior occurs when the 2s state passes through the LO-phonon energy of 21 meV, but at higher fields of around 20 T, the resonances for both spin states (sigma(+/-)) of the 2s exciton broaden and show a strong anticrossing behavior. These experiments are shown to be in excellent agreement with a theoretical treatment which includes the resonant polaron coupling of the electrons alone. Both experiment and theory demonstrate an extremely strong resonant splitting of the 2s exciton states of approximately 11 meV, which is over 50% of the LO-phonon energy. The dominance of single-particle polaron coupling is attributed to the relative sizes of the polaron (35 Angstrom A) and the exciton (50 Angstrom A) radius.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1994PJ43700045 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 10 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:99837 Serial 1687  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: